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 

Abstract—The conversion of mechanical vibration to electrical 

energy has shown great promise for extending battery life of 

smart sensor wireless devices for various engineering appli-

cations. This paper presents novel analytical models of a 

piezoelectric bimorph, using the closed-form boundary value 

(CFBV) method, for predicting the electromechanical power 

harvester frequency response. The derivations of the coupled 

electromechanical dynamic response of the transverse-longi-

tudinal (CEDRTL) form based on the CFBV method were 

developed using the reduced strong form method of the 

Hamiltonian principle. The equations from CEDRTL can be 

reduced to give the coupled electromechanical dynamic response 

of the transverse (CEDRT) form. The electromechanical 

frequency response functions with variable load resistance were 

also given in detail using Laplace transformation. The two 

theoretical studies are compared together and validated with an 

experimental study. For some cases, when the load resistance 

approached open circuit, the difference between CEDRTL and 

CEDRT tended to be more pronounced. Conversely, the 

CEDRTL and CEDRT models tended to overlap when the load 

resistance approached short circuit. Nyquist plots are used to 

demonstrate the shifting frequency and amplitude changes due to 

variable resistance. Overall, the experimental and CEDRTL 

model results were very close to each other. 

 
 Index Terms—closed-form boundary value, electromechanical, 

energy harvesting,  frequency, Hamiltonian, Nyquist plots,  piezo-

electric, smart sensor.  

 

I. INTRODUCTION 

HE increasing demand of micropower harvesters is 

inevitable since there are growing autonomous sensor 

network devices that require self-sustained energy. This 

condition spurs the development of new methods for power 

capture and storage using rechargeable batteries for powering 

these devices. There are many examples of unused mechanical 

vibration energy that can potentially be converted into useful 

electrical energy such as in bridges, pipelines, industrial 

machinery and dynamic response of the human body. The 

viability of piezoelectric transduction with base vibration 

provides good promise for power harvesting technology with 
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application to smart wireless sensor devices. The extensive 

reviews of the electromechanical piezoelectric-based power 

harvester literature have defined the key issues to be physical 

parameters such as design geometry, physical properties, 

power optimization, environmental mechanical energy, power 

conditioning electronic circuits and sensor systems [1]-[5]. 

Since electromechanical piezoelectric power harvesting is 

reliant upon physical aspects of the design geometry and its 

boundary conditions, research effort focusing on the 

experimental and analytical studies plays an important role for 

predicting the frequency response of the power output and its 

amplitude. Simplified analytical lumped parameter models 

with typical mass-spring-damper and electromechanical system 

have been used to formulate the electrical equivalent and 

power frequency response of the transverse bending piezo-

electric beam [6] and the microcantilevered piezoelectric 

system with interdigital shaped electrodes [7]. Impedance 

matching of interface circuits have been used with a 

synchronized switch harvest on inductor (SSHI) for modelling 

single mode electrical equivalent systems representing the 

piezoelectric beam [8]. An electrical equivalent model of a 

fabricated PZT bimorph for optimising piezoelectric material 

constants, mechanical quality factor and electricity generation 

has also been developed [9]. Although the solution model 

using lumped parameter techniques attempted to provide a 

systems approach with various aspects of electromechanical 

power harvester dynamic response, it ignored the important 

physical issue of eigenfunction, convergence criteria and 

continuity. Moreover, a fabricated micro PMN-PT piezo-

electric cantilever beam with electrode pattern and tuneable tip 

was used to develop the analytical elastic vibration model 

including the direct piezoelectric effect [10]. However, their 

analytical model ignored the backward piezoelectric coupling 

which can significantly affect the system electromechanical 

behaviour. Wickensheir et al. [11] discussed a standard 

electrical interface model of an AC-DC rectifier and storage 

capacitor for modelling time-varying input vibrations during 

the charging process using a single mode analytical piezo-

electric beam.  

Further analytical approaches using the Rayleigh-Ritz’s 

method obtained a condensed matrix equation to analyse 

power harvesting frequency response with various load 

impedances [12], [13] where their methods were again limited 

to only a single mode of frequency response. With the same 

analytical approach, various aspects of resonance frequency 
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behaviour of a unimorph piezoelectric beam were conducted 

by considering the truncation and tip mass ratios [14]. 

Moreover, Ly et al. [15] proposed an analytical model using 

the modal decomposition technique of the cantilevered Euler-

Bernoulli piezoelectric beam with single layer to formulate 

transfer functions of the coupled electromechanical response 

system. The constitutive electromechanical finite element 

equations of Love-Kirchhoff's piezoelectric plate structure 

under harmonic and impact input excitations was also 

formulated and programmed in Matlab code to give the 

eigenmode shape, transient response FFT and frequency 

response [16], [17]. The analytical methods using weak and 

strong forms of electromechanical piezoelectric bimorph 

beams under two input dynamic excitations were formulated 

according to the Hamiltonian principle giving the multimode 

frequency responses. The analytical methods of the normalised 

Ritz eigenfunction and closed forms, reduced from weak and 

strong form respectively, were achieved with good agreement 

including the experimental validation [18]-[20].  

In this paper, the analytical and experimental comparisons 

of the piezoelectric bimorph electromechanical dynamic 

responses under input base excitations are presented. The 

typical Euler-Bernoulli piezoelectric bimorph micropower 

harvester with tip mass was based on the PZT class with the 

plane-stress relationship, 3-1 mode of piezoelectric constant 

operation and 3-3 effect of piezoelectric permittivity. The 

reduced equations have been extended from the previous work 

[19]. In the present work, the authors present the new deri-

vations of electromechanical frequency response functions 

using the CFBV methods. The CEDRTL model provided three 

normalised electromechanical dynamic equations whereas 

CEDRT gave two normalised electromechanical dynamic 

equations. These analytical studies were derived according to 

the CFBV equations reduced from the strong form of 

Hamiltonian’s principle. In validation with the experimental 

study, the two theoretical methods are compared in order to 

investigate the one closest to the experimental response. In the 

forthcoming section, only the CEDRTL model was derived 

since this model can directly be simplified to obtain the 

CEDRT model. Moreover, examples of frequency response 

functions (FRFs) of the bimorph under the input base 

transverse acceleration using two analytical studies were 

validated using the tip absolute dynamic displacement, 

electrical voltage, current and power harvesting. The Nyquist 

frequency response plots were also analysed in order to further 

identify the amplitude and frequency response behaviours due 

to mechanical, electromechanical and resistive shunt dam-

pings. 

II. ELECTROMECHANICAL DYNAMIC EQUATIONS WITH 

CEDRTL MODEL 

     A piezoelectric bimorph beam with centre brass shim 

(substructure) was modelled here with input base transverse 

and longitudinal excitations. In this case, the strain energy 

from mechanical substructure response, electrical enthalpy, 

and kinetic energies of the bimorph and tip mass were used to 

formulate the constitutive electromechanical dynamic equa-

tions of the piezoelectric bimorph using the strong form of 

Hamiltonian’s principle to give the CFBV form [19]. The 

Piezoelectric bimorph model can be shown in Fig. 1. The 

reduced normalised CERDTL model based on CFBV can be 

formulated after simplifying [19], to give,  
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It is noted that because (1) has been normalised, the 

parameters  u
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The variables ru , rw , v , baseu  and basew indicate the genera-

lised time dependent longitudinal and transverse coordinates, 

voltage, and longitudinal and transverse base excitations, 

respectively. Moreover, the coefficients 
 G̂ ,  H̂ , pĈ ,  AÎ , 

 A

tipI ,  .ˆ
r  and  .ˆ

r  indicate the longitudinal and transverse 

piezoelectric couplings, piezoelectric capacitance, zeroth mass 

moment of inertia of the bimorph and tip mass, and normalised 

mode shapes of longitudinal and transverse forms, respecti-

vely, as expressed in Appendices A, B, C, and D where the 

piezoelectric parameters are written in accordance with IEEE 

standards [21]. Damping ratios
 u

r  and  w

r including load 

resistance loadR  are further discussed in Section IV. It is 

important to note here that the CEDRT model can be 

formulated by simply using (1) and ignoring the electro-

mechanical longitudinal form to give, 
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 Fig. 1. Piezoelectric bimorph beam with a tip mass. 
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It is noted that equation (1) and (3) can be further 

formulated using Laplace transformation. However, in this 

paper, we further retain and formulate the CEDRTL model 

since it gives particular insight of the multielectromechanical 

responses and provides more complete mathematical treatment 

compared with the CEDRT model. Equation (1) can be solved 

using Laplace transformations, where the multimode electro-

mechanical dynamic equations of the piezoelectric bimorph 

can be reduced as,  
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The characteristic polynomial form from (4) to (6) can be 

expressed as, 
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            III. MULTIMODE CEDRTL ELECTROMECHANICAL  

                                       FREQUENCY RESPONSE 

   

Corresponding to (4) to (6), the CEDRTL model frequency 

response function can be formulated. In this case, after 

applying some simple algebra, the superposition of the 

piezoelectric bimorph electromechanical frequency responses 

can be formulated as shown in Fig. 2 to give,   
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where the FRF matrix is given by, 
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where the following output and input vector representations 

become,  
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Each multimode FRF parameter of (9) can be formulated as 

shown in (12)-(15).  
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Fig. 2.  Matrix superposition of multimode electromechanical  

frequency responses 
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Equations (12)-(15) can be modified by transforming them  

back into normalised convergent eigenfunction forms [19] to 

obtain the FRFs as a function of position  x  
and frequency 

 j  on the bimorph as given in (16)-(17). Multimode FRF of 

power harvesting can be formulated from (18). The optimal 

multimode FRF of power harvesting related to the transverse 

excitation can be obtained by differentiating (18b) with respect 

to the load resistance and setting the differentiable power to 

zero to give the optimal load resistance as shown in (19).  
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Corresponding to (12), (4) can be written in terms of the 

FRF as, 

       tj
base

tj
baser wjHujHtu   ee 2

12
2

11  .  (20)

  

 

Modifying (20) in terms of any position along the piezoelectric 

beam gives, 

       tj

base

tj

baserel ewjxHeujxHtxu   2

12

2

11 ,,,  .(21) 

The multimode absolute longitudinal displacement can be 

formulated as, 

   
    tj
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tj

baseabs ujxHutxu   e,e, 2
11

2 
 

                   tj
basewjxH  e, 2

12  .                            (22) 

The generalised time dependent relative transverse displace-

ment in (5) can be modified corresponding to (13) as,
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Corresponding to (23), the relative transverse displacement 

can be reformulated in terms of any position along the 

piezoelectric beam as, 
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Corresponding to (24), the absolute transverse displacement 

can be given by,  
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base
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21
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22 ,  .                  (25) 

The generalised electrical potential can be formulated as, 
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tj
base wjHujHtv   ee 2
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2

31  .   (26) 

It should be noted that baseu  and basew  are the input base 

longitudinal and transverse displacement excitations on the 

bimorph. Corresponding to (22) and (25), (16a)  and (17b) can 

be modified in terms of the multimode FRF of the absolute 

displacements and velocities relating the longitudinal and 
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transverse input displacement at any position along the 

bimorph respectively as, 
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It should be noted that (22), (25) and (27) are applicable for 

analysing the absolute dynamic responses and comparing the 

results measured using the Laser Doppler Vibrometer (LDV) 

at any position along the piezoelectric bimorph beam.  

IV. SIMULATION AND EXPERIMENTAL RESULTS 

 

In this section, the trend of the first mode of the FRF was 

investigated by varying load resistances of 560 Ω, 5.6 kΩ, 20 

kΩ, 30 kΩ,  51 kΩ,  60 kΩ,  79 kΩ,  150 kΩ,  200 kΩ  and 

602 kΩ. The bimorph input  base  transverse  acceleration  was  

chosen to be 3 m/s
2
 which is equivalent to 306 mg (1 g = 

gravitational acceleration, 9.81 m/s
2
). The results obtained 

were validated with an experimental study using a Laser 

Doppler Vibrometer (LDV) that measured the absolute 

velocity or displacement of the centre of the tip mass 

coincident with the end of the bimorph. Complete experi-

mental setup can be seen in Fig. 3 and the properties of the 

bimorph and tip mass are given in Table I. We used a load 

resistance of 560 Ω, with the claim that it was approaching the 

short circuit resistance because at the actual short circuit 

condition (Rload = 0), the theoretical voltage FRF will be zero 

and tip absolute displacement cannot be identified. This situa-

tion cannot be used to understand the voltage and displace-

ment FRF behaviours under electromechanical situations. If 

the load resistance of 1 Ω was chosen, the tip absolute 

displacement amplitude was very close to the load resistance 

of 560 Ω. However, it was found that high level of voltage 

noise was present for the 1 Ω experiment. Again this cannot be 

used to identify the voltage FRF behaviour. Therefore, we 

adapt the theoretical and experimental FRF studies by using 

560 Ω as approaching the short circuit condition. With the 

load resistance of 560 Ω, the mechanical damping ratios were 

identified by matching the amplitude of experimental and 

theoretical tip absolute displacement or velocity FRF. The 

physical reason  by choosing damping  ratios  under  very  low  

   

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Material  properties Piezoelectric     Brass   Geometry properties  Piezoelectric    Brass 

Young’s modulus , 11c (GPa) 66 105 Length , L (mm) 30.1    30.1 

Density, ρ (kg/m
3
) 7800 9000 Thickness, h (mm) 0.19 (each)  0.13 

Piezoelectric constant, d31 (pm/V) -190 - Width, b (mm) 6.4  6.4 

Permittivity, T

33  (F/m) 1800 o  - First coefficient 
 A
tipI (kg)

†
        0.0022        

permittivity of free space, o (pF/m) 8.854 - Third coefficient
 C
tipI (kg m

2
)

†
       7.3743

910  

† Calculated according to the geometry and material properties of tip mass and the rotary inertia at centre of gravity of tip mass coincident with the end of the 

bimorph length. First and third coefficients refer to zeroth and second mass moment of inertias respectively.  

TABLE I  

CHARACTERISTIC PROPERTIES OF THE PIEZOELECTRIC BIMORPH SYSTEM. 

 

 

 

Fig. 3. (a) Experimental setup and (b)  Piezoelectric bimorph beam with tip mass under parallel connection.  
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load resistance was to minimise the standard level of 

amplitude of electrical voltage FRF generated from the 

piezoelectric bimorph in order to approach a pure mechanical 

form, since mechanical damping itself was viewed as 

mechanical resistance behaviour due to energy losses during 

vibration of the piezoelectric bimorph. 

At this point, it was also realised that the piezoelectric 

bimorph behaved as a coupled electromechanical dynamic 

system. Identification of mechanical damping with load 

resistance of 560 Ω was found to provide a very close 

comparison between the experiment and theoretical studies. 

Theoretically, the energy losses can be from strain-rate 

(Kelvin-Voigt) and external air damping effects. However, in 

experimental study, damping ratios can readily be measured 

from the FRF without specifying the strain-rate and viscous 

damping effects. Moreover, once the mechanical damping 

ratios were determined, other FRF models with varying 

electrical load resistances can be plotted. The damping ratios 

for the transverse and longitudinal forms around the 

fundamental resonant frequency were found to be 0139.01 w

 

and 030.01 u . The transverse behaviour of the electrome-

chanical system response was known to be dominant in the 

lower frequency range (first resonance). The effect of the 

longitudinal system response was also considered here from 

the initial strain field, contributing to the frequency response, 

but only with small effect. Obviously, the effect of mechanical 

damping ratio can be viewed as a constant value once the 

experimental result was taken and matched to the theoretical 

study. Moreover, the effect of piezoelectric coupling can 

further create electromechanical damping and these can also 

be viewed as constant values.  It should be noted here that the 

effect of load resistance on the piezoelectric bimorph can be 

viewed as resistive shunt damping effect resulting in shifting of  

the resonant frequency with different amplitudes. In such 

situations, the damping effects encompassed both the 

mechanical and electrical forms from the electromechanical 

bimorph responses when the dimensional structure and 

material properties were chosen. 

 

 
 

 

 
 

 

Fig. 4.  Comparison between the CEDRTL (Solid line) and CEDRT (Dash line) : a) FRFs of tip absolute transverse displacement;   

b) Nyquist plot of tip absolute transverse displacement.  

 

Fig. 5.  Tip absolute transverse displacement responses: a) Nyquist plot of the CEDRTL (Solid line) and CEDRT (Dash line);  b) FRFs of the CEDRTL 

(Solid line) and experimental result (Round dot). 

 

 



 7 

By considering the damping effect of the bimorph under 

dynamic conditions, the load resistance connected to the 

bimorph appeared to act as electromechanical attenuation and 

amplification of the amplitude across the frequency domain. 

Fig. 4a shows the bimorph tip transverse displacement 

frequency response comparison with variable load resistance.  

In some cases, the effect of longitudinal extension on the 

frequency response can be ignored with lower load resistances 

(500 Ω, 5.6 kΩ, 20 kΩ and 30 kΩ) because the CERDT and 

CERDTL responses tended to coincide with each other. 

However, for higher load resistances (51 kΩ, 60 kΩ, 79 kΩ, 

150 kΩ, 200 kΩ and 602 kΩ), the effect of longitudinal 

extension seemed to be more pronounced, especially at the 

load resistance of 602 kΩ where the maximum percentage 

difference between the two analytical models was 16 %. As 

can be seen in Fig.4b, the behaviour from the Nyquist plot 

changed as load resistance varied followed by the shift in 

frequency.  

The shift in the frequency can be seen very obviously on the 

imaginary axis for tip absolute displacement. It is also clear 

that mechanical and electromechanical dampings affect the 

system as seen from the Nyquist plot shown in Fig. 5a. 

Moreover, the FRFs of tip absolute transverse dynamic 

displacement with variable load resistance under the CEDRTL 

model seemed to be close to the experimental results as given 

in Fig. 5b, where the longitudinal strain-polarity field for the 

electromechanical dynamic response was also included here 

for the low frequency domain. The strain field effect used here 

included the transverse form with initial longitudinal strain   

where this affected the internal force and moment due to the 

transverse bending and extensional longitudinal response at 

each bimorph interlayer resulting in the electrical force and 

moment response due to the coupling effects of the 

piezoelectric element. Again, it can be seen from Figs.4a and 

5b that the first resonance frequency shifts with varying load 

resistance. When the load resistance tended toward short 

circuit at the frequency of 76.1 Hz, the amplitude tended to 

give the highest value. Similar behaviour was also found at the 

open circuit response at the frequency of 79.6 Hz. 

 

 

 
 

 

 

 

 

Fig. 6.  Comparison between the CEDRTL (Solid line) and CEDRT (Dash line): a) FRFs of electrical voltage;  b) Nyquist plot of 

electrical voltage FRFs. 

Fig. 7.  Voltage responses : a) Nyquist plot of the CEDRTL (Solid line) and CEDRT (Dash line);  b) FRFs of  the CEDRTL (Solid line) and 

experimental result (Round dot). 
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This indicated that the effect of the lowest and highest load 

resistances of 560 Ω and 602 kΩ on the bimorph tended to 

reduce the sensitivity of the electrical form around the 

resonance frequency region. This indicates that the system is 

dominated by the mechanical response of the bimorph under 

the short and open circuits showing the highest amplitudes. 

Similar behaviour can also be found in the Nyquist plot in Fig. 

4b by viewing the imaginary and frequency axes. 

Fig. 6a compares the first mode FRFs of electrical voltage 

of the two analytical models under varying load resistance. 

Both models tend to give similar trend of electrical voltage 

where the amplitude increased due to increasing load 

resistance followed by the shift in frequency. The CEDRTL 

response indicated a slight change when compared with the 

CEDRT response. The comparison between the two analytical 

models with the higher load resistances gave a maximum 

percentage difference of 22 % at 602 kΩ. In Fig. 6b, the 

difference between the two analytical methods can also be seen 

through the Nyquist response. By viewing the imaginary axis, 

the shift in frequency can be seen as load resistance changed. 

For this case, the Nyquist plot represented the change of FRF 

radius due to mechanical and electromechanical damping 

effects and the phase angles or arguments of FRF of 90
o
-180

o
 

from Fig. 7b indicated variance of the FRF resonance region 

and the absolute amplitude values due to variable load 

resistance. It can also be seen that the shifting resonant 

response from open to short circuit load resistances started 

from the imaginary axis of 90
o
 to the negative real axis of 180

o
 

followed by the reduction of absolute amplitude values. The 

comparison between the CEDRTL and experimental results 

were achieved with very good agreement for varying load 

resistance as shown in Fig. 7b.  FRF of electrical current 

generated from the bimorph with input transverse acceleration 

is shown in Fig. 8a under varying load resistance. The shifting 

frequency due to the change of load resistance indicates a 

different trend compared with that shown previously. Fig. 8a 

shows that the comparison between the two analytical methods 

indicating a slight difference for some load resistances. When 

the load resistance approached short circuit, these analytical 

models overlapped for the load resistances of 560 Ω, 5.6 kΩ 

and 20 kΩ. There was a slight increase of electrical current 

amplitude with decreasing load resistance followed by 

decreasing resonance frequencies. 

 

 
 

 

 
 Fig. 9. Current responses : a) Nyquist plot of the CEDRTL (Solid line) and CEDRT (Dash line);  b) FRFs of  the CEDRTL (Solid line) and 

experimental result (Round dot). 

Fig. 8.  Comparison between the CEDRTL (Solid line) and CEDRT (Dash line): a) FRFs of electrical current; b) Nyquist plot of electrical 

current FRFs. 



 9 

In this case, the electrical current frequency response with 

varying load resistance shows the electromechanical 

attenuation behaviour. The trend of electrical current indicates 

opposite behaviour from the electric voltage response as 

shown in Fig. 6a. 

The CEDRTL and experimental results gave very good 

agreement under varying load resistances as shown in Fig. 8b. 

Furthermore, there was a slightly different trend in the specific 

current amplitude under the higher load resistances between 

the two analytical responses with the maximum percentage 

difference of 22 % observed within the non-resonance regions. 

The similar behaviour can be seen from the Nyquist plot in 

Fig. 8b where the response changed as the open circuit load 

resistance moved to short circuit load resistance. As can be 

seen in Fig. 8b and 9a, the shifting resonance based on the 

increasing absolute amplitude values started from the positive 

imaginary axis of 90
o
 to the negative real axis of 180

o
. The 

electrical power harvesting frequency response of the bimorph 

is presented for varying load resistance. As can be seen from 

Fig. 10a, the comparison between the two analytical response 

models was shown to yield slightly different amplitudes with a 

maximum percentage difference being 49 % for the off- 

resonance regions with the higher load resistance approaching 

open circuit. 

Moreover, the trend of the power harvesting FRF tended to 

give different results when compared with previous cases.  

Another important aspect which can be reported here is that 

distribution of load resistances from short to open circuits 

tended to form symmetrical pattern as shown in the Nyquist 

circle from Fig. 10b. Both analytical methods seemed to give 

different amplitudes.  In this case, the clearer view can be seen 

in Fig. 11a where the shifting resonant frequencies based on 

the increasing absolute amplitude values were distributed on 

the Nyquist plot with phase angles from negative real axis of 

180
o
 to positive real axis of 360

o
 due to the change of 

resistance.  

In terms of the Nyquist response, the trend of power 

harvesting depends not only on the varying load resistances 

but also on the chosen properties of the piezoelectric layers 

and the geometry of the bimorph model. For example; even 

though the geometry of the bimorph was chosen with the same 

parameters, it can still have different physical properties like 

capacitance and piezoelectric coupling resulting in different 

power harvesting values. This indicates that the chosen load 

resistances need to be investigated first to show the pattern of 

frequency response around the first mode. 

 

 
 

 

Fig. 10.  Comparison between the CEDRTL (Solid line) and CEDRT (Dash line): a) FRFs of electrical power; b) Nyquist plot of electrical 

power FRFs. 

Fig. 11. Power responses:  a) Nyquist plot of the CEDRTL (Solid line) and CEDRT (Dash line);  b) FRFs of  the CEDRTL 

(Solid line) and experimental result (Round dot). 
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By comparing the different cases of FRFs like the tip 

absolute displacement, electrical current and voltage 

amplitudes; the short and open circuit resonance frequencies 

seemed to give different trends. For example, the trend of 

electric current response as a function of load resistance can be 

compared with the previous trends of tip absolute 

displacement and electric voltage.  

The tip absolute displacement is shown to have the highest 

amplitudes with the load resistance approaching short and 

open circuits. However, the voltage amplitude increased from 

short to open circuit resistance whereas the increase of 

electrical current amplitude occurred from the open to short 

circuits. Therefore, the highest displacement is not a substan-

tial basis for providing the maximum current and maximum 

voltage. This indicates that open and short circuit load resis-

tances are unsuitable for power harvester optimisation as the 

highest tip absolute displacement amplitude did not result in 

the highest power harvesting. In fact, both the short and open 

circuit resistances indicated the lowest value of power 

amplitudes. When considering optimal load resistances, three 

local points of load resistances were observed. The optimal 

power can be obtained from the black square curve of Fig. 

11b. At this case, with the input base excitation of 0.306 g, the 

local maximum power at load resistance of 20 kΩ and 200 kΩ 

can be seen to coincide with the optimal curve with the 

amplitude of 0.43 mW, whereas a local minimum power of 

0.41 mW at load resistance 60 kΩ also overlapped with an 

intermediate optimal curve as shown in Fig.11b. This local 

point indicated the lowest tip absolute displacement amplitude 

around the resonance frequency but showed convenient values 

for voltage and current. When the optimal local power density 

point was considered along with the active volume of the 

piezoelectric bimorph, the power density of the bimorph 

became 4.17 mW/cm
3
. By considering the Nyquist circle as 

shown in Fig. 11a, two local maximum powers at load 

resistances of 200 kΩ and 20 kΩ can also be obtained at 

Nyquist phase angles of 215
o
 and 300

o
 respectively. However, 

local minimum power at load resistance of 60 kΩ also 

indicated the optimal value was located at the predominant 

negative imaginary axis at 270
o
.  

V.  CONCLUSION 

This paper presented results obtained from CFBV analytical 

modelling and experimental measurements of the electro-

mechanical dynamic response of a piezoelectric bimorph beam 

with tip mass. The results from the two analytical models were 

plotted under various load resistance values from short circuit 

to open circuit. The CEDRTL model demonstrates the 

electromechanical principle where the strain field includes the 

coupling between the transverse bending and longitudinal 

extension forms, whereas the CEDRT model ignored the 

longitudinal effect. The mechanical damping ratios were 

determined by matching the frequency amplitudes at the short 

circuit load resistance from the experimental results with the 

theoretical studies. The shifting of the resonance frequencies 

occurred as the load resistances changed where this case 

mostly occurred at the first mode. The Nyquist frequency 

response of tip absolute displacement, voltage, current and 

power gave different patterns where the imaginary and real 

axis amplitudes were used to illustrate the frequency response 

behaviours. Instead of mechanical and electromechanical 

dampings, the change of phase angles and amplitude values in 

the Nyquist plot also indicated change of resonant frequency 

due to load resistance viewed as resistive shunt damping.     

Moreover, the piezoelectric bimorph beams with the tip mass 

under the input base transverse excitation using two analytical 

models have been compared to show the agreement with the 

experimental results. The two analytical model comparisons 

gave slight changes of amplitude trends especially where the 

load resistances approached the open circuit condition. 

However, when the load resistance approached the short 

circuit, the frequency amplitudes given from two analytical 

models seemed to overlap each other. The FRFs from the 

CEDRTL model and the experimental results of the bimorph 

with the tip mass have been compared with good agreement. 

The effect of longitudinal response under lower load resistance 

can be ignored, as the two analytical models overlapped each 

other. However, the longitudinal response on the bimorph with 

the higher load resistance may not be ignored, especially when 

the tip mass is included with two input base excitations.                 

All results showed the frequency response functions of tip 

absolute dynamic displacement, electrical voltage, current and 

power. The increasing tip absolute displacement occurred 

when load resistances approached short and open circuits. The 

maximum displacement amplitude in the Nyguist plot domi-

nantly occurred in the positive imaginary axis. The electrical 

voltage FRF shifted from short to open circuits resulting in 

increasing amplitudes. The Nyquist response also showed the 

change in maximum electrical voltage amplitudes from 

negative real axis to positive imaginary axis followed by the 

change of load resistance from short to open circuits. In the 

opposite behaviour from voltage, the electrical current 

amplitude reached the maximum level as the load resistance 

approached short circuit resulting the shift in resonant 

frequency to a higher value. The electrical current Nyquist 

response also showed opposite behaviour from voltage where 

the maximum amplitude increased from positive imaginary 

axis to negative real axis. Moreover, the power FRF at load 

resistances approaching short and open circuits did not result 

in maximum amplitudes. The identification of optimal resis-

tances has assisted in finding the maximum power. In the 

Nyquist response, the power amplitudes were distributed from 

the negative real axis of 180
o
 to the positive real axis of 360

o
.     

The bimorph system, when used in vibration environments 

with rotating equipment, will be subject to multidirectional 

input excitations. This will normally result in coupled bending 

and longitudinal input and subsequently coupled piezoelectric 

response. Moreover, this analysis can provide benefit for 

design of power conditioning electronic circuits in the 

application of future portable power harvesting devices for 

smart sensor wireless applications.  

 

            APPENDIX 

A. Mass Moment of Inertias of the Piezoelectric Bimorph 

and Tip Mass 
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The zeroth mass moment of inertia of the piezoelectric 

bimorph was given as,  
  

 

        .ˆ 321  psp

A hbhbbhI          (A1) 

The coefficients
   3ρρ 1  and 

 2ρ represent densities of 

upper and lower piezoelectric and middle brass layers, 

respectively. Coefficients b, hp, and hs indicate the bimorph 

width, piezoelectric and brass thicknesses, respectively. The 

zeroth mass moment of inertia of the proof mass based on Fig. 

1 can also be formulated as,    

  

      A

tiptiposptiptip

A

tip ρslhhlhI  2  .           (A2) 

The second mass moment of inertia or rotary inertia at the 

centre of gravity of the proof mass can be formulated as,
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where 2/lxx tipg1  , 2/lxx og2  . Other coefficients gx , 

tips , tiph , and tipl  indicate the centre of gravity, width, height, 

and length of geometry of the tip mass. It is noted that 

equation (A3) can also be seen in (D6). 

 

B. Stiffness Coefficients for the Piezoelectric Bimorph 

Interlayer 

The extensional stiffness coefficient can be formulated as,   
       3

11

2

11

1

11
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D   ,               (B1)               

The transverse stiffness coefficient can be formulated as, 
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where 
    Eccc 11

3

11

1

11   and  2

11c  represent elastic stiffnesses of 

the piezoelectric layers at constant electric field and the brass 

layer, respectively. It is noted that equations (B1) and (B2) can 

also be seen in (D4) and (D8), respectively. 

 

C. Forward and Backward Piezoelectric Coupling 

Coefficients and Internal Capacitance of Piezoelectric 

Bimorph 

 It is noted that forward and backward piezoelectric 

couplings ̂  come from the converse and direct effect of the 

piezoelectric material respectively, but indicate the same result 

[19].  

 

Bimorph Series Electrical Connection 

a)  Piezoelectric coupling  due to transverse bending can be 

formulated as, 
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b) Piezoelectric coupling due to longitudinal extension can 

also be stated as, 
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The capacitance of the piezoelectric element was calculated as,  
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Since the upper and lower layers of the piezoelectric bimorph 

indicated the same material and geometrical structure, the 

permittivity of the piezoelectric element will be the same 

where     S

33

3

33

1

33   . It should be noted that S

33  is the 

permittivity at constant strain that can be further formulated as 

31313333 deTS    or ETS cd 11

2

313333    where ,1 1111

EE sc  T

33 is 

the permittivity at constant stress and Es11  is the elastic 

compliance at constant electric field. 

 

 Bimorph Parallel Electrical Connection 

a) Piezoelectric coupling due to transverse bending can be 

formulated as, 
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b) Piezoelectric coupling due to longitudinal extension can be 

formulated as, 
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The capacitance of the piezoelectric element for parallel 

connection was given by, 
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D.  Mode shapes of the piezoelectric bimorph beam with tip 

mass 

The mode shape of longitudinal form can be formulated as, 

                                 xbx rr sin1 .                           (D1) 

Since equation (D1) contains variable rb1  as the longitudinal 

amplitude constant, the normalised mode shapes can be 

formulated as,                          
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In terms of orthonormalisation, equation (D2) should meet the 

specific orthogonality condition based on the boundary 

condition as,    
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where rq is the Kronecker delta, defined as unity for rq   and 

zero for rq  . The mode shape of transverse bending can be 

formulated as, 
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where:       
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Since equation (D4) contains variable rc1  as the transverse 

amplitude constant, the normalised mode shape can be 

formulated as,  
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In terms of orthonormalisation, equation (D5) should meet the 

specific orthogonality property of the mechanical dynamic 

equations based on the boundary condition as, 
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