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Abstract 

The quality of interface adhesion of an elastic-plastic thin film/rigid substrate system can be 

characterized by its interface adhesion energy. To estimate the interface adhesion energy, a 

numerical model for the pressurized blister test has been proposed, which includes three steps: 

dimensional, forward and reverse analyses. The dimensional analysis is applied to derive a 

preliminary nondimensional relationship of the interface adhesion energy, and then the forward 

and reverse analyses are carried out to establish its explicit form and to extract the interface 

adhesion energy, respectively. The results are in good agreement with experimental 

measurements, which confirms the effectiveness of the model. 
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1. Introduction 

The elastic-plastic film/rigid substrate systems have been widely applied in microelectronic 

and magnetic recording industries and emerging technologies such as optical data transmission 

switches in a microelectromechanical system. Hence, the system failure caused by interface 

delamination or coating spallation attracts great attention. Previous studies have demonstrated 

that one of the most important intrinsic factors affecting the lifetime of a bi-material system is the 

quality of its interface adhesion. Therefore, the characterization of interface adhesion quality is an 

essential prerequisite in designing and optimizing the electrical and mechanical properties of a bi-

material system (Scheu et al., 2006; Evans et al., 1999). 

It is known that, in a linear elastic system, there are two commonly used quantities for the 

characterization of interface adhesion strength: one is the peak stress, σ̂ , at which interface 

debonding occurs under the uniaxial tension (Zhou et al., 2007; Morales-Rodríguez et al., 2007); 

and the other is the interface fracture toughness, ssΓ , defined as the total fracture work per unit 

interfacial area at a steady state of crack growth (Gent and Lewandowski, 1987; Zhou and 

Hashida, 2003). The former is a direct indication of the adhesion strength between thin film and 

substrate that is widely accepted by materials scientists who mainly consider the applied loading 

as a key factor. Experts in mechanics think that, however, a coatings failure is dependent not only 

on the applied loading but also on flaws and defects located at the interface. Thus, they suggested 

that the interface fracture toughness, ssΓ , which involves both the mechanical and geometrical 

factors, might characterize the quality of interface adhesion. In other words, the latter is more 

comprehensive than the former. 

Although many experimental techniques have been developed over the past decades, the 

pressurized blister test is still one of the few methods that can deliver quantitative and meaningful 
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estimation on interfacial fracture toughness (Dannenberg, 1961), which has been applied to a 

variety of adhering systems. This testing method consists of applying pressure through a hole in 

the substrate to thin film bonded on it and causing delamination, as shown in Fig. 1. With help of 

a theoretical model, the interfacial fracture toughness can be evaluated from the height of the 

blister and the critical pressure applied during the growth of an interface crack. 

In contrast to a linear elastic system where the interfacial fracture toughness is a constant and 

equal to the work of separation per unit area 0Γ  under the plane strain condition, it is hard to 

evaluate the interfacial fracture toughness in an elastic-plastic system. Owing to plastic 

dissipation, the energy dissipation 
ss

Γ  during interface debonding is no longer equal to 0Γ . It is 

however the sum of two quantities, i.e., pss Γ+Γ=Γ 0 , where 0Γ  is the energy consumed by 

interface separation in the fracture process zone and pΓ  is the energy dissipated by inelastic 

deformation in film and substrate. As plastic dissipation changes with the crack growth and 

geometrical properties of layers, 
ss

Γ  is not a constant. Thus, it is inappropriate to use 
ss

Γ  for 

characterizing the quality of interface adhesion of an elastic-plastic system. 

The interface adhesion energy, 0Γ , being referred to the intrinsic interface property (Liu, 

2001), is independent of the layer geometry and plastic dissipation in layers, which directly 

reflects the interface adhesion strength. As shown in our recent work (Jiang et al., 2008), the 

interface adhesion energy, 0Γ , can be used to characterize the quality of interface adhesion of an 

elastic-plastic film/rigid substrate system. Because of the nonlinear properties of elastic-plastic 

systems, it is difficult and even impossible to calculate the 0Γ  value. It is not surprising that, 

therefore, there is an unavailable formula that can be used in the blister test of elastic-plastic film 

bonded to rigid substrate. The finite element analysis, as done by Wei and Hutchinson (1997) for 
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the peeling test, could be alternative in this case. In their work (Wei and Hutchinson, 1997), some 

distinctions were made between 0Γ  and plastic dissipation in transient thin film peeling in terms 

of a traction-separation law, in which the primary parameters are 0Γ  and the peak traction, σ̂ . 

How to extract the traction-separation law (i.e., the determination of 0Γ and σ̂ ) has attracted 

many researchers’ attention since several general traction-separation laws for damage-softened 

composites were obtained by slope measurements on double cantilever beam specimens 

(Ungsuwarungsri et al., 1987, 1988a, 1988b). 

Swadener and Liechti (1988) proposed an iterative hybrid experimental/numerical approach, in 

which measurements and finite element predictions on the near-tip submicron crack opening 

displacement were matched to determine the traction separation law. Shirani and Liechti (1998) 

also used fracture process zone models, in which the traction-separation law for interface is 

calibrated in an iterative manner by comparing measurements with finite element predictions. 

First, the blister test is conducted in the volume control to determine the mechanical properties of 

thin film, pressure, volume and the crack opening displacement. Then, the finite element analysis 

that includes a traction-separation law for interface is performed. For an assumed traction-

separation law (i.e., the known values of 0Γ  and σ̂ ), the predicted values of critical pressure and 

central deflection can be obtained by finite element modeling. Finally, comparing these values 

with experimental measurements, the traction-separation law for the interface is calibrated in an 

iterative manner. During the iterative process, the number of iterations is dependent on the degree 

of closeness between the assumed traction-separation law and the practical one. If the assumed 

traction-separation law is close to the practical one, the number of iterations is few; otherwise a 

large number of iterations are needed.  



 5 

Here, it is worth noting that, in the method of Shirani and Liechti (1998), there is a repeating 

process of debugging finite element analysis programs to make the assumed traction-separation 

law to approach the practical one. Hence, such a method is too complicated to be used in 

engineering applications. To overcome this difficulty, a numerical model is established to extract 

the interface adhesion energy of a bi-material system in the blister test, which includes three steps: 

dimensional, forward and reverse analyses. In comparison with previous research, the model can 

be easily used for characterization of the interface adhesion of an elastic-plastic thin film/rigid 

substrate system. It may also provide some clues on the establishment of empirical equations for 

evaluating 0Γ  of a dissimilar elastic-plastic material. 

 

2.   Numerical model 

The thin film considered here is elastic-plastic and isotropic, and its constitutive relationship 

under the uniaxial tension is specified by 
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where yσ  is the initial yield stress, n  is the power hardening exponent, and E and v  are Young’s 

modulus and Poisson’s ratio, respectively. To extract the interface adhesion energy of such a bi-

material system with use of the blister test, a numerical method has been established which 

includes the following three steps: 

Firstly, the dimensional analysis is applied to derive the relationship between the blister test 

and interface adhesion energy. Prior to the dimensional analysis, a comprehensive analysis of the 

blister test is necessary in order to scrutinize the factors that influence the critical pressure and 

their relative importance. Experiments (Dannenberg, 1961; Mougin et al., 2003) and numerical 
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analyses (Jiang et al., 2008; Guo et al., 2005; Hbaieb and Zhang, 2005) have revealed that the 

critical pressure cP , at which separation is initiated, is a function of three dimensionless groups: 

the increment of crack advance a∆  and layer geometry, interface adhesion, and material 

properties of film and substrate. For the sake of simplicity and neglecting unimportant 

parameters, the dimensional analysis is conducted to expose the essential relationship between 

these influencing parameters. The preliminary nondimensional function looks like  

         












 Γ
= ...,0

a
f

P

yy

c

σσ
                                                                   (2) 

where a is the radius of  the central hole in substrate, as shown in Fig. 1. 

Then, a forward analysis is carried out to establish the explicit form of Eq. (2). As displayed 

in Fig. 2, the forward analysis is comprised of two parts: (1) a geometrically nonlinear finite 

element analysis of the blister test of an elastic-plastic film bonded to a rigid substrate, and (2) 

the data fitting. Provided that the mechanical properties of film and substrate, layer geometry 

parameters, and interface adhesion parameters 0Γ and σ̂ are known, the critical pressure and 

central deflection can be obtained by finite element analysis. Generally, the initial yield stress σy 

and Young’s modulus E for metals and alloys are about 30−1100 MPa and 40−210 GPa, 

respectively, and the hardening exponent n typically varies between 0.0 and 0.5 (Dao et al., 2001). 

Here, each set of these parameters (i.e., yσ , E , v , n ; t , a ; 0Γ , σ̂ ) is corresponding to a set of 

cP  and 0w . In order to gather enough data, a large amount of finite element simulations need to 

be carried out. These collected data will be used to establish the explicit nondimensional function 

of Eq. (2). 

Finally, an effective reverse analysis algorithm is applied to extract the interface adhesion 

energy. The flow chart diagram of the reverse analysis algorithm is illustrated in Fig. 3. Here, the 
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elastic-plastic properties of the film are measured by the indentation test on a bi-material system 

(Liao et al., 2009), and the interface peak stress σ̂  is measured by the uniaxial tensile test. With 

the help of a blister test, the critical pressure cP , the critical central deflection 0w , and the 

amount of crack growth a∆  can be obtained. Thus, the only remaining unknown parameter is the 

interface adhesion energy 0Γ , which is the focus of this paper. During the reverse analysis, the 

postulated interface adhesion energy may vary over a large range, and the extracted interface 

adhesion energy is one that makes the error of the explicit form of Eq. (2) be equal to or less than 

a specified infinitesimal constant 0e . 

 

3.   Finite element analysis 

As mentioned, a geometrically nonlinear finite element analysis (FEA) is needed in the step 

two of the numerical model, which is conducted by using ABAQUS, a commercial general FEA 

package. Due to the symmetry, only half of the film and substrate is modeled, as shown in Fig. 

4(a), in which a uniform pressure is applied to the de-bonded strip. The cohesive element in 

ABAQUS is used to characterize the interface properties of a dissimilar elastic-plastic material 

under the plane strain condition. Biased meshes are used in front of the initial crack tip to model 

the process of a crack growth. The smallest element size is denoted by 0∆ , as shown in Fig. 4(b). 

Due to the fact that the length quantity 
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scales with the size of plastic zone in the film, the ratio 00 / ∆R  gives an indication of how well 

the mesh is able to resolve stress and strain fields around the crack tip. Based on the method 

proposed by Tvergaard and Hutchinson (1992), we have 8.17/ 00 =∆R , which gives a reasonable 
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evaluation of the near-tip stress and strain fields and the fracture process zone. 

The FEA to be carried out is similar to the numerical studies on the crack growth at an 

interface (Hbaieb and Zhang, 2005; Needleman, 1990; Shirani and Liechti, 1998; Tvergaard and 

Hutchinson, 1992, 1993). These numerical studies were based on an interface potential that 

specifies a traction-separation relationship being similar to the dependence of inter-atomic force 

on separation, as shown in Fig. 5. Here, a single non-dimensional separation measure λ  is 

defined as 
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where nδ  and tδ  denote the normal and tangential components of the relative displacement of 

crack faces across the interface in the fracture zone, and c

nδ  and c

tδ  are the critical values of 

displacement components. It is obvious that, when 1=λ , the traction drops to zero. As displayed 

in Fig. 5, the interface potential at which the traction is derived is defined as 
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The normal and tangential components of the traction acting on interface in the fracture process 

zone are given by 
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The traction law under a purely normal separation ( 0=tδ ) is )(λσ=nT , where c

nn δδλ /= , 

and under a purely tangential displacement ( 0=nδ ), )()/( λσδδ c

t

c

nnT = , where c

tt δδλ /= . The 

work of separation per unit area of interface can be obtained by Eq. (5) with 1=λ  and σ(λ) 

illustrated in Fig. 5: 
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In all these studies, the traction-separation law was implemented into an interface element 

through the UEL user subroutine in the finite element code ABAQUS. Recently, ABAQUS has 

developed a cohesive element although it does not include the trapezoidal traction-separation law. 

It has been found by Tvergaard and Hutchinson (1992, 1993) that the shape of the separation law 

is relatively unimportant. Thus, for the sake of simplicity, we set 21 λλ =  in Eq. (7) and use a 

built-in cohesive element in ABAQUS as done in our early study (Jiang et al., 2008). Considering 

an essentially triangular traction-separation law, we have 

        c

nδσ̂
2

1
0 =Γ                                                                        (8) 

where 0Γ  and σ̂  are the two most important parameters that characterize the fracture process in 

the model. Other features of the traction-separation law such as the relative peak of the shear 

traction to normal traction as specified by 
c

t

c

n δδ / , is taken to be unity (Shirani and Liechti, 

1998). 

 

4.    Results and discussion 

4.1.  Elastic thin film/rigid substrate system 

To verify the validity of the numerical model established above, an easy way is to compare the 

numerical result with the available analytical expression. According to the study done by Gent 

and Lewandowski (1987), we have the following formula on the critical pressure 
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and its dimensionless form can be rewritten as  
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The critical pressure cP  for the blister test of an elastic thin film/rigid substrate system is a 

function of three dimensionless groups: crack advance a∆  and layer geometry, interface 

adhesion parameters, and film mechanical properties. The functional relationship can be written 

as 

          ),ˆ,,,,,( 0Γ∆= σνEtaafPc                                                    (11) 

where Poisson’s ratio ν  is not an important factor in the blister test, and for most engineering 

materials, 3.0≈ν  (Cheng and Cheng, 2004; Luo and Lin, 2007; Tunvisut et al., 2001). At the 

same time, the crack advance a∆  was found to have the same effect as a . Furthermore, similar 

to the derivation of formula (9), the peak stress σ̂  is fixed. Thus, ignoring the less important 

parameters, the following dimensionless form can be obtained  
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In comparison with Eq. (10), it is more convenient to choose 4)/( EPc  as a dependent variable in 

the dimensionless function. So, Eq. (12) can be expressed as 
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According to the numerical model, a forward analysis is then carried out to establish the 

explicit form of Eq. (13). As shown in Fig. 3, the forward analysis is composed of two parts: (1) a 

geometrically nonlinear FEA of the blister test of an elastic-plastic film bonded to a rigid 

substrate; and (2) the data fitting. In terms of the FEA and data fitting, the dependence of 
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4)/( EPc  on at /  and aE/0Γ  can be obtained, as shown in Fig. 6. It is obvious to see that, when 

at /  is fixed, the fitting function between 
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where α , β  are the coefficient and exponent to be fitted, which are functions of  at / , that is, 

)/( atα and )/( atβ . The values of α and β  are listed in Table 1, where a different combination 

of α and β  were obtained for each at / . Plotting α  versus at /  and β  versus at /  and then 

fitting them, as shown in Figs. 7 and 8, we have 

         )/(3488.17)/( atat =α                                                                 (15) 

         028.3≈β                                                                              (16) 

Therefore, the explicit form of  Eq. (14) can be established as 
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Obviously, it is well agreement with the analytical formula of Eq. (10). In other words, the 

numerical model can be used for extracting the interface adhesion energy of a bi-material system 

with the blister test.  

 

4.2.  Elastic-plastic thin film/rigid substrate system 

Next, let us establish the dimensionless function of interface adhesion energy 0Γ  of an 

elastic-plastic thin film/rigid substrate system. The primary analysis revealed that the critical 

pressure cP  in the blister test of an elastic-plastic thin film/rigid substrate system is a function of 

the following parameters 
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As mentioned in Section 4.1, the influence of a∆  and v  on the critical pressure cP  can be 

neglected. According to the dimensional analysis, the following dimensionless form can be 

obtained 
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Moreover, the FEA demonstrates that the initiation pressure is nearly a constant for different 

values of strain hardening exponents and the plastic zones at the level of pressure are similar, as 

shown in Figs. 9 and 10. These observations are consistent with that reported by Hbaieb and 

Zhang (2005). Hence, the strain hardening exponent n  is assumed to be a constant of 0.2. In 

order to further reduce the number of parameters in Eq. (19), the ratio at /  is set to be several 

typical values such as, (1) 0153.0/ =at  with a = 3.25 mm and t =50 µm, (2) 0062.0/ =at  with 

a = 3.25 mm and t = 20 µm, and (3) 0333.0/ =at  with a = 1.5 mm and t = 50 µm. Then, we only 

need to establish the following dimensionless function for each typical value 
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Here, the dependence of 
y

cP

σ
 on the dimensionless parameters are also studied by using the FEA 

package ABAQUS. The parameter study revealed that the relationships between 
y

cP

σ
and the 

parameters (
E

yσ
, 

yσ

σ̂
,  

ayσ
0Γ

) are approximately linear, similar to those reported by Hbaieb and 

Zhang (2005). Therefore, a linear fitting function is chosen here. Finally, the following equation 

can be established by fitting the FEA results  
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where A1, …, A4 and B1, …, B4 are the coefficients to be fitted, as listed in Table 2. Once the 

explicit form of the dimensionless function is obtained, the interface adhesion energy 0Γ  of an 

elastic-plastic thin film/rigid substrate system can be extracted by the reverse analysis algorithm 

illustrated in Fig. 3. 

 

4.3.  Effectiveness of the reverse analysis 

Using fracture process zone models, Shirani and Liechti (1998) obtained the adhesive 

adhesion energy of thin elastic-plastic thin films on rigid substrate from circular blister 

experiments. Table 3 lists the material properties and critical pressure determined by Shirani and 

Liechti (1998), together with the finally estimated interface adhesion energy. Here, a reverse 

analysis was done in order to extract the interface adhesion energy of the same material system. 

Following the reverse analysis illustrated in Fig. 3, the interface adhesion energy that minimizes 

the error of Eq. (21) can be calculated. The result is also listed in Table 3, which is very close to 

the interface adhesion energy extracted by Shirani and Liechti (1998). That is, the effectiveness 

of the reverse analysis has been clearly demonstrated. 

 

5.   Conclusions  

In this paper, we extended our recent study on characterization of the quality of interface 

adhesion of an elastic-plastic materials system. A numerical model has been proposed to extract 

the interface adhesion energy of a bi-material system with the blister test, which includes three 

steps: firstly, the dimensional analysis is applied to derive a preliminary nondimensional 
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relationship between the blister test and the interface adhesion energy. Then, a forward analysis is 

carried out to establish the explicit form of this nondimensional relationship. Finally, a reverse 

analysis is performed to extract the interface adhesion energy. With the numerical model, we 

obtained the dimensionless functions of interface adhesion energy of elastic and elastic-plastic 

thin film/rigid substrate systems, which are in good agreement with the analytical formula and 

experimental results. Compared to previous studies, the characterization of interface adhesion of 

an elastic-plastic thin film/rigid substrate system in practical applications becomes much easier. 

This study also provides some guidelines on the establishment of an empirical equation for 

evaluating the interface adhesion energy of dissimilar elastic-plastic materials. 
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Figure captions 

 

Fig. 1.    Schematic representation of the pressurized blister test. 

Fig. 2.    The flow chart program for establishing the dimensionless function. 

Fig. 3.    The flow chart program for determining the interface adhesion energy 0Γ  by using the 

reverse analysis. 

Fig. 4.    The computational model for the blister test (a) and FEA mesh of the crack tip zone (b).   

Fig. 5.    Illustration of the traction separation law. 

Fig. 6.    The dimensionless parameter

4










E

Pc versus 






 Γ

aE

0  for several values of at / : (a) 

0154.0/ =at ; (b) 0031.0/ =at ; (c) 01.0/ =at , (d) 002.0/ =at . 

Fig. 7.    Relationship between the coefficient α  and at / . 

Fig. 8.    Relationship between the exponent β  and at / . 

Fig. 9.    Dependence of pressure on the strain-hardening exponent. 

Fig. 10. Plastic zones of thin film near the crack tip for several values of the strain-hardening 

exponent: (a) n  = 0.2; (b) n = 0.3; and (c) n = 0.4. The region from light blue to red 

represents the equivalent plastic strain that is more than zero, in which blue and red 

colors correspond to the minimum and maximum equivalent plastic strains, 

respectively. 
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Table 1.  The fitted coefficient α and exponent β  by using Eq. (14) to the FEA results with 

various values of t/a. 

 

 

t/a α  β  

0.0154 0.2528 3.0256 

0.0031 0.0554 3.0397 

0.01 0.1447 2.9991 

0.002 0.0305 3.0222 
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Table 2.  The coefficients by fitting Eq. (21) to the FEA results. 

 

Coefficient t/a = 0.0154 t/a = 6.1538×10
−3

 t/a = 0.0333 

A1 0.0134 5.2687×10
-3 −1.9640×10

-2 

A2 −4.7476 −1.9878 9.7041 

A3 −5.1091×10
-4

 −1.2145×10
-4

 1.3605×10
-2

 

A4 0.7946 0.5186 −4.9997 

B1 7.5980×10
2
 −7.0102×10

3
 1.7993×10

4
 

B2 1.3911×10
6
 5.1004×10

6
 −6.7784×10

6
 

B3 −3.0221×10
3
 1.8511×10

3
 8.6346×10

3
 

B4 −1.0984×10
5
 4.5406×10

5
 −2.5767×10

6
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Table 3.  The comparison of experimental data from Shirani and Liechti (1998) and 0Γ  obtained 

by the reverse analysis. 

 

0Γ  (N/m) 

at /  
E  

(GPa) 

yσ  

(MPa) 

σ̂   

(MPa) 

cP   

(MPa) 

Experimental  

(Shirani and Liechti, 1998) 

Reverse analysis  

0.0154 2.15 31 140 0.78 390 410.81 
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