
Round length optimisation for P2P network
gaming

Steven Daniel Webb & Sieteng Soh
Department of Computing

Curtin University of Technology
Kent Street, Bentley, WA 6102

Australia
Email: {steven.webb@postgrad.,S.Soh@}curtin.edu.au

Abstract— The Referee Anti-Cheat Scheme (RACS) in-
creases the scalability of Client/Server (C/S) games by al-
lowing clients to exchange updates directly. Further, RACS
maintains the security of C/S as the trusted referee (running
on the server) is the game authority, simulating all client up-
dates to validate the simulation. In RACS time is divided into
rounds, and every player generates one update per round.
The round length d is bounded by dmax which is specified
by the game developer. The referee may reduce d to increase
game responsiveness for players. Existing approaches to
adjust d require purely distributed algorithms as they do not
have a trusted central authority. These algorithms are slow
and use considerable bandwidth. In this paper we propose
a delay model for RACS, and two centralised algorithms
to calculate d for maximum responsiveness - an optimal
brute force approach and an efficient voting algorithm. We
use simulation to show that the voting algorithm produces
nearly optimal results, and analytical analysis to show that
its processing requirements are far lower than the brute force
approach.

I. INTRODUCTION

Network games are computer games played amongst
multiple players on different hosts across a network,
often the Internet. Massively Multiplayer Online Games
(MMOG) differ from traditional network games as they
present a single universe in which thousands or tens
of thousands of players participate simultaneously. Fur-
thermore, these worlds are persistent; hence, the state
of the world evolves even when the player is offline.
Therefore, in addition to addressing game consistency,
responsiveness, and cheat-free requirements, one must also
address game persistency, system scalability, and system
reliability when developing an MMOG [1].

The vast majority of networked games use a
Client/Server (C/S) architecture, in which the server is the
game authority whose tasks include: (i) receiving player
updates, (ii) simulating game play, (iii) validating and
resolving conflicts in the simulation, (iv) disseminating
updates to clients, (v) storing the current game state,
(vi) storing the offline player’s avatar state, and (vii)
authenticating players, downloading their avatar state, and
billing. With only one centralised trusted server, keep-
ing the game consistent, persistent, and cheat free in
C/S is straightforward. Unfortunately, C/S suffers from
the following limitations: (i) bandwidth scalability - the
server’s incoming and outgoing bandwidth is a bottleneck

as the publisher must provision sufficient bandwidth at
one location, which is an expensive re-occurring cost [2];
(ii) processing scalability - the server’s processing power
is a bottleneck, as it must handle tasks (ii) and (iii), as
well as calculating player’s Area of Interest (AoI) [3];
(iii) responsiveness - redirecting updates through the server
increases game delay; (iv) reliability - the server is a
single point of failure for the system; and (v) fairness -
players geographically close to the server have an unfair
advantage, as they will have better responsiveness than
those situated further away [4].

Several peer-to-peer (P2P) architectures [3], [5], [6]
have been proposed to address the C/S limitations. P2P
is scalable as the bandwidth and processing requirements
are entirely handled by the clients; hence, there is no
central bottleneck. Furthermore, P2P systems are resource
growing; as the number of clients increases so does the
overall bandwidth and processing power of the system.
Unfortunately, keeping the game consistent and cheat-free
in P2P is significantly harder and more costly than in C/S,
as the latter utilises trusted servers to store the world state
and to validate and authenticate all player updates [7].

Cheating is a major concern in network games as it
degrades the experience of the majority of players who are
honest [2]. This is catastrophic for games using subscrip-
tion models to generate revenue [8]. Although addressing
cheating, consistency, conflict resolution, and persistency
issues is simplified in C/S, some forms of cheating such as
collusion and proxy/reflex enhancers are still possible [9].
Several P2P protocols [3], [5], [6] have been proposed to
solve protocol level cheats. However, these protocols fail
to address the information exposure and invalid command
cheats which are prevalent in MMOG, while introducing
new forms of cheating (e.g., the inconsistency cheat) not
possible in C/S [10]. In addition, these solutions require
costly distributed validation algorithms that increase game
delay and bandwidth.

The Referee Anti-Cheat Scheme (RACS) [10] is a
hybrid C/S and P2P architecture that allows players to
exchange updates directly, minimising delay. RACS uses
a trusted referee combined with cryptographic techniques
to provide cheat prevention equivalent to that in C/S [10].
Since the referee only sends updates in the event of incon-
sistencies or when peers cannot communicate directly its

outgoing bandwidth is minimised. Furthermore, as updates
are not routed through a server, players geographically far
away are not disadvantaged.

In RACS and many other network gaming protocols
[6], [5], [11] time is either implicitly or explicitly divided
into rounds of length d, with every player generating one
update per round. The round length is equal for all players.
Reducing d increases game responsiveness; however, the
bandwidth used increases. Increasing the round length
reduces the bandwidth usage, but also reduces game
interactivity. In many networked games there is a real-time
delay constraint dmax beyond which the game becomes
un-playable. The round length must not exceed this level
(i.e., d ≤ dmax); however, if players have low delay the
optimal d - the value of d that maximises responsiveness
for the greatest number of players - may be far lower than
dmax. In [10] we briefly discussed methods to determine
the round length. In this paper we propose two algorithms
to calculate the round length.

The remainder of the paper is organised as follows. In
Section II we discuss related work and RACS. Section III
formally describes the problem. Section IV discusses the
brute force and voting algorithms to calculate the round
length. Section V uses simulation to compare the optimal-
ity of the both algorithms, and Section VI concludes our
paper. Note, “he” should be read as “he or she” throughout
this paper.

II. BACKGROUND

A. Related work

In networked computer games the game state is the
current information about all avatars, monsters, items, etc.
In this paper we assume the game state is stored on a
centrally located trusted server, as this is applicable to the
majority of games [12]. Every client contains a copy of
a subset of the game state, corresponding to the player’s
Area of Interest (AoI), which is the region surrounding
the player’s avatar that he can perceive. Due to network
delay, inconsistencies occur between the client’s state and
the server’s authoritative state [13]. When inconsistencies
occur the client may perceive unusually game behaviour,
that negatively effects their game experience and perfor-
mance. If clients have low delay reducing d decreases
inconsistencies; hence, improving the player’s experience.

For competitive networked computer games - of which
there are many - it is important that the game is fair for all
players. If a player has a significantly higher delay than
most of his opponents he will suffer a greater number of
inconsistencies; hence, he will be disadvantaged. Note that
fairness is not a binary state, but a property of a game. To
increase game fairness the server could artificially increase
the delay of other players; however, if the slowest player
has very high delay this will significantly impact on the
enjoyment of all other players [13]. To be enjoyable by
all players a game must be playable and fair. If network
conditions are poor this may not always be achievable. At
the time of writing we are not aware of any commercial
games that artificially inflate player delays to improve

fairness. If a player has significantly higher delay than his
opponents he is responsible for attaining better Internet
access.

In our work we seek to maximise the responsiveness
and fairness of the majority of players. Therefore, players
with delay significantly higher than the majority of players
may suffer increased delay, as we aim to maximise the
responsiveness for the majority of players. Further, players
with delay far below the majority of their opponents may
not receive optimal responsiveness, increasing the fairness
and responsiveness for the majority of players.

The New Event Ordering (NEO) protocol [6] and its
extension, the Secure Event Agreement (SEA) protocol
[5], are P2P protocols designed to prevent protocol level
cheats; however, they ignore two prevalent forms of cheat-
ing: information exposure (IE) and invalid commands (IC)
which are preventable in C/S and RACS. NEO/SEA divide
time into rounds of fixed length d. Players commit to a
move by transmitting a secure hash of their update to the
majority of opponents within d. In the following round the
corresponding update is transmitted, and validated using
the hash. If the committed move (the hash) is not received
by the majority of players within d, or the revealed
move does not match the hash, the update is discarded.
NEO/SEA performs several additional checks and counter
measures to prevent cheating; however, as there is no
trusted game authority NEO/SEA is still vulnerable to the
IE and IC cheats [10].

To increase responsiveness the players in NEO/SEA
use a voting mechanism to increase/decrease d. Peri-
odically players may vote to either increase, decrease
or leave unchanged the round length. A Multiplicative
Increase/Additive Decrease (MIAD) scheme is used to
adjust d within a pre-defined limit dmax set by the game
publisher. As there is no trusted authority to tally votes,
all votes are transmitted to all other players requiring
O(n2) messages, where n is the number of players in
the group. After several rounds of voting the round length
will converge.

NEO/SEA increase responsiveness by using pipelining,
which allows multiple updates generated at different times
to be in transit simultaneously. For example, updates may
be generated once every 50ms, with a round length of
d = 200ms, resulting in a pipeline depth of 4 (four updates
in transit simultaneously).

B. Referee Anti-Cheat Scheme
1) Concept and protocol: RACS comprises three enti-

ties: an authentication server SA, a set of players P =
{Pi | i is the unique identifier (ID) of each player},
and a referee R. The authentication server is used to
store offline-player’s avatar state, authenticate joining Pi,
download Pi’s avatar state to his host and R, and billing.
The SA assigns the unique ID i to each player Pi. Each
player receives updates, simulates game play, and sends
updates to his peers and the referee.

The referee R is a process running on a trusted host that
has authority over the game state. The referee validates
and resolves conflicts in the simulation to prevent cheating

(a) PRP mode (b) PP mode

Fig. 1. RACS Communication models

and stores the current game state to maintain consistency.
For these tasks, it receives and simulates all updates. The
referee only sends updates to peers if they are unable to
communicate directly (due to high delay, message loss,
firewalls, or cheating).

The referee divides time into rounds of length d ≤
dmax; the developer sets dmax such that the game is
playable. The referee R is responsible for adjusting d
to maximise responsiveness for the greatest number of
players. Note that decreasing (increasing) d will increase
(decrease) R’s outgoing traffic.

For each round r of length d, every Pi generates a pair
Ui = (r, I) to be included in his messages transmitted to
R and other peers. Here, I is the information containing
Pi’s actions (e.g., move, attack, etc.) and/or information
about connections with his peers (e.g., informing R about
disconnecting from an opponent). To increase responsive-
ness rounds are pipelined; thus, updates are generated
every f ≤ d milliseconds. The referee initialises the round
number r = 1. Each copy of r (kept in R and each Pi) is
independently incremented for every elapsed f . One can
use NTP [14] for synchronising rounds.

As shown in Figure 1, RACS considers three different
message formats: (i) peer to peer message – MPPi(Ui),
(ii) peer to referee message – MPRi(Ui, Si, Ti), and
(iii) referee to peer message – MRPR(Ui, i), each of
which is signed by the sender (i.e., Pi or R). Secret
information Si is only transmitted to the referee to prevent
opponents cheating by revealing information the player
is not entitled too. In addition, MPRi includes a set
Ti = {(j, H(Uj), D(MPPj))} of elements containing
the player ID j, update hash H(Uj), and the delay in
receiving the update D(MPPj), for every update received
from opponent Pj in the previous round. The hash is
used to prevent cheaters sending different updates to
different players (inconsistency cheat), and the delay is
used by the referee to calculate the optimal round length.
Receiving MPRi(Ui, Si, Ti), R forwards MRPR(Ui, i)
to Pi’s peers if the players are in PRP mode; otherwise
(i.e., in PP mode), R simulates the game and only sends
MRP to relevant players when inconsistency is detected.
Note that PP and PRP modes are discussed in Section
II-B.2.

The recipient of each message validates its authenticity
using the public key of the sender. A late message (not
received within its round) is considered for a future

round assuming no newer messages have been received;
otherwise it is discarded. Thus RACS is more tolerable to
slow players and network delay than [5], [6][3,6] which
discards late messages. We assume the use of a public key
infrastructure for authentication and non-repudiation [6].

2) Communication models: As shown in Figure 1, the
communication between any PA and PB that are mutually
aware (within each others’ AoI) can be through the referee
R (Peer-Referee-Peer: PRP mode), or direct (Peer-Peer:
PP mode). In PRP each player sends MPR and receives
MRP messages to/from R. This mode provides security
equal to that in C/S. In contrast, peers in PP exchange
their messages (MPP) directly, which reduces delay, and
R’s outgoing bandwidth while maintaining security. Thus,
PP is the preferable mode. Note, in PP mode R sends an
MRP only in the event of inconsistencies (dashed lines
in Figure 1(b)).

A joining PA first contacts the authentication server,
which validates PA (e.g., his identity, subscription, ban-
ning, etc.), and downloads his avatar state to both his host
and R. Then, R downloads the relevant game state to PA’s
host, and notifies all affected players, e.g., PB ; PA is now
in PRP mode. For these joining steps, we assume the use of
existing player-authentication and startup protocols [15].

The referee converts mutually aware PRP peers (e.g.,
PA and PB) into PP by sending MRP that instruct them
to exchange MPP . On the other hand, PA reverts to PRP
(with respect to PB) if: (i) he is no longer in PB’s AoI,
and vice versa; (ii) he receives less than p percent of
PB’s last s ≥ 1 messages, or (iii) he does not receive
PB’s update for more than w ≥ 0 consecutive rounds.
Reversion requirement (i) provides AoI filtering to reduce
bandwidth; only players that include PA in their AoI will
be updated. Requirement (ii) prevents a cheater repeatedly
sending one message and then dropping w consecutive
messages, while requirement (iii) ensures that losses are
not clustered, which would have a large impact on the
game-play experience. For either case, PA sends an MPP
(MPR) to PB (R), that includes I notifying them of the
reversion. Then, R only forwards PA’s moves to PB if
PA is within PB’s AoI. Note that RACS is cheat-proof
when w = 0 or p = 100%. The optimal values for w, p,
and s should (i) minimise PP to PRP reversions, and (ii)
minimise the number of messages that may be dropped.
Optimal value for w, p, and s are game dependent; thus,
we do not cover them in this work.

C. Enhanced Mirrored Servers
The Enhanced Mirrored Server (EMS) architecture [16]

is a combination of RACS and the Mirrored Server [4] ar-
chitectures, that uses multiple mirrored referees at different
geographic locations to increase bandwidth scalability. All
referees simulate all updates and the entire virtual world;
hence, they are mirrored. By distributing the referees
across a large geographic location, Internet bandwidth
costs are reduced as bandwidth is provisioned at different
locations. As peers connected to different mirrors may be
interacting, the round length must be set globally for the
entire game (all mirrors and players); therefore, we do

not consider the EMS architecture in this paper, as the
fundamental issues are identical.

III. PROBLEM FORMULATION

A. Delay Model

Let di,R and di,j denote the average delay between a
player Pi and referee R, and any two players Pi and
Pj , respectively. The referee averages the arrival time
of MPRi messages to calculate di,R for every Pi. The
MPRi message format includes the delay of all MPPj

messages received by a Pi from Pj ; thus, the referee can
calculate di,j for all peers in PP communication. The delay
information is stored in a |P | × |P | + 1 delay matrix D,
where Di,j is the average di,j , and Di,|P |+1 is the average
di,R. Note, Di,j = ∞ if Pj has not received any MPPi

(either because they have not interacted, or because they
cannot communicate directly).

In many multiplayer games - particularly MMOG - a
player Pi is only interacting with a subset of P , denoted
PI(i). This subset is further divided into players using
PP communication - PP (i) - and players using PRP
communication - PRP (i). Note that PP (i)+PRP (i) =
PI(i), and that in general AoI filtering will ensure that
PI(i) is far smaller than P . The total-player-delay of Pi

using round length d, TPD(i, d), is the sum of the time
taken for an update generated by Pi to reach all Pj , where
Pj ∈ PI(i). Formally:

TPD(i, d) = d× |PP (i)|+∑
j∈PRP (i)

[PRD(i, d) + PRD(j, d)] (1)

Assuming rounds begin every f ms (see pipelining in
Section II-B.1), the peer-referee-delay of Pi using round
length d, PRD(i, d), is d if the delay between Pi and R
is less than d, or di,R plus the time until the next round
if the delay between Pi and R exceeds d. Formally:

PRD(i, d) =

{
d Di,|P |+1 ≤ d

f ×
⌈

Di,|P |+1

f

⌉
otherwise

(2)

The total-system-delay for a given round length d,
TSD(d), is the sum of all total-player delays and player-
referee delays. Formally:

TSD(d) =
∑
i∈P

[TPD(i, d) + PRD(i, d)] (3)

B. Problem Statement

The goal of our research is to minimise equation 3, thus
producing the maximum responsiveness for the majority
of players. The problem is thus, given matrix D, calculate
the optimal value for d such that equation 3 is minimised.
Note, that the referee stores the entire matrix D, whereas
every Pi stores only Di, the ith row in D.

Figure 2 contains two example topologies and their
corresponding delay matrices. Topology 1 assumes a tight
cluster of players with a high delay to the server, such as
a group of friends in Perth playing on a server located

Fig. 3. TSD for topology 2.

in the US. Topology 2 contains a tight group of players
and the referee, and one player having far higher delay.
This scenario may occur if the majority of players have
DSL/Cable Internet access, but one player is connecting
using a 56k modem. Intuitively, in topology 1 we believe
the round length should be 64ms, as this will maximise
responsiveness. Due to the delay between the players and
the referee some inconsistencies may occur; however, we
believe the increased responsiveness will make the game
more enjoyable. In topology 2, it is unrealistic to delay
all players to the rate of the slowest player; therefore, we
recommend setting d = 75ms such that players P1, P3,
and P4 can maximise their responsiveness. Player P2 can
still participate, but only in PRP mode. If P2 wishes to
use PP mode he must purchase faster Internet access.

IV. ROUND LENGTH ADJUSTMENT ALGORITHMS

A. Brute Force

The easiest approach to determine the optimal value for
d is to calculate TSD for d = [1, dmax] and select the
minimum. The worst case complexity for this approach
is O(dmaxn2), where n = |P |. In reality due to AoI
filtering it would be far lower; however, there would still
be considerable processing overhead. The TSD values for
topology 2 are shown in Figure 3. Note that due to the
presence of many local minima, optimisation techniques
such as gradient descent cannot be used.

B. Voting

The brute-force algorithm produces optimal results;
however, it has very high processing overhead and fails to
maximise the benefits of the distributed nature of RACS.
To reduce the processing requirements we use a voting
algorithm where each player Pi votes for the di that
minimises TPD(i, di). The referee tallies the votes to
build a Cumulative Density Function (CDF), and uses it
to select the minimum d such that 50% of votes are below
d. The protocol is shown in Algorithms 1 and 2. The
processing requirement of the referee for this protocol is
O(n), as it must tally n votes.

(a) Topology 1 node placement

P1 P2 P3 P4 R
P1 0 34 60 53 165
P2 34 0 55 64 136
P3 60 55 0 31 176
P4 53 64 31 0 197

(b) Topology 1 Matrix (c) Topology 2 node placement

P1 P2 P3 P4 R
P1 0 151 75 30 68
P2 151 0 130 157 101
P3 75 130 0 55 34
P4 30 157 55 0 60

(d) Topology 2 Matrix

Fig. 2. Example topologies

Algorithm 1 Round length adjustment
Instruct all peers to vote
Receive votes (di) from all peers
Construct CDF
Select min d such that 50% of di ≤ d
Inform all peers of the new d

Algorithm 2 Vote
IMPORTS: Dj - a 1D array of delays
between the the current peer Pi and
all Pj ∈ PI(i) peers and R
EXPORTS: di

min←∞
di ← 0
for every dj ∈ Dj do

if TPD(dj) < min
min← TPD(dj)
di ← dj

end if
end for

V. PERFORMANCE EVALUATION

A. Algorithm comparison

To evaluate the accuracy of the voting algo-
rithm against the brute force algorithm we simu-
lated both using the Network Game Simulator (NGS)
(netgamesim.sourceforge.net) [17]. The MIAD algorithm
used by NEO is included as a benchmark; doubling the
round length when peers vote for an increase, and reducing
d by 10% of dmax (20 ms) for a decrease. We used
the King [18] topology to simulate delays between peers.
Note, we used the average delay between peers to remove
the small number of gaps in the King topology. A central
host of the topology was selected to be the referee (a
host is central if its distance from any other host is as
small as possible [19]), and 1000 peers were randomly
selected from the remaining 1739 hosts. We simulated a
world size of 1000 by 1000 units, with each player’s avatar
having an AoI radius of 50 units. Avatar movement is
controlled by the random-way-point mobility model with
a velocity of two units per second and a wait time of 0. We
simulated 1000 seconds with an update frequency of 50ms
(20 updates per second), and a maximum round length of
dmax = 200ms. The round length is adjusted every 10
seconds. The Total System Delay (TSD) and round length
(d) for each algorithm are shown in Figure 4 (a) and (b)

respectively. Examining Figure 4(a), at the beginning of
the simulation there is a spike in the TSD caused by the
initial random placement of players along the edge of the
world. Beyond the initial spike the difference between the
brute force algorithm and the voting algorithm is so small
it is not visible in the figure. As expected, the MIAD
algorithm produces significantly higher TSD. Therefore,
due to its near-optimality and low processing overhead on
the referee, we recommend using the voting algorithm for
round length adjustment. Furthermore, Figure 4(b) shows
that the optimal (brute force) round length fluctuates far
more than the voted round length. As adjusting the round
length effects the responsiveness of the game the high
fluctuation of the brute force algorithm will have a negative
impact on the player experience. Note, players who are
neighbours or team mates tend to be closer to each other
in the network topology [20]; as the random-way-point
mobility model does not produce this behaviour we expect
the benefit of adjusting the round length will be far greater
when implemented in a real game.

B. Round length adjustment frequency

As players join and leave groups in the virtual world the
round length must be updated to maintain responsiveness.
Increasing the frequency of round length adjustment will
increase the responsiveness to changes in group member-
ship, reducing the TSD. However, excessive round length
adjustment will provide little benefit, while increasing the
processing and bandwidth of both the referee and peers.
To demonstrate this we repeated the first simulation using
the voting algorithm to adjust the round length every 1, 5,
10, 15, 20, and 60 seconds. The resulting TSDs for the first
100 seconds are shown in Figure 5. As expected, the more
frequently the round length is adjusted the faster the TSD
will converge to optimal. As there is little fluctuation in the
round length beyond 100 seconds, there is little difference
between the round length update frequency. As the optimal
update frequency is dependent on the mobility of avatars,
and the frequency of group membership changes, it is
specific for every game.

VI. CONCLUSION

In this paper we proposed two algorithms for round
length adjustment for the RACS and EMS architectures.
Firstly, we developed a brute force approach that calculates
the optimal round length in O(dmaxn2), where n is the
number of players. As the processing requirements for
the brute force algorithm is very high when the number

(a) Total System Delay (b) Round length

Fig. 4. Simulation 1 results

Fig. 5. Voting algorithm TSD at different frequencies

of players is large (such as in an MMOG), we also
proposed an efficient voting algorithm with O(n) com-
plexity. We used simulation to evaluate the effectiveness
of the voting algorithm against the brute force and MIAD
algorithms, and found the Total System Delay (TSD) is
only marginally higher than optimal and far below the
MIAD result. Further, the voting algorithm has a lower
fluctuation in round length, which would improve the
game-play experience of users.

The RACS and EMS architectures require referees to
simulate the entire world, and use the same round length
for all players. To improve the scalability and responsive-
ness of RACS and EMS we intend to investigate parti-
tioning the virtual world into regions, and load balancing
the different regions between referees. Further, each region
will have its own round length, increasing responsiveness.

REFERENCES

[1] S. Hu, J. Chen, and T. Chen, “VON: A scalable peer-to-peer net-
work for virtual environments,” IEEE Network, vol. 20, July/August
2006.

[2] J. Mulligan and B. Patrovsky, Developing Online Games: An
Insider’s Guide. New Riders Publishing, February 2003.

[3] N. E. Baughman, M. Liberatore, and B. N. Levine, “Cheat-proof
playout for centralized and peer-to-peer gaming,” IEEE/ACM Trans.
Networking, pp. 1–13, 2006.

[4] E. Cronin, A. R. Kurc, B. Filstrup, and S. Jamin, “An efficient
synchronization mechanism for mirrored game architectures,” Mul-
timedia Tools and Applications, vol. 23, pp. 7–30, May 2004.

[5] A. B. Corman, S. Douglas, P. Schachte, and V. Teague, “A Secure
Event Agreement (SEA) protocol for peer-to-peer games,” in Proc.
ARES, pp. 34–41, 2006.

[6] C. GauthierDickey, D. Zappala, V. Lo, and J. Marr, “Low latency
and cheat-proof event ordering for peer-to-peer games,” in Proc.
NOSSDAV, pp. 134–139, 2004.

[7] L. Guatier, C. Diot, and J. Kurose, “End-to-end transmission control
mechanisms for multiparty interactive applications on the Internet,”
in Proc. INFOCOM, pp. 1470–1479, 1999.

[8] M. DeLap, B. Knutsson, H. Lu, O. Sokolsky, U. Sammapun, I. Lee,
and C. Tsarouchis, “Is runtime verification applicable to cheat
detection?,” in Proc. NetGames, pp. 134–138, 2004.

[9] J. Yan, “Security design in online games,” in Proc. ACSAC, p. 286,
2003.

[10] S. Webb, S. Soh, and W. Lau, “RACS: a referee anti-cheat scheme
for P2P gaming,” in Proc. NOSSDAV, pp. 37–42, 2007.

[11] Valve, “Source multiplayer networking.” web page, Aug 2006.
http://developer.valvesoftware.com/wiki/Source_Multiplayer_Networking
Last accessed on the 23rd October 2006.

[12] G. Huang, M. Ye, and L. Cheng, “Modeling system performance
in MMORPG,” Proc. GlobeCom, 2004.

[13] J. Brun, F. Safaei, and P. Boustead, “Fairness and playability in
online multiplayer games,” in Proc. CCNC, pp. 1199–1203, 2006.

[14] D. Mills, “Network time protocol.” RFC 1305, March 1992.
[15] M. Abadi and R. Needham, “Prudent engineering practice for cryp-

tographic protocols,” IEEE Trans. Software Engineering, vol. 22,
no. 1, pp. 6–15, 1996.

[16] S. Webb, S. Soh, and W. Lau, “Enhanced mirrored servers for
network games,” in Proc. Netgames ’07, 2007.

[17] S. Webb, W. Lau, and S. Soh, “NGS: An application layer network
game simulator,” in Proc. IE, pp. 15–22, 2006.

[18] K. P. Gummadi, S. Saroiu, and S. D. Gribble, “King: A tool to
estimate latency between any two internet hosts, from any other
internet host,” in Proc. SIGCOMM IMW, pp. 5–18, 2002.

[19] R. Diestel, Graph Theory. Springer-Verlag Heidelberg, 3 ed., 2005.
[20] K. T. Chen and C. L. Lei, “Network game design: Hints and

implications of player interaction,” in Proc. Netgames, pp. 1–9,
2006.

