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1 Introduction

Optimization models play a very important role in operations research and management sci-

ence. Optimization models with symmetric matrix variables are often referred to as semidefinite

programs (SDPs). The study on these models has a relatively short history. Intensive studies

on the theory, algorithms, and applications of semidefinite programs have only begun since the

1990s. However, so far most of the work has been concentrated on the linear case, where, except

the semidefinite cone constraint, all other constraints as well as the objective function are linear

with respect to the matrix variable.

A reasonable step forward, which is important both in theoretical development and in practi-

cal applications, is to develop methodologies for solving convex nonlinear semidefinite programs

(CNLSDPs). This paper is concentrated on a prediction-correction alternating direction method

for solving CNLSDP. The method is a first-order one. Therefore, the computational load is rel-

atively light at each iteration. In fact, we will show that the main work of the algorithm can be

reduced to computing metric projections on certain simple convex sets at each iteration. We will

also report numerical results in applying this method for solving matrix completion problems.

Let Sn be the finite-dimensional Hilbert space of real symmetric matrices equipped with

the Frobenius inner product. Let S
n
+ (Sn

++, respectively) be the subset of S
n consisting of all

symmetric positive semidefinite (definite, respectively) matrices. Clearly, S
n
+ is a convex cone

and is therefore called the positive semidefinite cone. As a convention, we write X � 0 (X � 0,

respectively) to represent X ∈ S
n
+ (X ∈ S

n
++, respectively). We write X � Y or Y � X to

represent X − Y � 0. Similarly, we define X � Y and Y ≺ X .

We are concerned with solving the following CNLSDP

min c0(X) s.t. X � 0, ci(X) ≤ 0, i = 1, . . . , m, (1)

where ci : S
n → <, i = 0, 1, . . . , m, are convex continuously differentiable functions. Let

Ci(X), i = 0, 1, . . . , m, denote the first order derivative of ci(X). Furthermore, we require the

operator C0(·) to be Lipschitz continuous with a constant L.

Recently, some methods have been proposed for solving nonlinear semidefinite programs

(NLSDPs). Kocvara and Stingl [24] developed a code (PENNON), where the augmented La-

grangian method is used. Sun et al. [35] analyzed the convergence rate for the augmented

Lagrangian method in the general nonlinear SDP setting. A smoothing Newton method for

NLSDPs, which is a second-order algorithm, is considered in Sun et al. [36]. A variant of the

smoothing Newton methods is subsequently studied in [25]. An analytic center cutting plane

method is investigated by Sun et al. [37, 40], which can in principle be used for solving CNLS-

DPs of certain type. In Jarre [21], Leibfitz and Mostafa [28], and Yamashita et al. [43], interior

methods are discussed. In addition, Gowda and his collaborators have extensively studied com-

plementarity problems in the general symmetric cone setting, e.g., [17, 18], which are closely

related to the solution of NLSDPs.

Among the first-order approaches, a successive linearization method was considered by Fares,

Noll, and Apkarian [11], by Correa and Ramirez [6], and by Kanzow et al. [22]. Noll and

Apkarian [31, 32] also suggested spectral bundle methods. Our proposed algorithm is different

from the above methods in two aspects. Firstly, we aim at convex nonlinear problems, hence

the convergence result is stronger than the general nonlinear case. Secondly, as the proposed
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approach is a projection based algorithm it does not require to solve SDP problems at each

iteration. As such, it is simple to implement and is efficient, compared to the current first-order

methods.

The paper is organized as follows. We present a brief review of the alternating direction

method and propose a prediction-correction version of it for solving CNLSDP in Section 2. In

Section 3 we present the convergence proof. Section 4 includes our preliminary computational

results. Finally, we make some concluding remarks in Section 5.

2 The Algorithm

2.1. Review of the Alternating Direction Method

By introducing

Yi = X and Ωi = {Yi : ci(Yi) ≤ 0} , i = 1, . . . , m, (2)

we rewrite (1) equivalently as

min c0(X)

s.t. X = Yi, Yi ∈ Ωi, i = 1, . . . , m (3)

X � 0

The Lagrange dual of problem (3) is

max
λi

min
X�0,Yi∈Ωi

L (X, Y1, . . . , Ym, λ1, . . . , λm) ≡ c0(X)−

m∑

i=1

〈λi, X − Yi〉 . (4)

Notice that the Lagrange multipliers λi are symmetric matrices. It is well known that under

mild constraint qualifications (e.g. Slater’s condition), strong duality holds and hence, X∗ is a

solution of (3) if and only if there exist λ∗
i ∈ Sn such that (X∗, Y ∗

i , λ∗
i ) satisfies





〈
X − X∗, C0 (X∗) −

m∑
i=1

λ∗
i

〉
≥ 0, ∀ X ∈ Sn

+

〈Yi − Y ∗
i , λ∗

i 〉 ≥ 0, ∀ Yi ∈ Ωi, i = 1, . . . , m

X∗ = Y ∗
i , i = 1, . . . , m

(5)

Problem (5) is a variational inequality problem with a special structure. The variables (X, Yi, λi)

are symmetric matrices, and the underlying set Sn
+ is convex and non-polyhedral. We assume

that the metric projections on Ωis can be readily computed. Let ΠS(·) stand for the metric

projection onto a set S.

For convenience, we state the basic assumption to guarantee that problem (3) under consid-

eration is solvable.

Assumption 2.1. The solution set (X∗, Y ∗
i , λ∗

i ) of KKT system (5) of problem (3) is nonempty.

Among the first-order approaches for solving large optimization problems, the augmented

Lagrangian method has desirable convergence properties [35]. However, a quadratic penalty term

is added to the Lagrangian function (4). This additional term is usually not separable respective

to X and Yi, which makes the augmented Lagrangian method more difficult to implement.

To overcome this difficulty, the alternating direction method is introduced. The alternating

direction method generally consists of three steps.
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(I) Minimize the augmented Lagrangian function with respective to X only.

(II) Minimize the augmented Lagrangian function with respective to Yi only.

(III) Update the Lagrangian multipliers λi.

Repeat (I), (II), and (III) until a stopping criterion is satisfied.

The alternating direction method can be seen as the block Gauss-Seidel variant of the aug-

mented Lagrangian approach. The fundamental principle involved is to use the most recent

information as it is available. Furthermore, it is very suitable for parallel computation in a

data parallel environment. The alternating direction method was probably first considered by

Gabay [15] and Gabay and Mercier [16]. As shown in [29], the alternating direction method

is actually an instance of the Doulgas-Rachford splitting procedure of monotone operators [7].

It is also related to the progressive hedging algorithm of Rockafellar and Wets [34]. The al-

ternating direction method has been studied quite extensively in the settings of optimization

and numerical analysis. Eckstein [8] and Kontogiorgis [26] gave a detailed analysis of alternat-

ing direction methods and tested their efficiency using numerical experiments in the parallel

computation environment. Some versions of the alternating direction methods for solving dif-

ferent convex optimization problems appeared in [9, 14, 27]. Further studies of the alternating

direction method can be found, for instance, in [19, 20]. He et al. [19] proposed an inexact

alternating direction method with flexible conditions for structured monotone variational in-

equalities. Recently, He et al. [20] considered alternating projection-based prediction-correction

methods for structured variational inequalities. All of the work above, however, was devoted

to vector optimization problems. Independent from our work, Wen et al. [42] applied the idea

in the works of Burer and Vandenbussche [3] and Povh et al. [33] and proposed an alternating

direction method for linear semidefinite optimization problems. It appears to be new to apply

the idea of alternating direction method to develop methods for solving CNLSDP problems.

When applied to problem (3), the alternating direction method becomes the following.

Algorithm 2.2. The Alternating Direction Method for CNLSDP

Do at each iteration until a stopping criterion is met

Step 1.
(
Xk, Y k

i , λk
i

)
→
(
X̃k, Y k

i , λk
i

)
, where

〈
X − X̃k, C0

(
X̃k
)
−

m∑

i=1

(
λk

i − βi

(
X̃k − Y k

i

))〉
≥ 0, ∀X � 0. (6)

βi, i = 1, . . . , m, is a certain positive scalar.

Step 2.
(
X̃k, Y k

i , λk
i

)
→
(
X̃k, Ỹ k

i , λk
i

)
, i = 1, . . . , m, where

〈
Yi − Ỹ k

i , λk
i − βi

(
X̃k − Ỹ k

i

)〉
≥ 0, ∀Yi ∈ Ωi. (7)

Step 3.
(
X̃k, Ỹ k

i , λk
i

)
→
(
X̃k, Ỹ k

i , λ̃k
i

)
, i = 1, . . . , m, where

λ̃k
i = λk

i − βi

(
X̃k − Ỹ k

i

)
, (8)

and update (Xk, Y k
i , λk

i ) by (X̃k, Ỹ k
i , λ̃k

i ).
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2.2. The Prediction-Correction Alternating Direction Method for CNLSDP

If we implement Algorithm 2.2 for solving CNLSDP problems, we would have to solve sub-

variational inequality problems on matrix spaces at each iteration. Although there are a number

of methods for solving monotone variational inequalities, in many occasions it is not an easy

task. As a matter of fact, there seems to be little justification for the effort of obtaining the

solutions of these sub-problems at each iteration. Therefore, we modify the original alternating

direction method to make the implementation of each iteration much easier. Specifically, after

the modifications the main computational load of each iteration is only the metric projections

onto convex sets in the matrix space.

In the following, we will convert Step 1 and Step 2 to simple projection operations. For this

purpose, all we need is the following fact from convex geometry.

Lemma 2.3. ([23] Theorem 2.3) Let Ω be a closed convex set in a Hilbert space. Then

〈z − y, y − x〉 ≥ 0, ∀z ∈ Ω ⇐⇒ y ∈ PΩ(x). (9)

By using this lemma, we can see that (7) is equivalent to the following nonlinear equation

Ỹ k
i = ΠΩi

[
Ỹ k

i − αi

(
λk

i − βi

(
X̃k − Ỹ k

i

))]
,

where ΠΩ(U) stands for the projection of U onto Ω and αi can be any positive number. Thus

by choosing αi = 1

β
i
, the right hand side Ỹ k

i s are cancelled. That is, in order to solve (7), we

only have to compute

Ỹ k
i = ΠΩi

[
X̃k −

1

βi

λk
i

]
. (10)

However, it does not work for (6) since it is generally impossible to select an α so that the right

hand side X̃ks are cancelled in

X̃k = ΠSn
+

[
X̃k − α

(
C0

(
X̃k
)
−

m∑

i=1

(
λk

i − βi

(
X̃k − Y k

i

)))]
.

We therefore suggest the following approximate approach. Let

R
(
Xk, X̃k

)
=

(
1 − α

m∑

i=1

βi

)(
Xk − X̃k

)
− α

(
C0

(
Xk
)
− C0

(
X̃k
))

,

where we choose positive scalar α so that

α ≤
η

L + η
m∑

i=1

βi

(11)

with a certain 0 < η < 1 (L is the Lipschitz constant of C0(·)). Note that

ΠSn
+

[
X̃k − α

(
C0

(
X̃k
)
−

m∑

i=1

(
λk

i − βi

(
X̃k − Y k

i

)))
+ R

(
Xk, X̃k

)]

= ΠS
n
+

[
Xk − α

(
C0

(
Xk
)
−

m∑

i=1

(
λk

i − βi

(
Xk − Y k

i

)))]
. (12)
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Now all implicit parts within the projections have been successfully cancelled. However, we

cannot prove the convergence by just letting Xk+1 = (12). Instead we use it as the predictor

and will correct it in the correction phase. In summary, the prediction-correction alternating

direction method is thus given as follows.

Algorithm 2.4. The Prediction-Correction Alternating Direction Method for CNLSDP

Do at each iteration until a stopping criterion is met

The Prediction Phase:

Step 1.
(
Xk, Y k

i , λk
i

)
→
(
X̃k, Y k

i , λk
i

)
, where

X̃k = ΠSn
+

[
Xk − α

(
C0

(
Xk
)
−

m∑

i=1

(
λk

i − βi

(
Xk − Y k

i

)))]
, (13)

where α and βi, i = 1, . . . , m, are certain positive scalars satisfying (11).

Step 2.
(
X̃k, Y k

i , λk
i

)
→
(
X̃k, Ỹ k

i , λk
i

)
, i = 1, . . . , m, where

Ỹ k
i = ΠΩi

[
X̃k −

1

βi

λk
i

]
. (14)

Step 3.
(
X̃k, Ỹ k

i , λk
i

)
→
(
X̃k, Ỹ k

i , λ̃k
i

)
, i = 1, . . . , m, where

λ̃k
i = λk

i − βi

(
X̃k − Ỹ k

i

)
. (15)

The Correction Phase:

Step 4.
(
X̃k, Ỹ k

i , λ̃k
i

)
→
(
Xk+1, Y k+1

i , λk+1
i

)
, where

Xk+1 = ΠSn
+

[
Xk − γkR

(
Xk, X̃k

)]
, (16)

Y k+1
i = ΠΩi

[
Y k

i − γk
(
Y k

i − Ỹ k
i

)]
, i = 1, . . . , m, (17)

λk+1
i = λk

i − γk
(
λk

i − λ̃k
i

)
, i = 1, . . . , m. (18)

The positive scalar γk is a step-length and its choice will be given later.

3 Convergence Analysis

Theorem 3.1. The sequence
{
Xk, X̃k, Y k

i , Ỹ k
i , λk

i , λ̃
k
i

}
generated by the prediction-correction

alternating direction method for CNLSDP satisfies

m∑

i=1

α

βi

〈
λ̃k

i − λ∗
i , λ

k
i − λ̃k

i

〉
+α

m∑

i=1

βi

〈
Ỹ k

i − Y ∗
i , Y k

i − Ỹ k
i

〉
+
〈
X̃k − X∗, R

(
Xk, X̃k

)〉
≥ 0, (19)

where (X∗, Y ∗
i , λ∗

i ) are defined as in (5).

5



Proof. Using (5) and (7), we have

〈
Ỹ k

i − Y ∗
i , λ∗

i − λ̃k
i

〉
≥ 0 (20)

Similarly, we get

〈
Ỹ k

i − Y k
i , λk

i − λ̃k
i

〉
≥ 0 (21)

Note that (12) can be written equivalently as

〈
X − X̃k, α

(
C0

(
X̃k
)
−

m∑

i=1

(
λk

i − βi

(
X̃k − Y k

i

)))
− R

(
Xk, X̃k

)〉
≥ 0, ∀X ∈ S

n
+

in view of the relationship (9). Setting X = X∗ in it and using (15), we obtain

〈
X̃k − X∗,−α

(
C0

(
X̃k
)
−

m∑

i=1

λ̃k
i

)
− α

m∑

i=1

βi

(
Ỹ k

i − Y k
i

)
+ R

(
Xk, X̃k

)〉
≥ 0. (22)

Let X = X̃k in inequality (5). Then

α

〈
X̃k − X∗, C0 (X∗)−

m∑

i=1

λ∗
i

〉
≥ 0 (23)

Adding (22) and (23) together, it follows that

α

〈
m∑

i=1

(
λ̃k

i − λ∗
i

)
, X̃k − X∗

〉
+ α

〈
m∑

i=1

βi

(
Y k

i − Ỹ k
i

)
, X̃k − X∗

〉

+
〈
X̃k − X∗, R

(
Xk, X̃k

)〉
≥ α

〈
X̃k − X∗, C0

(
X̃k
)
− C0 (X∗)

〉
≥ 0. (24)

It follows from (20), (21) and (24) that

α

〈
m∑

i=1

(
λ̃k

i − λ∗
i

)
, X̃k − X∗

〉
+ α

〈
m∑

i=1

βi

(
Y k

i − Ỹ k
i

)
, X̃k − X∗

〉

+
〈
X̃k − X∗, R

(
Xk, X̃k

)〉
+ α

m∑

i=1

〈
Ỹ k

i − Y ∗
i , λ∗

i − λ̃k
i

〉

+α

m∑

i=1

〈
Ỹ k

i − Y k
i , λk

i − λ̃k
i

〉

=

m∑

i=1

α

βi

〈
λ̃k

i − λ∗
i , λ

k
i − λ̃k

i

〉
+ α

m∑

i=1

βi

〈
Ỹ k

i − Y ∗
i , Y k

i − Ỹ k
i

〉

+
〈
X̃k − X∗, R

(
Xk, X̃k

)〉
≥ 0.

The proof is completed.

The following is the main theorem.

Theorem 3.2. The sequence
{
Xk
}

generated by the prediction-correction alternating direction

method for CNLSDP converges to a solution point X∗.
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Proof. We denote

W ≡




X

Yi

λi


 ; G ≡




I 0 0

0 αH 0

0 0 αH−1




where I is the identical matrix and H is a diagonal matrix with βi on its diagonal. Clearly, G

is positive definite. We define the G-inner product of W and W ′ as

〈
W, W ′

〉
G
≡ α

m∑

i=1

1

βi

〈
λi, λ

′

i

〉
+ α

m∑

i=1

βi

〈
Yi, Y

′

i

〉
+
〈
X, X

′
〉

and the associated G-norm as

‖W‖G ≡

(
α

m∑

i=1

1

βi

‖λi‖
2 + α

m∑

i=1

βi ‖Yi‖
2 + ‖X‖2

) 1

2

.

Observe that solving the optimal condition (5) for problem (3) is equivalent to finding a zero

point of the residual function

‖e(W )‖G ≡

∥∥∥∥∥∥∥∥

X − ΠS
n
+

[
X − α

(
C0(X)−

m∑
i=1

λi

)]

Yi − ΠΩi
[Yi − αiλi]

βi (X − Yi)

∥∥∥∥∥∥∥∥
G

.

Then we have

X̃k = ΠSn
+

[
X̃k − α

(
C0

(
X̃k
)
−

m∑

i=1

(
λk

i − βi

(
X̃k − Y k

i

)))
+ R

(
Xk, X̃k

)]

⇒
∥∥∥e
(
W̃ k
)∥∥∥

G
≤

∥∥∥∥∥∥∥∥

−α
m∑

i=1

βi

(
Ỹ k

i − Y k
i

)
+ R

(
Xk, X̃k

)

0

λk
i − λ̃k

i

∥∥∥∥∥∥∥∥
G

(non-expansion of projection )

≤

∥∥∥∥∥∥∥∥

−α
m∑

i=1

βi

(
Ỹ k

i − Y k
i

)
+

(
1 − α

m∑
i=1

βi

)(
Xk − X̃k

)
− α

(
C0

(
Xk
)
− C0

(
X̃k
))

0

λk
i − λ̃k

i

∥∥∥∥∥∥∥∥
G

≤ a
∥∥∥W k − W̃ k

∥∥∥
G

, (25)

(because of (11))
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where a is a positive constant. From (11), there also holds the following inequality

〈


Xk − X̃k

Y k
i − Ỹ k

i

λk
i − λ̃k

i


 ,




R
(
Xk, X̃k

)

Y k
i − Ỹ k

i

λk
i − λ̃k

i



〉

G

=

〈
Xk − X̃k,

(
1 − α

m∑

i=1

βi

)(
Xk − X̃k

)
− α

(
C0

(
Xk
)
− C0

(
X̃k
))〉

+α
m∑

i=1

βi

〈
Y k

i − Ỹ k
i , Y k

i − Ỹ k
i

〉
+ α

m∑

i=1

1

βi

〈
λk

i − λ̃k
i , λ

k
i − λ̃k

i

〉

≥

(
1 − α

m∑

i=1

βi

)
(1 − η)

∥∥∥Xk − X̃k
∥∥∥

2

+ α

m∑

i=1

βi

∥∥∥Y k
i − Ỹ k

i

∥∥∥
2

+ α

m∑

i=1

1

βi

∥∥∥λk
i − λ̃k

i

∥∥∥
2

≥

(
1 − α

m∑

i=1

βi

)
(1 − η)

∥∥∥W̃ k − W k
∥∥∥

2

G
. (26)
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Thus,

∥∥∥W k+1 − W ∗
∥∥∥

2

G
=

∥∥∥Xk+1 − X∗
∥∥∥

2

+ α

m∑

i=1

βi

∥∥∥Y k+1
i − Y ∗

i

∥∥∥
2

+ α

m∑

i=1

1

βi

∥∥∥λk+1
i − λ∗

i

∥∥∥
2

≤
∥∥∥Xk − γkR

(
Xk, X̃k

)
− X∗

∥∥∥
2

+ α

m∑

i=1

βi

∥∥∥Y k
i − γk

(
Y k

i − Ỹ k
i

)
− Y ∗

∥∥∥
2

+α
m∑

i=1

1

βi

∥∥∥λk
i − γk

(
λk

i − λ̃k
i

)
− λ∗

i

∥∥∥
2

=
∥∥∥Xk − X∗

∥∥∥
2

− 2γk
〈
Xk − X∗, R

(
Xk, X̃k

)〉
+
(
γk
)2 ∥∥∥R

(
Xk, X̃k

)∥∥∥
2

+α
m∑

i=1

βi

{∥∥∥Y k
i − Y ∗

i

∥∥∥
2

− 2γk
〈
Y k

i − Y ∗
i , Y k

i − Ỹ k
i

〉
+
(
γk
)2 ∥∥∥Y k

i − Ỹ k
i

∥∥∥
2
}

+α

m∑

i=1

1

βi

{∥∥∥λk
i − λ∗

i

∥∥∥
2

− 2γk
〈
λk

i − λ∗
i , λ

k
i − λ̃k

i

〉
+
(
γk
)2 ∥∥∥λk

i − λ̃k
i

∥∥∥
2
}

≤
∥∥∥Xk − X∗

∥∥∥
2

− 2γk
〈
Xk − X̃k, R

(
Xk, X̃k

)〉
+
(
γk
)2 ∥∥∥R

(
Xk, X̃k

)∥∥∥
2

+α

m∑

i=1

βi

{∥∥∥Y k
i − Y ∗

i

∥∥∥
2

− 2γk
〈
Y k

i − Ỹ k
i , Y k

i − Ỹ k
i

〉
+
(
γk
)2 ∥∥∥Y k

i − Ỹ k
i

∥∥∥
2
}

+α

m∑

i=1

1

βi

{∥∥∥λk
i − λ∗

i

∥∥∥
2

− 2γk
〈
λk

i − λ̃k
i , λ

k
i − λ̃k

i

〉
+
(
γk
)2 ∥∥∥λk

i − λ̃k
i

∥∥∥
2
}

=
∥∥∥W k − W ∗

∥∥∥
2

G
− 2γk

〈


Xk − X̃k

Y k
i − Ỹ k

i

λk
i − λ̃k

i


 ,




R
(
Xk, X̃k

)

Y k
i − Ỹ k

i

λk
i − λ̃k

i



〉

G

+
(
γk
)2

∥∥∥∥∥∥∥




R
(
Xk, X̃k

)

Y k
i − Ỹ k

i

λk
i − λ̃k

i




∥∥∥∥∥∥∥

2

G

(27)

=
∥∥∥W k − W ∗

∥∥∥
2

G
− ν(2 − ν)γk

∗

〈


Xk − X̃k

Y k
i − Ỹ k

i

λk
i − λ̃k

i


 ,




R
(
Xk, X̃k

)

Y k
i − Ỹ k

i

λk
i − λ̃k

i



〉

G


where γk ≡ νγk
∗ = ν

〈


Xk − X̃k

Y k
i − Ỹ k

i

λk
i − λ̃k

i


 ,




R
(
Xk, X̃k

)

Y k
i − Ỹ k

i

λk
i − λ̃k

i



〉

G∥∥∥∥∥∥∥




R
(
Xk, X̃k

)

Y k
i − Ỹ k

i

λk
i − λ̃k

i




∥∥∥∥∥∥∥

2

G

and 0 < ν < 2




≤
∥∥∥W k − W ∗

∥∥∥
2

G
− ν (2 − ν) γk

∗

(
1 − α

m∑

i=1

βi

)
(1 − η)

∥∥∥W̃ k − W k
∥∥∥

2

G
(28)

≤
∥∥∥W k − W ∗

∥∥∥
2

G
− ν (2 − ν) γk

∗

(
1 − α

m∑

i=1

βi

)
(1 − η)

1

a2

∥∥∥e
(
W̃ k
)∥∥∥

2

G
, (29)
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where (26) was used to deduce (28) and (25) was used to obtain (29), respectively. From the

inequality above, we have

∥∥∥W k+1 − W ∗
∥∥∥

2

G
≤
∥∥∥W k − W ∗

∥∥∥
2

G
≤ . . . ≤

∥∥W 0 − W ∗
∥∥2

G
. (30)

That is, the sequence
{
W k
}

is bounded. It follows from (28) that

∞∑

k=0

ν (2 − ν) γk
∗

(
1 − α

m∑

i=1

βi

)
(1 − η)

∥∥∥W̃ k − W k
∥∥∥

2

G
< +∞.

This implies that

lim
k→∞

∥∥∥W̃ k − W k
∥∥∥

G
= 0.

Thus the sequence
{
W̃ k
}

is also bounded. Then there exists at least one cluster point of
{
W̃ k
}
.

It also follows from (29) that

∞∑

k=0

ν (2 − ν) γk
∗

(
1− α

m∑

i=1

βi

)
(1 − η)

1

a2

∥∥∥e
(
W̃ k
)∥∥∥

2

G
< +∞.

This implies that

lim
k→∞

∥∥∥e
(
W̃ k
)∥∥∥

G
= 0.

Let W be a cluster point of
{

W̃ k
}
, and let

{
W̃ kj

}
be a corresponding subsequence converging

to W . Therefore,

lim
j→∞

∥∥∥W − W kj

∥∥∥
G

= lim
j→∞

∥∥∥W̃ kj − W kj

∥∥∥
G

= 0.

Also note that ∥∥e
(
W
)∥∥

G
= lim

j→∞

∥∥∥e
(
W̃ kj

)∥∥∥
G

= 0,

which means that W is a zero point of the residual function. Therefore W satisfies (5). Setting

W ∗ = W in (30), we have

∥∥∥W k+1 − W
∥∥∥

2

G
≤
∥∥∥W k − W

∥∥∥
2

G
, ∀k ≥ 0.

Thus, the sequence
{
W k
}

has a unique cluster point and

lim
k→∞

W k = W.

This completes the proof.

Remark: Here we choose γk as such to optimize the function (27). Actually this optimal

10



stepsize will not be too small even the iterate is close to the solution as shown in the following.

2

(
1 − α

m∑

i=1

βi

)〈
Xk − X̃k,

(
1 − α

m∑

i=1

βi

)(
Xk − X̃k

)
− α

(
C0

(
Xk
)
− C0

(
X̃k
))〉

≥

(
1 − α

m∑

i=1

βi

)2 ∥∥∥Xk − X̃k
∥∥∥

2

+ α2
∥∥∥C0

(
Xk
)
− C0

(
X̃k
)∥∥∥

2

−2

(
1 − α

m∑

i=1

βi

)
α
〈
Xk − X̃k, C0

(
Xk
)
− C0

(
X̃k
)〉

=
∥∥∥R
(
Xk, X̃k

)∥∥∥
2

⇒ max

{
1, 2

(
1 − α

m∑

i=1

βi

)}〈


Xk − X̃k

Y k
i − Ỹ k

i

λk
i − λ̃k

i


 ,




R
(
Xk, X̃k

)

Y k
i − Ỹ k

i

λk
i − λ̃k

i



〉

G

≥

∥∥∥∥∥∥∥




R
(
Xk, X̃k

)

Y k
i − Ỹ k

i

λk
i − λ̃k

i




∥∥∥∥∥∥∥

2

G

⇒ γk
∗ ≥ min





1,
1

2

(
1 − α

m∑
i=1

βi

)





. (31)

Note that ν ∈ (0, 2) is a relaxation factor put in front of it.

4 Numerical test on the completion problem of low-rank matrix

In this section, we present preliminary numerical results for the proposed alternating direction

method for solving CNLSDP problems. We should emphasize that our purpose here is not

to conduct extensive computational tests but to demonstrate that the proposed algorithm can

be potentially efficient. The algorithm may be taken as prototypes of those sophisticated and

tailor-made algorithms for solving different classes of problems.

In many fields of engineering and science, a low-rank matrix needs to be completed from

small portion of entries observed. A good example is the well known Netflix problem [1]. This

large online DVD renting company needs to provide recommendations to users based on their

submitted ratings on some films. That means one would like to infer their preference for unrated

items. This problem seems to be very hard in that we should fill in the missing entries of the

matrix from only small samples. However, the matrix of all user-ratings to recover has low rank

because there are only a few factors to explain an individual’s preference for films. Then it can

be modeled as follows.

min rank(X) (32)

s.t. Xij = Mij , (i, j) ∈ Ω

X ∈ <m×n,

where M is the unknown matrix and Ω is a set of pairs of indices for known entries.

11



To generalize, the affine rank minimization problem is introduced.

min rank(X) (33)

s.t. A(X) = b

X ∈ <m×n,

where A : <m×n → <p is a linear operator and b ∈ <p. This slight generalization appears useful

in many areas such as machine learning [2], control [10, 13], and Euclidean embedding [41].

Notice that the affine rank minimization problem (33) is an NP-hard nonconvex optimization

problem. A convex relaxation of (33) is given in [12] as follows.

min ‖X‖∗ (34)

s.t. A(X) = b

X ∈ <m×n,

where ‖X‖∗ is the nuclear norm of X . The nuclear norm of X is defined as

‖X‖∗ =

q∑

i=1

σi(X),

where q = min{m, n} and σi(X), i = 1, . . . , q, are the singular values of X . Actually the nuclear

norm is the best convex approximation of the rank function over the unit ball of matrices.

Candes and Recht [5] proved that a random low-rank matrix can be recovered exactly with high

probability from a rather small portion of entries by solving (34).

The problem (34) can be reformulated as an SDP problem,

min
1

2
(〈W1, Im〉 + 〈W2, In〉) (35)

s.t. A(X) = b(
W1 X

XT W2

)
� 0.

In [38] SDPT3, one of the most advanced SDP solvers based on interior point methods, has been

used to solve (35). However, the computational cost grows very fast as m and n increase.

The first-order methods may therefore provide a promising alternative to the interior point

method due to their low sensitivity to problem sizes. Ma et al. [30] proposed a Bregman iterative

algorithm for solving (34). Cai et al. [4] proposed a singular value thresholding algorithm for

solving the Tikhonov regularized version of (34). More recently, Yang and Yuan suggested an

inexact alternation direction method [44]. Toh and Yun [39] made an extensive computational

experiment for the nuclear norm regularized least squares problem by using a proximal point

gradient algorithm, which is similar in spirit to the alternation direction methods, and reported

very promising computational results.

In applying our proposed alternating direction method to Problem (34), we substitute Step

(6) by an equivalent minimization problem and apply the following lemma. For the proof, see

Theorem 2.1 of [4] or Theorem 3 of [30].

Lemma 4.1. The solution of the minimization problem

min
X∈<m×n

τ

2
‖X − G‖2 + µ‖X‖∗

12



for τ, µ > 0 is given in a closed form by

Sτ (G) = UDiag

((
σ −

µ

τ

)
+

)
V T , (36)

where G = UΣV T and Σ = Diag(σ) are from the singular value decomposition (SVD) of G.

Thus at each iteration of our proposed alternating direction method, there is actually an

analytic solution and the main computational cost lies on computing the singular value decom-

position (SVD) of a matrix. Furthermore, it suffices to know those singular values that are

greater than the parameter 1

β
and their corresponding singular vectors. If this parameter is

large, the number of singular values to be evaluated is small. This motivates us to choose small

β to make the decomposition of a large-scale matrix possible.

The random matrix completion problems considered in our numerical experiments are as

follows.

Example. For each (n, r, p) triple, where n (we set m = n) is the matrix dimension, r is

the predetermined rank, and p is the number of entries to sample, we generate M = MLMT
R as

in [39], where ML and MR are n × r matrices with i.i.d. standard Gaussian entries. Then a

subset Ω of p elements uniformly at random from {(i, j) : i = 1, . . . , n, j = 1, . . . , n} is selected.

Therefore, the linear map A is given by

A(X) = XΩ,

where XΩ ∈ <p are obtained from X by selecting those elements whose indices are in Ω.

We take β = 0.01, 0.02, 0.05, 0.08, 0.1, 0.2, 0.5, 1 in order to observe the effect of parameter for

n/r = 100/10. Then using β = 0.1, we test for n/r = 200/10, 200/20, 500/10, 500/20, 500/50,

respectively, in order to observe the effect of problem size.

We choose the initial iterate to be X0 = Y 0 = rand(n) and λ0 = 0. The stopping criterion

we use is: ∥∥Xk − Xk−1
∥∥

F

max {‖Xk‖F , 1}
< 1e -4.

The accuracy of the computed solution Xsol by our algorithm can be measured by the relative

error defined as follows:

error ≡

∥∥Xsol − M
∥∥

F

‖M‖F

,

where M is the original matrix.

For each case, we randomly generate 5 problems and report the average results of the al-

ternating direction method in Tables 1 and 2. The columns corresponding to “ave. iter”, “ave.

#sv”, and “ave. error” give the average number of iterations, the average number of nonzero

singular values of the computed solution matrix, and the average relative error, respectively. As

indicated in [4], an n × n matrix of rank r has dr ≡ r(2n − r) degrees of freedom. The ratio

p/dr is also shown in the tables, which indicates a degree of hardship in solving the problem.

The code was written in MATLAB (version 6.5) and the computations were performed on

a 1.86 GHz Intel Core 2 PC with 3GB of RAM. In order to free ourselves from the distraction

of having to consider the storage of too large matrices in MATLAB, we only use examples with

moderate dimensions. Furthermore, we compute the full SVD at each iteration. From Table

13



Table 1: Numerical results with different β

Example Unknown M ADM

β= n/r p p/dr ave. iter ave. #sv ave. error

0.01 100/10 5666 3 135 19 1.4e-02

0.02 100/10 5666 3 83 18 5.6e-03

0.05 100/10 5666 3 53 13 5.3e-03

0.08 100/10 5666 3 63 11 7.0e-04

0.1 100/10 5666 3 71 10 3.5e-04

0.2 100/10 5666 3 106 10 1.2e-03

0.5 100/10 5666 3 202 11 3.7e-03

1 100/10 5666 3 351 12 8.2e-03

Table 2: Numerical results with β = 0.1

Example Unknown M ADM

β= n/r p p/dr ave. iter ave. #sv ave. error

0.1 200/10 15665 4 95 10 3.7e-04

0.1 200/20 22800 3 99 20 3.5e-04

0.1 500/10 49471 5 158 10 4.3e-04

0.1 500/20 78400 4 146 20 3.8e-04

0.1 500/50 142500 3 152 50 4.1e-04

1, it seems that β = 0.1 is a suitable parameter. Then using this β, the numerical results

reported in Table 2 are competitive with those obtained by using the fixed point continuation

algorithm and the accelerated proximal gradient algorithm in [39], which are proposed to solve

easier unconstrained counterpart instead.

5 Conclusions

We propose a prediction-correction alternating direction method for solving convex nonlinear

semidefinite optimization problems. The advantage of the proposed method is that it does

not require to solve sub-variational inequality problems on semidefinite cone; instead, in each

iteration, it requires only projections onto semidefinite cone plus m projections on convex sets.

The convergence of the method is analyzed and it is shown that if the problem has an optimal

solution at all, the method will produce a sequence that converge to a solution.

A numerical example of computing the low-rank completion of randomly generated matrix is

presented. Our algorithm generates reasonably accurate solutions in a reasonable number of it-

erations in the experiment, showing that the proposed alternating direction method is promising

in solving medium-sized convex nonlinear semidefinite optimization problems.
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