Nebulised furosemide for the management of dyspnea: does the evidence support its use?

Newton PJ,^{1,2,3} Davidson PM,³ Macdonald P,^{4,5} Ollerton, R¹ Krum H^{6,7}

1.University of Western Sydney; 2 Sydney West Area Health Service; 3. Curtin University of Technology, 4 St Vincent's Hospital; Sydney 5 University of New South Wales; 6 Monash University; 7 The Alfred Hospital, Melbourne

Address for correspondence: Phillip J Newton. Centre for Cardiovascular and Chronic Care. Curtin University of Technology. Curtin House. 39 Regent St NSW 2008 Australia. Phone 612 8399 7832 Fax 612 8399 7834 Email: p.newton@curtin.edu.au

Abstract

Dyspnea is a common and distressing symptom associated with multiple chronic illnesses and high levels of burden for the individual, their families and health care systems. The subjective nature of the dyspnea symptom and a poor understanding of pathophysiological mechanisms challenge the clinician in developing management plans. Nebulised furosemide has been identified as a novel approach to dyspnea management. This review article summarises published studies, both clinical and experimental, reporting the use of nebulised furosemide. The search criteria yielded 42 articles published in the period 1988 to 2004. Whilst nebulised furosemide appeared to have a positive influence on a person's dyspnea and physiological measurements, caution must be taken with the results primarily coming from small-scale clinical trials or observation trials. Despite the limitations of the studies reported, given the range of conditions reporting effectiveness of nebulised furosemide, further investigation of this potential novel treatment of dyspnea is warranted.

Keywords: Furosemide, Dyspnea, Chronic disease, Acute disease, Drug Administration, Inhalation

Running title: Nebulised furosemide for dyspnea

INTRODUCTION

The burden of dyspnea in chronic illness

Dyspnea, the subjective experience of breathlessness⁽¹⁾ and is a common and distressing symptom in many chronic illnesses, including both malignant and non-malignant conditions. The frequency and intensity of dyspnea can worsen, in both intensity and frequency, as the disease progresses or during periods of exacerbation. This symptom burden often remains despite optimal therapy.⁽²⁾ A reduction in self-rated quality of life is also seen with dyspnea, due to a reduction in the capacity for physical activity and the potential for adverse psychological symptoms.⁽¹⁾

In spite of the prevalence of dyspnea, the precise physiological mechanisms remain unclear for symptom aetiology and experience. It is important to consider that dyspnea is a multidimensional symptom, involving not only physiological mechanisms, but also environmental, psychological and social factors. It is the interplay of these multiple factors which are responsible determine the severity and degree of the symptom.⁽¹⁾

The significant disease burden of dyspnea has led to the exploration of many approaches to relieve this distressing symptom.⁽¹⁾ Nebulised furosemide, a common loop diuretic in the management of oedematous symptoms, has been tested as a treatment option for dyspnea.⁽³⁾ This treatment option is attractive from both a physiological and management perspective. The potential to achieve adjunctive benefits to symptom management such as ancillary bronchodilator therapy in asthma, chronic obstructive pulmonary disease (COPD) and malignancy is an attractive option as well as the capacity to administer the drug in a non-invasive method, with a low adverse effect profile, and in ambulatory care and home based settings.

The action of furosemide

Furosemide produces increased diuresis through inhibition of the Na⁺-K⁺-2Cl⁻ co-transporter in the thick ascending limb of the loop of Henle.^(4,5) The reported range of oral availability of furosemide is 10-100% with the mean availability being 60%.⁽⁵⁾ Approximately 50-65% of furosemide is excreted in the urine unchanged.^(4,5) The plasma half-life of furosemide is approximately 1.5 hours^(4,5) in a healthy individual but this figure is nearly double when there is renal, hepatic and cardiac deficiencies.⁽⁵⁾

Despite extensive research into the mechanism of action using in vitro models, the precise mechanism of action of nebulised furosemide is still unknown leading to speculation that more then one mechanism of action is involved.^(6,7) Animal and in vitro models suggest that the protective effects of nebulised furosemide are unlikely to be by the same mechanism that it enacts in the kidneys. These models have suggested several mechanism including its protective effect against cholinergic, noncholinergic and nonadreneric contraction of smooth muscle,⁽⁸⁻¹⁰⁾ producing an increased vascular response to the tissue,⁽¹¹⁾ enhancing microvascular leakage to counteract the evaporation of water⁽¹²⁾ and vasodilation.^(13,14) Recent work in an anesthetised rat model suggested nebulised furosemide could work through the activation of pulmonary stretch receptors and inhibition of vagal irritant receptors.⁽¹⁵⁾ The failure of oral furosemide to protect against exercise induced asthma compared to the protective effect of nebulised furosemide in Bianco's original study, suggests nebulised furosemide has a direct protective effect.⁽³⁾

Methods:

The electronic data bases, Medline, Embase, and CINAHL, as well as the World Wide Web were searched for literature in English using key words which included "dyspnea",

"breathless" "inhaled", "nebulised", "furosemide" and "furosemide" from 1988 to 2006. The reference lists of published articles were also examined to find additional references. Articles were considered suitable if they reported findings of clinical or experimental trials of nebulised furosemide for the management of dyspnea in human adults. Both randomized and non-randomized controlled trials were included in this review. The heterogeneity of study design, populations, and endpoints precluded the formal use of metanalysis techniques. Results:

Initially the search generated 112 citations. In total, 42 articles were retrieved which met the inclusion criteria. The articles retrieved included 39 randomised control trials, 35 studies in asthma, 2 studies in cancer, 8 in healthy participants, 1 in chronic obstructive pulmonary disease, 5 articles measured dyspnea and 40 articles measured changes in physiological outcomes. These are summarised in Table 1. A critical review of the articles was undertaken and the evidence for the use of nebulised furosemide is reported.

Asthma

Acute Asthma

Several studies and case reports have reported the use of nebulised furosemide as an adjunctive treatment for acute asthma. Two studies reported improvement in pulmonary function when nebulised furosemide (20-100mg) was used after or in conjunction with standard treatment which included sympathomimetics, aminophylline, and steroids.^(16,17) These studies showed the addition of nebulised furosemide was able to significantly improve FEV₁ at 60 minutes,⁽¹⁷⁾ and produce a rapid fall in PaCO₂ within 20-60 minutes.⁽¹⁶⁾ When compared to salbutamol, nebulised furosemide (100mg) did not increase FEV₁ as much as salbutamol (6.9% compared to 7.9% respectively) at 10 and 30 minutes, however, this difference was not statistically significant.⁽¹⁸⁾

In contrast, Pendino and colleagues did not show an overall greater protection from nebulised furosemide than normal saline when added to salbutamol (2.5mg). A significant improvement in peak expiratory flow rate (PEFR) was seen on post hoc analysis in the nebulised furosemide group in those patients that had presented to the emergency room within 8 hours of the onset of their symptoms.⁽¹⁹⁾ In a further study, comparing nebulised furosemide with salbutamol in subjects who had not received a nebulised beta agonist in the previous 6 hours, furosemide failed to show a significant improvement in FEV₁. However, the group assigned metaproternol alone did have a significant improvement in their FEV₁.⁽²⁰⁾

Experimentally Induced Asthma

Multiple experimental studies have demonstrated the ability to reduce the effects of Adenosine 5'-Monophosphate bronchoconstrictive agents. (AMP) induces bronchoconstriction through the enhancement of mast cell mediated release^(21,22) and interference with neural pathways.⁽²²⁾ The protective effects of nebulised furosemide against AMP induced bronchoconstriction can last for up to 120 minutes.⁽²³⁾ Ultrasonically nebulised distilled water (UNDW) likely induces bronchoconstriction through indirectly causing smooth muscle contraction.⁽²⁴⁾ Nebulised furosemide (28-40 mg) was able to significantly increase the amount of UNDW required to reduce FEV1 by 20%.⁽²⁴⁻²⁶⁾ Nebulised furosemide (30-40mg) successfully increased the amount of sodium metabisulfite (MBS), an indirect stimulant of bronchoconstriction required to produce a 20% fall in FEV₁. This effect was relatively short, with protection lasting between 1.5-3 hours.⁽²⁷⁻³¹⁾

Bronchoconstriction is directly produced by methacholine through stimulation of muscarinic receptors on airway smooth muscle.⁽²¹⁾ There have been different results of the ability of nebulised furosemide to prevent methacholine-induced bronchoconstriction. Nebulised

furosemide (30mg and 28mg) provided no protection against methacholine-induced bronchoconstriction in two studies, while one study showed nebulised furosemide (28mg) was able to increase the amount of methacholine required to produce a 20% fall in FEV_1 .

Based upon available data, it is unlikely that nebulised furosemide provides protection against bronchoconstriction by the same mechanism as it exerts diuresis in the kidneys. Nebulised furosemide has been shown to: (1) provide protection against bronchoconstriction when other loop diuretics such as bumetanide, failed to provide protection (2) reduced the amount of experimentally induced bronchoconstriction compared to other loop diuretics (bumetanide, torasemide) (3) provided the same level of protection against MBS induced bronchoconstriction when equivalent doses of ethacrynic acid, a loop diuretic with a different mechanism of action was used.⁽³¹⁾

Nebulised furosemide has been shown to be effective against exercise induced asthma.^(3,32) In Bianco's original study, nebulised furosemide was able to protect against exercise induced asthma but oral furosemide was ineffective. This level of protection was also shown to be dose dependent.⁽³⁾ Furosemide was able to reduce the level of fall of FEV₁ as a result of exercise from 26% with placebo to 14.3%.⁽³²⁾ Another common cause of asthma is allergens. Two studies have examined the efficacy of nebulised furosemide (~28-40mg) to protect against allergen-induced asthma with encouraging results. The protective effects have been seen immediately,⁽³³⁾ and as late as 4-12 hours.⁽³⁴⁾

Nebulised furosemide has also proven effective against isocapnic hyperventilation ^(13,35) and dry air challenges.⁽³⁶⁾ Gilbert and colleagues found that the protection furosemide provided in

the isocapnic hyperventilation challenge was in conjunction with changes in thermal gradients.⁽¹³⁾

Aspirin can induce asthma in some patients through the inhibition of cyclooxygenase.^(37,38) Nebulised furosemide has been shown to provide protection against aspirin induced bronchoconstriction in two randomised controlled studies.^(37,38) When patients took indomethacin, a known inhibitor of cyclooxygenase, (50mg,) three times a day for 3 days prior to the test, the effects of nebulised furosemide were significantly reduced.⁽³²⁾ Flurbiprofen, a suspected inhibitor of the synthesis and release of prostaglandins has demonstrated mixed results with nebulised furosemide. Participants that took flurbiprofen 50mg twice daily, for 3 days prior to a methacholine challenge showed flurbiprofen was able to abolish the effects of nebulised furosemide occurred in both asthmatics and healthy subjects.⁽³⁹⁾ However, a single dose of flurbiprofen (200mg), enhanced the protective effects of nebulised furosemide were as a single dose 2 hours prior to a sodium metabisulphite challenge.⁽³⁰⁾

The results from these studies highlight the difficulty of finding the mechanism of action of nebulised furosemide. The ability of furosemide to provide protection against a wide of agents with many different mechanisms of action suggests that nebulised furosemide may work at different sites in the respiratory system. The encouraging results from the few clinical trials of furosemide in asthma suggest further examination is warranted.

Cancer

Two studies have examined the efficacy of nebulised furosemide for the alleviation of dyspnea in end stage cancer patients.^(40,41) Nebulised furosemide (20mg) three times daily was

able to relieve dyspnea, when standard treatments (morphine, oxygen and orciprenaline) were no longer effective.⁽⁴¹⁾ Interestingly, another group of patients stated nebulised furosemide relieved their dyspnea using the Cancer Dyspnea Scale, particularly in the sense of effort and reduced anxiety items, but there was no significant reduction in the objective measures including arterial blood gases, SaO₂, heart rate and respiratory rate. Whilst these studies were of case study design, they provided encouraging results for the use of nebulised furosemide in this group of patients and further investigation is warranted.⁽⁴⁰⁾

Chronic Obstructive Pulmonary Disease (COPD)

In a study by Ong and co-workers, participants with moderate or severe COPD had dyspnea induced with exercise following administration of either nebulised furosemide or nebulised normal saline in a controlled clinical trial. There was a significant improvement in the patients FEV₁ after nebulised furosemide. The patient's perception of their dyspnea, as measured by a visual analogue scale (VAS), also significantly improved following nebulised furosemide. No significant difference was found with incremental exercise testing.⁽⁴²⁾

Healthy subjects

Ventresca et al reported on nebulised furosemide's ability to protect against induced cough in healthy participants.⁽⁴³⁾ In this study, nebulised furosemide was unable to protect against capsaicin induced cough although it did protect against prostaglandin F2 α induced cough.

It is unlikely that nebulised furosemide prevents dyspnea through a decrease of the ventilatory drive of CO_2 .⁽⁴⁴⁾ Whist nebulised furosemide was able to protect against breath holding and a combination of resistive flow loading and hypercapnia induced bronchoconstriction,⁽⁴⁵⁾ there was no effect on the CO_2 slope curve despite an improvement in the dyspnea ratings of the participants.⁽⁴⁴⁾

As was the case with asthmatic subjects,⁽²¹⁾ nebulised furosemide was able to protect against methacholine induced bronchoconstriction.⁽³⁹⁾ The loop diuretic bumetanide was also successful in protecting against methacholine induced bronchoconstriction in this study.

Reported adverse events

Although the therapeutic effects of nebulised furosemide are attractive, it is important to consider potentials for adverse effects, particularly within the context of polypharmacy and co-morbid conditions.

Increased diuresis

Inconsistencies are reported regarding increased diuresis following inhalation of nebulised furosemide. Increased diuresis has only been reported in 4 studies in adults.^(18,29,43,46) The effect of the increased diuresis has been reported to last for up to 24 hours.⁽²⁹⁾ There was a non statistically significant increase in diuresis in the study from Rodriguez et al⁽¹⁸⁾ in the furosemide group compared to placebo. Increased diuresis was reported in 1 of 8 participants in the study from Ventresca et al.⁽⁴³⁾ Ten studies either specifically reported that there was no increase in diuresis or that no adverse events had occurred following inhalation of nebulised furosemide.^(3,16,20,25,27,31,33,40,41,47) No reference to adverse events was made in the remaining articles reviewed.

Discussion

There is some evidence to suggest nebulised furosemide could be an option to use in the management of dyspnea. The case reports of the improvement in dyspnea scores in cancer patients are encouraging; especially given the fact the more traditional dyspnea strategies of opioids were not effective in these patients. Yet in the absence of adequately powered, randomised controlled clinical trials these observations need to be interpreted with appropriate caveats. However, these data generate intriguing hypotheses.

There is further need for studies to evaluate the efficacy of nebulised furosemide on dyspnea management. The majority of studies reported in this review report the effects of nebulised furosemide on pulmonary function and asthma. Whilst there may be some correlation between pulmonary function and dyspnea scores such as lung cancer, there is need to use reliable and valid dyspnea measurement scales with nebulised furosemide use.

The lack of data in the reports surrounding possible diuretic effects of nebulised furosemide is worrisome given the fact that furosemide is a loop diuretic. There is a clear need for pharmacological studies to answer this question if nebulised furosemide is to be used routinely in clinical practice. There is also the potential if nebulised furosemide does have a diuretic effect that this may identify a potential useful vehicle of administration. Both animal and human studies have identified several possible mechanisms for the action of nebulised furosemide including enhanced pulmonary receptor activity, suppression of the pulmonary irritant activity and vasodilation. The complexity of management regimes of the likely populations of nebulised furosemide also demands that the pharmacology be determined so safe, effective prescription is possible.

Limitations of this review

This review has summarised published data to inform future studies and demonstrate potential pharmacological strategies to facilitate symptom management. Therefore only clinical trials of nebulised furosemide in adult humans for the management of dyspnea were reviewed for this manuscript. The heterogeneity of study samples, dosages and methods precludes making firm conclusions regarding the mechanism and efficacy of the action of nebulised furosemide.

This review of nebulised furosemide for managing dyspnea is limited by the lack of studies which measured dyspnea and the heterogeneity of populations and study methods precluding metanalysis technique. Dyspnea was only evaluated in 5 papers.^(40-42,44,45) The lack of assessment of dyspnea in the papers is a limitation across many of the studies particularly since there is not always a strong correlation between disease severity and symptom burden.^(1,48) Yet the symptom relief of nebulised furosemide in the studies using validated measures of assessing dyspnea suggest nebulised furosemide should continued to be evaluated.^(40-42,44,45)

Conclusion

The pathophysiological basis of dyspnea is still not fully understood, limiting appraisal of the mechanistic effects of published studies of nebulised furosemide. Dyspnea research is also problematic due to the subjectivity of this sensation and the complex interplay between physiological and psychological responses that can influence the sensation and manifestation of this symptom. While several studies have examined the effect of nebulised furosemide for the management of dyspnea, methodological limitations make it difficult to derive conclusions regarding efficacy and therapeutic action. Further studies to examine efficacy, indications, and safety profile are necessary before this treatment strategy can be recommended for the management of dyspnea.

References

- 1. American Thoracic Society, *Dyspnea. Mechanisms, assessment, and management: a consensus statement.* American Journal of Respiratory and Critical Care Medicine, 1999. **159**(1): p. 321-340.
- 2. Hunt, S.A., D.W. Baker, M.H. Chin, M.P. Cinquegrani, A.M. Feldmanmd, G.S. Francis, T.G. Ganiats, S. Goldstein, G. Gregoratos, M.L. Jessup, R.J. Noble, M. Packer, M.A. Silver, L.W. Stevenson, R.J. Gibbons, E.M. Antman, J.S. Alpert, D.P. Faxon, V. Fuster, A.K. Jacobs, L.F. Hiratzka, R.O. Russell, and S.C. Smith, Jr, ACC/AHA Guidelines for the evaluation and management of chronic heart failure in the adult: Executive summary a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to revise the 1995 Guidelines for the evaluation and management of heart failure). Circulation, 2001. 104(24): p. 2996-3007.
- 3. Bianco, S., A. Vaghi, M. Robuschi, and M. Pasargiklian, *Prevention of exercise-induced bronchoconstriction by inhaled frusemide*. Lancet, 1988. 2(8605): p. 252-5.
- 4. Jackson, E.K., *Diuretics*, in *Goodman & Gilman's The pharmacological basis* of therapeutics, L. Brunton, J.S. Lazo, and K.L. Parker, Editors. 2006, McGraw-Hill: USA. p. 737-770.
- Shankar, S.S. and D.C. Brater, *Loop diuretics: from the Na-K-2Cl transporter* to clinical use. American Journal of Physiology Renal Physiology, 2003. 284(1): p. F11-21.
- 6. O'Donnell, W.J. and E. Israel, *Inhaled diuretics in asthma: the search for the mechanism of action.* Journal of Asthma, 1994. **31**(2): p. 79-83.
- 7. Cavaliere, F. and S. Masieri, *Furosemide protective effect against airway obstruction*. Current Drug Targets, 2002. **3**(3): p. 197-201.
- 8. Lockhart, A. and A.S. Slutsky, *Furosemide and loop diuretics in human asthma*. Chest, 1994. **106**(1): p. 244-9.
- 9. Elwood, W., J.O. Lotvall, P.J. Barnes, and K.F. Chung, *Loop diuretics inhibit cholinergic and noncholinergic nerves in guinea pig airways*. American Review of Respiratory Disease, 1991. **143**(6): p. 1340-1344.
- 10. Verleden, G.M., J.L. Pype, G. Deneffe, and M.G. Demedts, *Effect of loop diuretics on cholinergic neurotransmission in human airways in vitro*. Thorax, 1994. **49**(7): p. 657-63.
- 11. Corboz, M.R., S.T. Ballard, H. Gao, J.N. Benoit, S.K. Inglis, and A.E. Taylor, *Differential effects of furosemide on porcine bronchial arterial and airway smooth muscle*. Journal of Applied Physiology, 2000. **89**(4): p. 1360-1364.
- 12. Freed, A.N., V. Taskar, B. Schofield, and C. Omori, *Effect of furosemide on hyperpnea-induced airway obstruction, injury, and microvascular leakage.* Journal of Applied Physiology, 1996. **81**(6): p. 2461-7.
- 13. Gilbert, I.A., K.A. Lenner, J.A. Nelson, A.D. Wolin, and J.M. Fouke, *Inhaled furosemide attenuates hyperpnea-induced obstruction and intra-airway thermal gradients*. Journal of Applied Physiology, 1994. **76**(1): p. 409-15.
- Lundergan, C.F., T.M. Fitzpatrick, J.C. Rose, P.W. Ramwell, and P.A. Kot, *Effect of cyclooxygenase inhibition on the pulmonary vasodilator response to furosemide*. Journal of Pharmacology & Experimental Therapeutics, 1988. 246(1): p. 102-6.

- 15. Sudo, T., F. Hayashi, and T. Nishino, *Responses of tracheobronchial receptors to inhaled furosemide in anesthetized rats.* American Journal of Respiratory & Critical Care Medicine, 2000. **162**(3 Pt 1): p. 971-5.
- 16. Tanigaki, T., T. Kondo, Y. Hayashi, H. Katoh, K. Kamio, T. Urano, and Y. Ohta, *Rapid response to inhaled frusemide in severe acute asthma with hypercapnia*. Respiration, 1997. **64**(1): p. 108-10.
- 17. Ono, Y., T. Kondo, T. Tanigaki, and Y. Ohta, *Furosemide given by inhalation ameliorates acute exacerbation of asthma*. Journal of Asthma, 1997. **34**(4): p. 283-289.
- Rodriguez Vazquez, J.C., P.P. Pino Alfonso, C. Gassiot Nuno, and I. Paez Prats, *Usefulness of inhaled furosemide in a bronchial asthma attack*. Journal of Investigational Allergology & Clinical Immunology, 1998. 8(5): p. 290-3.
- Pendino, J.C., L.J. Nannini, K.R. Chapman, A. Slutsky, and N.A. Molfino, *Effect of inhaled furosemide in acute asthma*. Journal of Asthma, 1998. 35(1): p. 89-93.
- Karpel, J.P., F. Dworkin, D. Hager, S. Feliciano, D. Shapiro, L. Posner, and D. Luks, *Inhaled furosemide is not effective in acute asthma*. Chest, 1994. 106(5): p. 1396-400.
- 21. Polosa, R., L.C. Lau, and S.T. Holgate, *Inhibition of adenosine 5'*monophosphate- and methacholine-induced bronchoconstriction in asthma by inhaled frusemide. European Respiratory Journal, 1990. **3**(6): p. 665-72.
- 22. Rajakulasingam, K., R. Polosa, M.K. Church, P.H. Howarth, and S.T. Holgate, *Effect of inhaled frusemide on responses of airways to bradykinin and adenosine 5'-monophosphate in asthma*. Thorax, 1994. **49**(5): p. 485-91.
- 23. Polosa, R., K. Rajakulasingam, G. Prosperini, M.K. Church, and S.T. Holgate, *Relative potencies and time course of changes in adenosine 5'-monophosphate airway responsiveness with inhaled furosemide and bumetanide in asthma.* Journal of Allergy & Clinical Immunology, 1993. **92**(2): p. 288-97.
- Moscato, G., A. Dellabianca, P. Falagiani, G. Mistrello, G. Rossi, and C. Rampulla, *Inhaled furosemide prevents both the bronchoconstriction and the increase in neutrophil chemotactic activity induced by ultrasonic "fog" of distilled water in asthmatics*. American Review of Respiratory Disease, 1991. 143(3): p. 561-6.
- 25. Foresi, A., A. Pelucchi, B. Mastropasqua, G. Cavigioli, R.M. Carlesi, and L. Marazzini, *Effect of inhaled furosemide and torasemide on bronchial response to ultrasonically nebulized distilled water in asthmatic subjects*. American Review of Respiratory Disease, 1992. **146**(2): p. 364-8.
- 26. Robuschi, M., G. Gambaro, S. Spagnotto, A. Vaghi, and S. Bianco, *Inhaled frusemide is highly effective in preventing ultrasonically nebulised water bronchoconstriction*. Pulmonary Pharmacology, 1989. **1**(4): p. 187-91.
- 27. Nichol, G.M., E.W. Alton, A. Nix, D.M. Geddes, K.F. Chung, and P.J. Barnes, *Effect of inhaled furosemide on metabisulfite- and methacholine-induced bronchoconstriction and nasal potential difference in asthmatic subjects.* American Review of Respiratory Disease, 1990. **142**(3): p. 576-80.
- 28. O'Connor, B.J., K.F. Chung, Y.M. Chen-Worsdell, R.W. Fuller, and P.J. Barnes, *Effect of inhaled furosemide and bumetanide on adenosine 5'-monophosphate- and sodium metabisulfite-induced bronchoconstriction in asthmatic subjects.* American Review of Respiratory Disease, 1991. **143**(6): p. 1329-33.

- 29. Yeo, C.T., B.J. O'Connor, M. Chen-Worsdell, P.J. Barnes, and K.F. Chung, Protective effect of loop diuretics, piretanide and frusemide, against sodium metabisulphite-induced bronchoconstriction in asthma. European Respiratory Journal, 1992. 5(10): p. 1184-8.
- 30. O'Connor, B.J., P.J. Barnes, and K.F. Chung, *Inhibition of sodium metabisulphite induced bronchoconstriction by frusemide in asthma: role of cyclooxygenase products.* Thorax, 1994. **49**(4): p. 307-11.
- 31. Pye, S., I. Pavord, P. Wilding, J. Bennett, A. Knox, and A. Tattersfield, A comparison of the effects of inhaled furosemide and ethacrynic acid on sodium-metabisulfite-induced bronchoconstriction in subjects with asthma. American Journal of Respiratory & Critical Care Medicine, 1995. 151(2 Pt 1): p. 337-9.
- 32. Pavord, I.D., A. Wisniewski, and A.E. Tattersfield, *Inhaled frusemide and exercise induced asthma: evidence of a role for inhibitory prostanoids*. Thorax, 1992. **47**(10): p. 797-800.
- 33. Robuschi, M., M. Pieroni, M. Refini, S. Bianco, G. Rossoni, F. Magni, and F. Berti, *Prevention of antigen-induced early obstructive reaction by inhaled furosemide in (atopic) subjects with asthma and (actively sensitized) guinea pigs.* Journal of Allergy & Clinical Immunology, 1990. **85**(1 Pt 1): p. 10-6.
- 34. Bianco, S., M.G. Pieroni, R.M. Refini, L. Rottoli, and P. Sestini, *Protective effect of inhaled furosemide on allergen-induced early and late asthmatic reactions.* New England Journal of Medicine, 1989. **321**(6): p. 1069-1073.
- 35. Daviskas, E., S.D. Anderson, I. Gonda, D. Bailey, G. Bautovich, and J.P. Seale, *Mucociliary clearance during and after isocapnic hyperventilation with dry air in the presence of frusemide*. European Respiratory Journal, 1996. **9**(4): p. 716-24.
- 36. Rodwell, L.T., S.D. Anderson, J. du Toit, and J.P. Seale, *Different effects of inhaled amiloride and frusemide on airway responsiveness to dry air challenge in asthmatic subjects*. European Respiratory Journal, 1993. **6**(6): p. 855-61.
- 37. Sestini, P., M.G. Pieroni, R.M. Refini, M. Robuschi, G. Gambaro, S. Spagnotto, A. Vaghi, and S. Bianco, *Time-limited protective effect of inhaled frusemide against aspirin-induced bronchoconstriction in aspirin-sensitive asthmatics*. European Respiratory Journal, 1994. **7**(10): p. 1825-9.
- 38. Vargas, F.S., M. Croce, L.R. Teixeira, M. Terra-Filho, A. Cukier, and R.W. Light, *Effect of inhaled furosemide on the bronchial response to lysine-aspirin inhalation in asthmatic subjects.* Chest, 1992. **102**(2): p. 408-11.
- 39. Polosa, R., K. Rajakulasingam, G. Prosperini, S. Magri, C. Mastruzzo, and S.T. Holgate, *Inhaled loop diuretics and basal airway responsiveness in man: evidence of a role for cyclo-oxygenase products*. European Respiratory Journal, 1995. **8**(4): p. 593-9.
- 40. Kohara, H., H. Ueoka, K. Aoe, T. Maeda, H. Takeyama, R. Saito, Y. Shima, and Y. Uchitomi, *Effect of nebulized furosemide in terminally ill cancer patients with dyspnea.* Journal of Pain & Symptom Management, 2003. **26**(4): p. 962-7.
- 41. Shimoyama, N. and M. Shimoyama, *Nebulized furosemide as a novel treatment for dyspnea in terminal cancer patients*. Journal of Pain & Symptom Management, 2002. **23**(1): p. 73-6.
- 42. Ong, K.-C., A.-C. Kor, W.-F. Chong, A. Earnest, and Y.-T. Wang, *Effects of inhaled furosemide on exertional dyspnea in chronic obstructive pulmonary*

disease. American Journal of Respiratory and Critical Care Medicine, 2004. **169**(1028-1033).

- 43. Ventresca, P.G., G.M. Nichol, P.J. Barnes, and K.F. Chung, *Inhaled furosemide inhibits cough induced by low chloride content solutions but not by capsaicin*. American Review of Respiratory Disease, 1990. **142**(1): p. 143-6.
- 44. Minowa, Y., T. Ide, and T. Nishino, *Effects of inhaled furosemide on CO*₂ ventilatory responsiveness in humans. Pulmonary Pharmacology & Therapeutics, 2002. **154**(4): p. 363-368.
- 45. Nishino, T., T. Ide, T. Sudo, and J. Sato, *Inhaled furosemide greatly alleviates the sensation of experimentally induced dyspnea*. American Journal of Respiratory and Critical Care Medicine, 2000. **161**(1963-1967).
- 46. Yates, D.H., B.J. O'Connor, G. Yilmaz, S. Aikman, M. Worsdell, P.J. Barnes, and K.F. Chung, *Effect of acute and chronic inhaled furosemide on bronchial hyperresponsiveness in mild asthma*. American Journal of Respiratory & Critical Care Medicine, 1995. **152**(6 Pt 1): p. 2173-5.
- Bianco, S., A. Vaghi, M. Robuschi, R.M. Refini, M.G. Pieroni, and P. Sestini, Steroid-sparing effect of inhaled lysine acetylsalicylate and furosemide in high-dose beclomethasone-dependent asthma. Journal of Allergy & Clinical Immunology, 1995. 95(5 Pt 1): p. 937-43.
- 48. Wolkove, N., E. Dajczman, A. Colacone, and H. Kreisman, *The relationship between pulmonary function and dyspnea in obstructive lung disease*. Chest, 1989. **96**(6): p. 1247-1251.
- 49. Rodwell, L.T., S.D. Anderson, J.I. du Toit, and J.P. Seale, *The effect of inhaled frusemide on airway sensitivity to inhaled 4.5% sodium chloride aerosol in asthmatic subjects.* Thorax, 1993. **48**(3): p. 208-13.
- 50. Bianco, S., A. Vagh, M. Robushi, and M. Pasargiklian, *Prevention of bronchoconstriction by inhaled frusemide*. The Lancet, 1988: p. 252-255.
- 51. Feather, I.R. and L.G. Olson, *Frusemide antagonises exercise-induced but not histamine-induced bronchospasm*. Australian & New Zealand Journal of Medicine, 1991. **21**(1): p. 7-10.
- 52. Crimi, N., G. Prosperini, I. Ciamarra, C. Mastruzzo, S. Magri, and R. Polosa, *Changes in neurokinin A (NKA) airway responsiveness with inhaled frusemide in asthma*. Thorax, 1997. **52**(9): p. 775-779.
- 53. Echazarreta, A.L., F.P. Gomez, J. Ribas, M. Achaval, J.A. Barbera, J. Roca, K.F. Chung, and R. Rodriguez-Roisin, *Effects of inhaled furosemide on platelet-activating factor challenge in mild asthma*. European Respiratory Journal, 1999. **14**(3): p. 616-21.
- 54. Bellingan, G.J., C.M. Dixon, and P.W. Ind, *Inhibition of inhaled metabisulphite-induced bronchoconstriction by inhaled frusemide and ipratropium bromide*. British Journal of Clinical Pharmacology, 1992. **34**(1): p. 71-4.
- 55. Hasani, A., D. Pavia, M.A. Spiteri, C.T. Yeo, J.E. Agnew, S.W. Clarke, and K.F. Chung, *Inhaled frusemide does not affect lung mucociliary clearance in healthy and asthmatic subjects*. European Respiratory Journal, 1994. **7**(8): p. 1497-500.
- 56. Stone, R.A., P.J. Barnes, and K.F. Chung, *Effect of frusemide on cough* responses to chloride-deficient solution in normal and mild asthmatic subjects. European Respiratory Journal, 1993. **6**(6): p. 862-7.

57. Shimoyama, N. and M. Shimoyama, *Nebulized furosemide as a novel treatment for dyspnea in terminal cancer patients*. Journal of Pain and Symptom Management, 2002. **23**(1): p. 73-6.

Author (s)	Study Design	n	Disease State	Inducing Agent	Placebo/ Comparator	Furosemide dose (mg)	Intervention	Effect on dyspnea	Adverse Events	Findings
Pendi no et al ⁽¹⁹⁾	RC T*	42	Acut e asth ma	N/A	Saline	40	Study intervention added to 2.5mg nebulised salbutamol in the Emergency department.	Not measu red	Not reporte d	Either 40mg of furosemide or saline was added to 2.5mg salbutamol No difference in PEFR [†] at 15 or 30 minutes with either furosemide or saline
Rodri guez et al ⁽¹⁸⁾	RC T	8 0	Acut e asth ma	N/A	Salbut amol	100	Participants received either nebulised furosemide or placebo.	Not measu red	Not reporte d	Salbutamol group $(FEV_1^* \text{ improved} 7.9\% \text{ at } 10 \text{ min and } 30 \text{ min, furosemide} \text{ improved } 6.9\% \text{ (p} > 0.05\text{).}$
Ono et al ⁽¹⁷⁾	RC T	4 0	Acut e asth ma	N/A	Saline	20	All patients received IV aminophylline 250 mg for 90 min and IV hydrocortisone 100 mg at entry	Not measu red	Not reporte d	Significant increase in mean FEV ₁ in furosemide group $28.2 \pm 5.9\%$ at 60 min
Tanig aki et al ⁽¹⁶⁾	Cas e stud y	7	Acut e asth ma	N/A	N/A	20	Patients unresponsive to standard treatment (sympathomimetic, aminophylline, cortisone) enrolled	Not measu red	No advers e events	Rapid mean fall in PaCO ₂ from 57.7 mmHg (46.2-66.3 mmHg) to 40.6 mmHg (37.5-46.5 mmHg) within 20- 60 minutes.

Table 1. Clinical trials using nebulised furosemide

* Randomised control trial

[†] Peak expiratory flow rate

[‡] Forced expiratory volume in 1 second

							into study			
Karpe l et al ⁽²⁰⁾	RC T	2 4	Acut e asth ma	N/A	Metap rotere nol and furose mide and metapr oteren ol	40	Patients in the emergency department for acute asthma. Randomly allocated following spirometry.	Not measu red	No signifi cant advers e events	Furosemide alone resulted in 14.9 \pm 10.5% improvement in FEV ₁ which was not significant and was less then metaproterenol alone 29.2 \pm 15.2% which was significant (p=0.0028) No additional improvement with combination therapy
Rodw ell et al ⁽⁴⁹⁾	RC CT [§]	1	Asth ma	4.5% NaCl	pH adjust ed saline (Vehic le)	33.2	Patients had dose of 4.5% NaCl required to decrease FEV ₁ by 20%. Patients returned at least 3 days later and repeated procedure 10 minutes after inhaling study drug	Not measu red	Not reporte d	The amount of 4.5% NaCl required to produce a 20% fall in FEV ₁ was 1.3ml (95% CI 0.7-2.3) with placebo and 8.2 (95% CI 4.7-14.1) with furosemide Increased FEV ₁ from baseline after 4.5% NaCl with exposure to furosemide in 5/11 subjects.
Robu schi et al ⁽³³⁾	RC T	10	Asth ma	Aller gen	Solven t	~28	Amount of allergen required to decrease FEV_1 recorded. On second and third visit, same dose administered immediately after study solution.	Not measu red	Did not cause irritati on and was well tolerat ed	Mean maximal fall in FEV ₁ with placebo and furosemide was (31.5%; 95%CI 40.2%-22.8% vs 8.4%; 1 1.8%- 4.9%) Furosemide provided protection from immediate reaction to inhaled allergen

[§] Randomised control crossover trial

Bianc	RC	1	Asth	Aller	Vehicl	40	Amount of allergen	Not	Not	Mean maximal fall in FEV ₁ after 60
o et	СТ	1	ma	gen	e		required to decrease	measu	reporte	min was 35±4% with placebo and
$al^{(34)}$							FEV ₁ recorded on	red	d	$11\pm2\%$ with furosemide (p<0.05)
							first visit. On second			Mean maximal fall in FEV_1 between
							and third visit, same			4-12 hrs was $35\pm5\%$ with placebo and
							dose administered.			$20\pm4\%$ with furosemide (p<0.05)
Polos	2	1	Asth	AMP	Study	40	Study 1:Amount of	Not	Not	Increased AMP concentration required
a et	RC	2/	ma	**	1:		allergen required to	measu	reporte	to decrease FEV ₁ by 20% from 21.2
$al^{(23)}$	Т	8			vehicl		decrease FEV ₁	red	d	mg/ml (2.5-96.9 mg/ml) to 83.4 mg/ml
					e/		recorded. On second			(11.3-345.0 mg/ml; p<0.01) after
					bumet		and third visit, same			furosemide and 33.8 (4.7-120.9 mg/ml;
					ninde		dose administered			p<0.05)
					Study		after study solution.			Furosemide was 2.5 more potent then
					2:		Study 2: Time course			bumetanide (p<0.01)
					bumet		analysis of bronchial			
					anide		reactivity to study			
							solution.			
O'Co	RC	1	Asth	AMP	Match	30	Participants	Not	Not	Furosemide attenuated the effects of
nnor	Т	6	ma	&	ed		underwent a series of	measu	reporte	AMP (log PC ₂₀ 1.59 ± 0.24) compared
et				MBS	placeb		bronchial challenges	red	d	with placebo log PC20 0.98 ± 0.28 ,
al ⁽²⁸⁾				††	0		with AMP, MBS and			p<0.01)
							histamine.			No response was seen from furosemide
										following inhalation of histamine (log
										$PC_{20} 0.09 \pm 0.17$) or placebo (log PC_{20}
										0.09± 0.20)
Rajak	RC	1	Asth	AMP	Match	40	Following baseline	Not	Not	Mean maximal fall in FEV ₁ following
ulasin	Т	0	ma	and	ed		AMP and bradykinin	measu	reporte	AMP was 14.86 (2.6-104.6) after
ga et				Brady	placeb		challenges,	red	d	placebo and 80.97 (9.97->400.0 mg/ml

** Adenosine 5'-monophosphate

^{††} Metabisulphite

(22)		1		1	1	1		1	1	
$al^{(22)}$				kinin	0		participants were			after furosemide
							then given study			Mean maximal fall in FEV ₁ following
							solution 10 minutes			bradykinin was 2.52 (0.45-5.61) after
							before repeat			placebo and 13 22 (2 53->16 0) mg/ml
							challenges			after furosemide
							enumenges.			Furosemide provided 5 45 and 5 24
										fold protection against AMP and
										brodyleinin
Dalag	2	1	A atla		Matal	20	Deseline	Mat	Mat	In arranged dogs required for a 200/ fall
Polos	2-	1	Astn		Match	~28	Basenne	Not	Not	increased dose required for a 20% fail
a et (21)	pnas	2	ma	and	ea		provocations studies	measu	reporte	In FEV ₁ with AMP from 30 to 96 mg $1.1 (-10.01)$
al	ed,			metha	vehicl		in phase 1. Phase 2	red.	d	ml-1 (p<0.01)
	RC			cholin	e		Study solution given			Increased dose required for a 20% fall
	Т			e			5 minutes prior to			in FEV_1 with methacholine from 1.1 to
							repeat challenge on			1.8 mg ml-1 (p<0.01)
							separate visits.			Furosemide provided significantly
										greater protection to AMP induced
										bronchoconstriction compared to
										methacholine (p<0.05)
Sestin	RC	1	Asth	Aspiri	Match	40	Phase 1: Patients	Not	Not	Furosemide provided significant
i et	CT	6	ma	n	ed		underwent bronchial	measu	reporte	protection against a single aspirin
al ⁽³⁷⁾					placeb		challenge with	red	d	challenge for 120 minutes.
					0		Aspirin following			Furosemide provided significant
					-		study solution			protection in the first 90 minutes when
							Phase 2 The dose of			multiple doses of aspirin were
							aspiring was			administered 1 hour apart
							delivered in			warrent and a start at a
							decreasing doses			
Rodw	RC	1	Asth	Dry	Match	38	Phase 1: Baseline	Not	Not	The mean difference in PVF ₂₀ between
$a11^{(36)}$	CT	5	ma	air	ad	50	challenge	maasu	reporto	amiloride and furosemide was 21.5.1
UII	UI	5	ma	all	nlaash		Dhago 2: Study	rod	d	$\min^{-1} (0.5\% \text{ CL } 7.0.26.0; n < 0.01, n = 0)$
					placed		r nast 2. Sludy	ieu	u	mm (35% C17.0-30.0, p<0.01, n=8)
					0/		solution innaled 10			
					amilor		minutes before repeat			

					ide		challenge			
Pavor d et al ⁽³²⁾	RC CT	1 0	Asth ma	Exerc	Match ed placeb o	40	Took indomethacin or placebo for 3 times a day for 2 days prior to exercise test. 10 minutes before exercise test, study solution given	Not measu red.	Not reporte d	The mean maximal fall in FEV ₁ from baseline following furosemide prior to exercise challenge was 14.3% compared to 26% with placebo (p<0.01). Three days pre-treatment with indomethacin increased the mean maximal fall to 21.8% in the furosemide group, mean difference 7.5% (95% CI .06, 14.4%;p<0.05)
Bianc o et al ⁽⁵⁰⁾	3- part, RC T	3 4	Asth ma	Exerc ise	Match ed placeb o	i) 28 ii)14 and 28 iii)20 oral	Study 1: Participants inhaled study solution before exercise test. Study 2: Study 1 protocol repeated except additional day for extra dose. Study 3. Compared different combination of oral furosemide and placebo.	Not measu red	No change s in BP ^{‡‡} or HR ^{§§}	Mean maximal fall in FEV ₁ was 33.8% (39.1-28.5) with placebo and 11.5% (14.3-8.7) with furosemide The protection is dose-dependent and was not accompanied by any direct bronchodilator effect. Oral furosemide was ineffective.
Feath er et al ⁽⁵¹⁾	RC T	1 0	Asth ma	Hista mine	Vehicl e	30	Participants underwent histamine challenge following inhalation of study solution.	Not measu red.	Not reporte d	The geometric mean (histamine PD ₂₀) after inhalation of the solution was 0.6µmumol and after furosemide was 0.45µmumol. The mean difference in PD ₂₀ between

^{‡‡} Blood pressure

^{§§} Heart rate

										control and furosemide was -0.50 µmol (furosemide test more reactive) but this change was not statistically significant.
Gilbe rt et al ⁽¹³⁾	2 phas ed RC T	8	Asth ma	Iscap onic hyper ventil ation	Saline	45±3 (SE)	Phase 1: Participants inahled frigid air at baseline. Phase 2: Protocol repeated after study solution on separate days.	Not measu red	Not reporte d	Mean maximal fall in FEV ₁ occurred after 10 minutes in both groups. Significantly greater decrement in lung function after saline compared to furosemide up to 45 minutes (p<0.006). FEV ₁ returned to baseline after 45 minutes with saline and 30 minutes with furosemide. Furosemide significantly attenuated airstream cooling at 3 (p<0.04) and 4 minutes (p<0.01) and absolute end- inspiratory airstream temperature was warmer in furosemide then saline group (27.0±0.9 vs 26.0±0.08°C, respectively; p<0.01)
Varga s et al ⁽³⁸⁾	RC CT	6	Asth ma	Lysin e- aspiri n	Saline	20	Participants inhaled saline on day 1 and furosemide on day 2. Following inhalation patients underwent challenge with lysine aspirin	Not measu red	Not reporte d	Mean dose causing 20% fall in FEV ₁ with placebo was 30.4 mg/ml None of the participants FEV ₁ fell by 20% when pre-treated with furosemide even when aspirin dose was 360mg/ml
Pye et al ⁽³¹⁾	RC CT	8	Asth ma	MBS	Placeb o / Ethacr ynic	20 and 40	Participants received study solutions on separate day s,10 minutes prior to	Not measu red	No advers e effects	Compared furosemide, ethacrynic acid and placebo (saline) Furosemide (20 and 40mg) increased the amount of UNDW ^{***} required to

^{***} Ultrasonically nebulised distilled water

					acid		undergoing MBS bronchial challenge.		with furose mide, ethacr ynic acid caused cough and upper airway irritati on	produce a 20% fall in FEV ₁ (mean 1.1; 95CI;02.4; p>0.05) and (mean1.6;0.4- 2.9;p<0.05) doubling doses respectively Ethacrynic acid (25 and 50mg) increased the amount of UNDW required to produce a 20% fall in FEV ₁ (0.9;-0.4-2.2;p>0.05) and (1.5;0.2- 2.8;p<0.05) doubling doses respectively
O'Co nnor et al ⁽³⁰⁾	RC CT	1 2	Asth ma	MBS	Match ed placeb o	40	Participants underwent a series of bronchial challenges with MBS over 4 study days.	Not measu red	Not reporte d	Furosemide shifted response curve to right by 1.9 (p<0.01) doubling doses immediately and 0.7 doubling doses at 3 hours (p<0.05) Furosemide and flurbiprofen (200 mg) shifted response curve to right by 2.7 (p<0.001) doubling doses immediately and 1.9 doubling doses at 3 hours (p<0.001). Significantly greater then either agent alone (p<0.01)
Yeo et al ⁽²⁹⁾	2 RC CT	16	Asth ma	MBS	Saline	40	Study 1. Baseline MBS challenge performed 1 hour prior to inhalation of test solution. MBS challenge repeated at 5 minutes, 1.5, 3, 6 and 24 hours. Study 2. Single MBS	Not measu red	Signifi cant diuresi s lasting 24 hours with both	Furosemide caused a 3.8 fold (95% CI 2.3-6.3) piretanide 2.5 (1.8-3.4) and placebo 1.7 (1.5-1.9) increase in PC ₂₀ MBS. Furosemide and piretanide significantly greater then placebo. 2^{nd} Study: No significant difference in dose of MBS at 90 between any of the groups

							challenge performed 90 minutes after inhalation of test solution		piretan ide and furose mide	
Yates et al ⁽⁴⁶⁾	2 RC CT	1 2 a n d 1 2	Asth ma	MBS and metha cholin e	Placeb o not define d	i) 10 or 20 ii) 10	Study 1: Inhaled 10 or 20mg furosemide 15 minutes before MBS bronchial challenge. Study 2: 2 week run in phase then participants inhaled study solution 4 times a day for 4 weeks separated by 2 week washout period. MBS challenges repeated	Not measu red	1 patient in experi ment 2 compl ained of increas ed diuresi s	Experiment 1: After inhalation of furosemide (10mg or 20mg, mean log PC_{20} increased significantly (0.89 ± 0.08; p<0.02 and 1.10 ± 0.09; p<0.001) respectively. Experiment 2: No significant difference between placebo and furosemide when compared to baseline, however there was a significant difference between furosemide and placebo at the last visit (p<0.05)
Nicho l et al ⁽²⁷⁾	RC CT	7	Asth ma	MBS and metha cholin e	Saline	30	MBS challenge. After determining dose of MBS required to decrease FEV ₁ by 20% over 3 test days, subjects inhaled test solution. Methacholine challenge. Repeated procedure of MBS challenge.	Not measu red	No increas ed diuresi s	The level of MBS required to cause 20% fall in FEV ₁ were 15.1 mg/ml \pm 1.6 after placebo and 40.7 mg/ml \pm 1.7 mg/ml after furosemide (p<0.001)
Rodri guez	RC T	5 0	Asth ma	N/A	Salbut amol	50	Groups received either nebulised	Not measu	Non statisti	Furosemide and placebo given every 12 hours over 5 days

et al ⁽¹⁸⁾							salbutamol, followed by nebulised placebo 12 hours later or nebulised furosemide followed by	red	cally signifi cant increas e in	FEV ₁ improved 15.22% in salbutamol group and 12.7% in the furosemide group ($p>0.05$). Peak flow in the evening showed no sizeable differences.
							nebulised furosemide 12 hours later for 5		diuresi s	
- D.	DC	0	4 .1		G 1:	40	days.)) j	
Bianc	RC	9	Asth	N/A	Saline	40	Chronic asthma	Not	No	During placebo phase, all subjects had
o et al ⁽⁴⁷⁾	СТ		ma				patients on high dose beclomethasone (2mg/day) took a combination of furosemide (40mg) and lysine aspirin (720mg) twice daily. Steroid dose was halved every 15 days and eventually suspended unless	red	advers e effects	worsening of symptoms During combination phase, 2 subjects ceased steroid completely, all other subjects reduced steroid to 0.5- 0.25mg/day. Mean reduction 71%±7% FEV ₁ , weekly PEFR, symptom score and bronchodilator were significantly better with combination
							subject deteriorated			
Crimi et al ⁽⁵²⁾	RC T	1	Asth ma	NKA ⁺⁺⁺	Saline	40	Phase 1. Undertook concentration response studies. Phase 2. Test solution given 10 minutes prior to NKA and histamine	Not measu red	Not reporte d	Increased the amount of NKA required to produce a 20% fall in FEV ₁ from 130.3 (35.8-378.8) after placebo to 419.9(126.5-1000) μ g/ml after furosemide Small increase in the amount of histamine required to produce a 20%
							challenge.			fall in FEV ₁ from $0.58(0.12-3.80)$ after placebo and $1.04(0.28-4.33)$ after

^{†††} Neurokinin A

										furosemide
Echaz arreta et al ⁽⁵³⁾	RC CT	1 1	Asth ma	PAF ****	Not define d	40	All subjects underwent 2 bronchial challenges at least 1 week apart. PAF challenge administered 15 minutes after inhalation of study solution.	Not measu red	Not reporte d	Pre-treatment with furosemide did not abolish PAF induced systemic effects, or cellular and lung function. Furosemide did inhibit the urinary excretion of leukotriene (LT) E_4 : p<0.04
Foresi et al ⁽²⁵⁾	RC T	1 2	Asth ma	UND W	Polyet hylene glycol, and tromet hamol	28	Baseline response to UNDW challenge. 3 minutes after inhalation of study solution, UNDW challenge performed.	Not measu red	Remar kable increas e in diuresi s only in torase mide group	Mean dose causing 20% fall in FEV ₁ with placebo was 1.73 ml/min, with furosemide 4.25 ml/min (p<0.025), and torasemide 3.05 ml/min (p=0.07)
Mosc ato et al ⁽²⁴⁾	RC T	1 0	Asth ma	UND W	Saline	40	Baseline FEV ₁ measured before, 5, 15, 30 min after UNDW challenge. Procedure repeated day 2 and 3 after inhalation of study	Not measu red	Not reporte d	Furosemide prevented bronchoconstriction in 9 participants 7.5% decrease in FEV ₁ following furosemide after UNDW compared with 31.1% with placebo (p<0.001) Maximal increase in NCA ^{§§§} after UNDW with placebo was 52.9%, SEM

^{‡‡‡} Platelet activating factor

^{§§§} Neutrophil chemotactic activity

							drug.			9.2: furosemide 3.8% SEM 3.1 (p=0.001)
Robu schi et al ⁽²⁶⁾	RC T	1 6	Asth ma	UND W	Diluen t solutio n withou t furose mide	~28	Baseline UNDW challenge performed. Test solution administered followed by UNDW challenge.	Not measu red	Not reporte d	Mean maximal fall in FEV ₁ was 26% (20-32) with placebo and 6% (-1-12) with furosemide
Davis kas et al ⁽³⁵⁾	RC T	2 2	Asth ma & healt hy	Isoca pnic hyper ventil ation	pH adjust ed saline	35.7 ±0.4 4	Baseline lung function measured with dry air challenge. Visit 2 and 3. Spirometry, study solution, radioaerosol inhalation, emission gamma images, ISH, emission gamma images.	Not measu red	Not reporte d	Furosemide delayed the onset of mucociliary clearance for approximately 10 minutes in the whole right lung (p<0.002) and central lung (p<0.01) in asthmatics but not healthy subjects
Bellin gan et al ⁽⁵⁴⁾	RC T	1 0	Asth ma & healt hy	MBS	Saline	40	MBS challenge carried out 10 minutes after inhalation of study solution.	Not measu red	Not reporte d	Compared the effects of nebulised furosemide, ipratropium bromide and saline against MBS challenge Furosemide (p<0.005) and Ipratropium bromide (p<0.05) significantly inhibited MBS induced bronchoconstriction compared to placebo but the response was more variable with Ipratropium bromide.
Hasan i et	RC T	1 1	Asth ma	N/A	N/A	40	Study solution inhaled 30 minutes	Not measu	Not reporte	Furosemide had no effect on lung mucociliary clearance in asthmatics

al ⁽⁵⁵⁾			& healt hy				after inhalation of radioaerosol solution.	red	d	
Stone et al ⁽⁵⁶⁾	2 RC T	1 9	Asth ma and healt hy	Chlor ide defici ent soluti on	Match ed placeb o	40	Baseline cough challenge performed. 2 hours later, study solution inhaled followed by repeat cough challenge at 30 min, 2,4,6 hours	Not measu red	Not reporte d	Furosemide caused a sustained inhibition of cough in normal subjects (p<0.05 at 2hr, p<0.01 at 4hr) but only small, not significant effect at 30min with asthma participants No significant fall in FEV ₁ in asthma group from chloride deficient solution and didn't correlate with number of coughs
Kohar a et al ⁽⁴⁰⁾	Ope n clini cal trial	1 5	Canc er	N/A	N/A	20	Assessment occurred before and 60 minutes after furosemide.	Signifi cantly reduce d dyspne a	No severe advers e effects Cough , sputu m produc tion, and nausea were the most comm	CDS scores were significantly decreased (p=0.007) in 12/15 patients with the biggest reduction in sense of effort (p=0.013) and reduced anxiety (p=0.04) No significant changes were observed in PaO ₂ , PaCO ₂ , SpO ₂ , HR, RR****

**** Respiratory rate

									on toxiciti es	
Shim oyam a, & Shim oyam a ⁽⁵⁷⁾	Cas e stud y	3	Canc er	N/A	N/A	20	Furosemide was inhaled 4 times a day.	Furose mide was effecti ve in reduci ng dyspne a	No advers e events	Nebulised furosemide provided these three patients with effective relief of their dyspnea in the end stages of their disease. No titration from the original 20mg was required to provide continual relief
Ong et al ⁽⁴²⁾	RC CT	19	COP D ^{†††††}	Exerc	Saline	40	Study solution inhaled followed by incremental exercise testing. 1 hour later another dose of study solution followed by constant work exercise test.	Signifi cantly reduce d dyspne a during consta nt work exercis e test	Not reporte d	Significant improvement in mean FEV ₁ and FVC ^{‡‡‡‡} following furosemide (p=0.038 and 0.005) but not placebo Mean VAS ^{§§§§} lower after furosemide but not placebo (33.7 ± 25.2 vs 42.4 ± 24.0 mm, p=0.014) Significant bronchodilation after furosemide but not placebo
Mino	RC	1	Heal	CO ₂	Saline	40	Following CO ₂	Increa	Not-	Inhaled furosemide doesn't effect
wa et	СТ	0	thy				steady state test,	se in	reporte	breathing patterns of resting breathing

^{†††††} Chronic obstructive pulmonary disease

^{‡‡‡‡} Forced vital capacity

^{§§§§} Visual Analogue Scale

al ⁽⁴⁴⁾							subjects inhaled study solution followed by CO ₂ rebreathing test.	dyspne a score less after furose mide then placeb o	d	Inhaled furosemide does not affect the slope and intercept of the CO ₂ response curve. Inhaled furosemide improves the dyspnoeic sensation produced during hypercapnic hyperpnoea.
Nishi no et al ⁽⁴⁵⁾	RC CT	1 2	Heal thy	 i) breath holdi ng ii) resisti ve loadin g and hyper capni a 	Diluen t withou t furose mide	40	Subjects breathed 100% O ₂ for 5 mins. Breath held for as long as possible. 5 mins later loaded breathholding test performed for 7 minutes. 15 mins later study solution given.	Furose mide scores increas ed slower during loaded breathi ng.	Not reporte d	Total breathholding time after furosemide (median 93[78-112]sec) and placebo (67 [47-74] sec) p<0.05 Respiratory discomfort with loaded breathing developed more slowly after furosemide
Ventr esca et al ⁽⁴³⁾	RC CT	8	Heal thy	low chlori de conte nt soluti ons and capsai cin	Saline	30	Study 1 part 1. Study solution inhaled immediately prior to low chloride challenge. Study 1 part 2. Chloride solution causing biggest response administered 20 minutes before study	Not measu red	1 partici pant reporte d increas ed diuresi s within 4h of	Chloride free solutions induced $13.1\pm$ 1.6 coughs after placebo and 8.4 ± 1.9 coughs after furosemide (p<0.005) Capsaicin induced 20.8± 1.8 coughs after placebo and 21.5 ± 2.7 coughs after furosemide (p<0.005)

							solution		furose	
							Study 2 Congoinin		mida	
							Study 2. Capsaich		mae	
							challenge performed		admini	
							after inhalation of		stratio	
							study solution.		n.	
Polos	RC	2	Heal	metha	Match	40	Phase 1. Subjects	Not	Not	Both by furosemide and bumetanide
a et	Т	2	thy	cholin	ed		underwent	measu	reporte	inhibited methacholine-induced
al ⁽³⁹⁾				e	placeb		concentration	red	d	bronchoconstriction
					0		response studies.			The protective effect of furosemide is
							Phase 2 and 3.			reversed by cyclo-oxygenase blockade
							Subjects took 3 days			
							of flurbiprofen twice			
							daily. or placebo. 10			
							minutes before			
							challenge subjects			
							took study solution.			