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Abstract

This paper proposes a unified framework for spatio-
temporal segmentation of video sequences. A Bayesian

network is presented to model the interactions among the

motion vector field, the intensity segmentation field, and
the video segmentation field. The notions of distance

transformation and Markov random field are used to

express spatio-temporal constraints. Given consecutive
frames, an optimization method is proposed to maximize

the conditional probability density of the three fields in an

iterative way. Experimental results show that the
approach is robust and generates spatio-temporally

coherent segmentation results.

1. Introduction

Robust video segmentation is fundamental to such

application areas as object-based video compression and

multiple-object tracking. One of the key issues in the

design of these vision systems is their ability to

differentiate the objects composing the scene. However,

the strategy to extract and couple temporal (or motion)

information and spatial (or intensity) information with the

segmentation process remains an open issue.

Motion information is one important element used for

segmentation of video sequences. A moving object is

characterized by the coherent motion over its support

region. Layered approaches have been proposed to

represent multiple moving objects in the scene with a

collection of layers [10] [13] [19] [23]. The scene is

segmented into a set of regions, such that pixel

movements within each region are consistent with a

motion model (a parametric transformation). Examples of

motion models are the translational model (two

parameters), the affine model (six parameters), and the

perspective model (nine parameters). Furthermore, spatial

constraints could be imposed on motion estimation in the

form of a support region where the motion is assumed to

follow a parametric transformation. Chang et al. [4] and

Stiller [17] used the methods to simultaneously estimate

the motion information and its support region. Moreover,

spatial information provides important hints of object

boundaries. Methods that combine an initial intensity

segmentation with motion information have been

proposed recently [12] [15] [20]. Given an

oversegmentation of the current frame, objects are formed

by merging together segments with spatio-temporal

similarity. The region merging approaches have two

disadvantages. Firstly, the intensity segmentation remains

unchanged so that motion information has no influence

upon the spatial information during the entire procedure.

Secondly, even an oversegmentation sometimes cannot

keep all the object edges, and the boundary information

lost by the initial intensity segmentation cannot be

recovered later. Since spatial information and temporal

information should interact throughout the segmentation

process, to utilize only motion information or fix intensity

segmentation will degrade the performance of video

segmentation. From this point of view, it is a relatively

comprehensive idea to simultaneously adjust the motion

vector field, the intensity segmentation field, and the

spatio-temporal (or video) segmentation field.

On the other hand, graphical probabilistic models

provide a natural tool for dealing with uncertainty and

complexity, and they are playing an increasingly

important role in the design and analysis of machine

intelligent systems [7]. In particular, Markov random

fields and Bayesian networks have attracted more and

more attention as principled approaches for image and

video processing [6] [16] [21].

In this paper, we present an approach in which spatial

information and temporal information act on each other

during the video segmentation process. A Bayesian

network is proposed to model the interactions among the

motion vector field, the intensity segmentation field, and

the spatio-temporal segmentation field. The notions of

distance transformation and Markov random field (MRF)

are employed to express spatio-temporal constraints. A

three-frame approach is adopted to deal with occlusions.

The labeling criterion is the maximization of conditional

probability density of the three fields given consecutive
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video frames. To perform the optimization, we propose a

procedure that minimizes the corresponding objective

functions in an iterative way. Experiments show that our

technique is robust and generates spatio-temporally

consistent segmentation results. The rest of the paper is

arranged as follows: Section 2 presents the formulation of

our approach and compares the method with related work.

Section 3 proposes the implementation details. Section 4

discusses the experiment results. Our technique is

concluded in Section 5.

2. Method

2.1. Model representation

For a discrete image sequence, assume that the

intensity distribution remains constant along a motion

trajectory. Ignoring both illumination variations and

occlusions, it may be stated as

yk(x) = yk–1(x – dk(x)), x X, k = 1, 2, , (1)

where yk(x) is the intensity of a single pixel within the kth

video frame at spatial location x, and dk(x) is the

displacement vector from frame k–1 to frame k. X is the

spatial domain of each video frame. The entire motion

vector field is expressed compactly as dk.

Since the video data is corrupted in the image

acquisition process, an observation model is required for

the image sequence. Assume that independent and

identically distributed (i. i. d.) Gaussian noise corrupts

each pixel, so that the observation model for the kth frame

becomes

gk(x) = yk(x) + nk(x), (2)

where gk(x) is the observed image intensity at site x, and

nk(x) is the independent zero-mean additive noise with

variance 2
n .

In this work, video segmentation refers to grouping

pixels that belong to independently moving objects in the

frame. To deal with occlusions, we assume that each site

x in the current frame gk cannot be occluded in both the

previous frame gk–1 and the next frame gk+1. Thus a three-

frame method is adopted to segment the video sequence.

Given consecutive frames of the observed video

sequence, gk–1, gk, and gk+1, we wish to compute the

maximum a posteriori (MAP) estimation of the

displacement vector field dk, the intensity segmentation

field sk, and the spatio-temporal segmentation field zk.

( kd̂ , kŝ , kẑ )

= arg
),,(

max
kkk zsd

p(dk, sk, zk | gk, gk–1, gk+1), (3)

where p(dk, sk, zk | gk, gk–1, gk+1) is the posterior probability

density function (pdf) given the three video frames. Using

the Bayes’ rule, the posterior probability density becomes

p(dk, sk , zk | gk, gk–1, gk+1)

=
),,(

),,,,,(

11

11

kkk

kkkkkk

gggp

gggzsp d
, (4)

where the denominator is constant with respect to the

unknowns.

The interrelationships among dk, sk, zk, gk, gk–1, gk+1 can

be modeled using the Bayesian network shown in Figure

1. Motion estimation establishes the pixel correspondence

between the three consecutive frames. The intensity

segmentation field provides a set of segments with

relatively small intensity variation. In order to identify

independently moving objects in the scene, these

segments are encouraged to group into regions with the

same parametric transformation. Meanwhile, if multiple

motion models coexist within one segment, the segment

may split into several spatio-temporally coherent regions.

Figure 1. Bayesian belief network model for video
segmentation.

The conditional independence relationships implied by

the Bayesian network allow us to represent the joint more

compactly [9]. Using the chain rule, the joint probability

density can be factorized as

p(dk, sk, zk, gk, gk–1, gk+1)

= p(gk–1, gk+1 | gk, dk)

p(gk | sk) p(sk) p(dk | zk) p(zk | sk). (5)

Then the MAP estimate becomes

( kd̂ , kŝ , kẑ )

= arg
),,(

max
kkk zsd

p(gk–1, gk+1 | gk, dk)

p(gk | sk) p(sk) p(dk | zk) p(zk | sk). (6)

2.2. Spatio-temporal constraints

The conditional probability density function p(gk–1, gk+1

| gk, dk) qualifies how well the motion estimation fits the

given frames. Assuming that the likelihood is completely

specified by a random field that models the displaced
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frame difference (DFD) [18], the video observation model

can be employed to compute p(gk–1, gk+1 | dk, gk). We can

define the backward DFD )(xb
ke  and forward DFD

)(x
f

ke  at site x as

)(xb
ke = gk(x) – gk–1(x – dk(x))

= nk(x) – nk–1(x – dk(x)), (7a)

)(x
f

ke = gk(x) – gk+1(x + dk(x))

= nk(x) – nk+1(x + dk(x)). (7b)

The vector Tf
k

b
k ee ))(),(( xx is denoted as ek(x). Then the

likelihood can be modeled using the bivariate normal

distribution.

p(gk–1, gk+1 | gk, dk)

=

Xx

xe ))(( kp

= (
||2

1

e

)|X| exp{ )]()([
2

1 1
xexe e

x

k
T
k }

exp[

Xx

xdx ))(|(1 kU ], (8a)

U1(x | dk(x)) = 22 ))(()()(2))(( xxxx
f

k
f

k
b
k

b
k eeee ,

(8b)

where e is the covariance matrix for each site x, and  is

the correlation coefficient of )(xb
ke  and )(x

f
ke . With the

i. i. d. Gaussian noise assumption, we have

2

1

2)]([)]Var([Var

)](),(Cov[
2

2

n

n

f
k

b
k

f
k

b
k

ee

ee

xx

xx
. (9)

The term p(gk | sk) shows how well the intensity

segmentation fits the scene. Assuming Gaussian

distribution for each segmented region in the frame, the

conditional probability density could be expressed as

p(gk | sk)

= (
2

1
)|X|exp }])([

2

1
{ 2

)(2
Xx

xx
kskg

exp[

Xx

xx ))(|(2 ksU ], (10a)

U2(x | sk(x)) = 2
)( ])([ xx

kskg , (10b)

where sk(x) = l designates the assignment of site x to

region l, l is the mean of the intensity within region l,

and 2 is the variance for each region.

The pdf p(sk) represents the a priori probability of the

intensity segmentation. We model the density p(sk) by a

Markov random field [8]. That is, if Nx is a neighborhood

of the pixel at x, then the conditional distribution of a

single variable at x is completely specified by the

variables within its neighborhood Nx. According to the

Hammersley-Clifford theorem, the density is given by a

Gibbs density that has the following form [18]:

p(sk)  exp[– )|)(( csV k

Cc

s
c xx ], (11)

where C is the set of all cliques c, and s
cV is the clique

potential function. A clique is a set of points that are

neighbors of each other. The clique potential s
cV depends

only on the pixels that belong to clique c.

Spatial connectivity can be imposed by the following

two-pixel clique potential.

))(),(( yx kk
s

c ssV

=
2||||

1

yx
[1 – (sk(x) – sk(y))], (12)

where ( ) is the Kronecker delta function, and || || denotes
the Euclidian distance. Thus two neighboring pixels are

more likely to belong to the same class than to different

classes. The constraint becomes strong with the decrease

of the distance between the neighboring sites.

The term p(dk | zk) is the conditional pdf of the

displacement field given the video segmentation field. To

encourage the formation of continuous regions, it is

modeled by a Gibbs distribution with the following

potential function.

)|)(),((|
kkk

z
c zV ydxd
d

= ))(),(|)(),((|
yxydxd

d
kkkk

z
c zzV

=
2||||

1

yx
(zk(x) – zk(y)) ||dk(x) – dk(y)||2. (13)

The piecewise smoothness constraint of the motion

vectors is imposed only when the two pixels have the

same video segmentation label.

The last term p(zk | sk) represents the probability

density of the spatio-temporal segmentation field when

the intensity segmentation field is given. To employ the

spatial information, distance transformation [1] is

performed on the intensity segmentation field. Each pixel

x in the distance transformed image has a value DTk(x)

representing the distance between the pixel and the

nearest boundary pixel in sk. Here a boundary pixel x has

at least one point y within its neighborhood where sk(y) is

not the same as sk(x). The density is modeled by a Gibbs

distribution with the following potential function.

)|)(),((|
kkk

sz
c szzV yx

= ))(),(|)(),((|
yxyx kkkk

sz
c DTDTzzV

=
2||||

1

yx
[1 – (zk(x) – zk(y))]

[1 + (DTk(x), DTk(y))], (14a)

(DTk(x), DTk(y)) =
otherwize.,0

).()(if,1 yx kk DTDT
(14b)

The first term on the right side of (14a) encourages the

spatial connectivity, while the second term gives a penalty

on the pixel closer to the boundary of the intensity
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segmentation field if the two pixels are not of the same

video segmentation class. The parameter  controls the
strength of the constraint imposed by the intensity

segmentation field.

Combining the above models, the Bayesian MAP

estimation criterion becomes

( kd̂ , kŝ , kẑ )

= arg
),,(

min
kkk zsd

[

Xx

xdx ))(|(1 kU +

Xx

xx ))(|(21 ksU +

C

kk
s

c ssV

},{

2 ))(),((

yx

yx +

C

kkkk
z

c zzV

},{

|
3 ))(),(|)(),((

yx

d
yxydxd +

C

kkkk
sz

c DTDTzzV

},{

|
4 ))(),(|)(),((

yx

yxyx ], (15)

where the parameters 1, 2, 3, and 4 control the
contribution of the terms.

2.3. Notes on the Bayesian network

In our model, the motion vector field establishes the

correspondence between the current frame and its two

neighboring frames. The video segmentation is influenced

by both spatial information and temporal information. It

should be noted that the direction of the links in the

Bayesian network model does not mean that the action

between the cause and consequence is one-way.

Figure 2. Simplified Bayesian belief network model for
video segmentation.

In a video sequence, the current frame could be

thought as the cause of the next frame. For most of

sequences (including the two test sequences in Section 4),

both the original sequence and the one in reverse order are

understandable from the viewpoint of segmentation. Thus,

the current frame could also be viewed as the cause of the

previous frame (in the reversed sequence). In our model,

gk is the cause of both the next frame gk+1 and the previous

frame gk–1.

When frame gk+1 and frame gk–1 are separated (as

shown in Figure 2), the model seems more clear at the

first glance. However, from the chain rule we know that

in this case,

p(gk–1, gk+1 | gk, dk)

= p(gk–1 | gk, dk) p(gk+1 | gk, dk)

=

Xx

xx ))(())((
f

k
b
k epep

exp{ }]))(())([( 22

Xx

xx
f

k
b
k ee . (16)

Comparing with (8), the correlation coefficient of )(xb
ke

and )(x
f

ke  is zero in (16). The Bayesian belief network in

Figure 2 neglects the interaction between the forward

DFD and the backward DFD. Therefore, the Bayesian

network model in Figure 2 is just a simplification of the

original model.

2.4. Related work

Our method is mostly related to the work of Chang et

al. [4] and Patras et al. [15], and it could be viewed as the

generalization of the former one. Both approaches

simultaneously estimate the motion vector field and the

video segmentation field using a MAP-MRF algorithm.

The method proposed by Chang et al. adopts a two-frame

approach and does not use the information of the intensity

segmentation field during the video segmentation process.

Although the algorithm has successfully identified

multiple moving objects in the scene, the object

boundaries are inaccurate in their experimental results.

The method of Patras et al. employs an initial intensity

segmentation and adopts a three-frame approach to deal

with occlusions. However, the method keeps the

disadvantages of region merging approaches. The

boundary information neglected by the initial intensity

segmentation field could no longer be recovered by the

motion vector field, and the temporal information could

not act on the spatial information.

In order to overcome the above problems, our

algorithm simultaneously estimates the three fields to

form spatio-temporal coherent results. Described by the

Bayesian network model in Figure 1, the interaction

between spatial information and temporal information is

bi-directional. Boundaries of the video segmentation field

are supplied by both the intensity segmentation field and

the motion vector field.
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3. Implementation

3.1. Optimization

Obviously, there is no simple method of directly

minimizing (15) with respect to all unknowns. We

perform the minimization by iterating over the following

two steps.

Firstly, we update dk and sk given the estimate of the

video segmentation field zk. From the structure of the

proposed Bayesian network, we can see that dk and sk are

conditionally independent when video segmentation field

zk and the three successive frames are given. The joint

estimation can be factorized as

( kd̂ , kŝ ) = arg
),(

max
kk sd

p(dk, sk | gk, gk–1, gk+1, zk)

= (arg
kd

max p(dk | gk, gk–1, gk+1, zk),

arg
ks

max p(sk | gk, zk)). (17)

Using the chain rule, the MAP estimate becomes

kd̂ = arg
kd

max p(dk | gk, gk–1, gk+1, zk)

= arg
kd

max p(gk–1, gk+1 | gk, dk) p(dk | zk), (18a)

kŝ = arg
ks

max p(sk | gk, zk)

= arg
ks

max p(gk | sk) p(zk | sk)p(sk). (18b)

Secondly, update the spatio-temporal segmentation

field zk, assuming the motion field dk and the intensity

segmentation field sk are given.

kẑ = arg
kz

max p(zk | gk, gk–1, gk+1, dk, sk)

= arg
kz

max p(zk | dk, sk)

= arg
kz

max p(dk | zk) p(zk | sk). (19)

Figure 3. The fifth order neighborhood system.

In our work, the 24-point neighborhood system (the

fifth order neighbor system, see Figure 3) is used, and

potentials are defined only on two-point cliques. Using

the terms in (15), the Bayesian MAP estimates in (18) and

(19) can be obtained by minimizing the following

objective functions.

Fd(dk) = 

Xx

xdx ))(|([ 1 kU +

xy

d
yxydxd

N

kkkk
z

c zzV ))](),(|)(),((
2

1 |
3 , (20a)

Fs(sk) =

x

xx ))(|([ 21 ksU +

xy

yx

N

kk
s

c ssV ))(),((
2

1
2 +

]))(),(|)(),((
2

1 |
4

xy

yxyx

N

kkkk
sz

c DTDTzzV ,(20b)

Fz(zk)=

Xx y

d

x

yxydxd

N

kkkk
z

c zzV ))(),(|)(),((
2

1
[ |

3 +

xy

yxyx

N

kkkk
sz

c DTDTzzV ))](),(|)(),((
2

1 |
4 , (20c)

where Nx is the neighborhood of the pixel at x.

In general, the objective functions are nonconvex and

do not have a unique minimum. The iterated conditional

modes (ICM) algorithm is used to arrive at a sub-optimal

estimate of each objective function [3]. The scheme

employs the greedy strategy in the iterative local

minimization. Given the observed data and the other

labels, the algorithm sequentially updates the label by

locally minimizing the objective function at each site.

3.2. Initialization and parameter determination

The intensity segmentation field is initialized using a

generalized K-means clustering algorithm to include the

spatial constraint. Each cluster is characterized by a

constant intensity, and the spatial constraints are

performed by the two-point clique potential in (12). The

initialization algorithm is actually a simplification of the

adaptive clustering algorithm proposed by Papps [14].

The initial motion vector field is obtained by using

Bayesian MAP estimation with a global smoothness

constraint [18]. Given the initial motion estimates, Wang

and Adelson [22] have proposed a procedure for

initialization of the video segmentation field. The current

frame is divided into small blocks and a set of affine

parameters is computed for each block. By adaptively

clustering the affine parameters under a distance measure,

a set of motion models is known. Then regions within the

image are assigned in a way that minimizes the motion

distortion. In our work, the video segmentation field is

initialized by combining this procedure with the spatial

constraint on the assignment of regions. Given the initial

estimates of the three fields, we employ the idea for

parameter selection proposed by Chang et al. [4]. The

parameters ( 1, 2, 3, and 4) are determined by
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equalizing the contributions of the terms in (15). Details

can be found in the references.

4. Results and discussion

The results tested on the “flower garden” sequence and

the “table tennis” sequence (see Figure 4 and 5) are

shown in our experiments. We assume that there are four

layers in the video segmentation field. The value of  in
(14a) is set as 4.

The motion vector field, intensity segmentation field,

and the spatio-temporal segmentation field are recovered

using the proposed technique for both sequences. The

spatial connectivity is clearly exhibited in the estimation

results. From the motion vector fields shown in Figure 4c

and 5c, we can see that motion occlusions are successfully

overcome. The results of the intensity segmentation are

depicted in Figure 4d and 5d, where an area with constant

intensity represents an intensity segment. Figure 4e and

5e are the corresponding distance transformed images.

Darker gray levels are used to represent the pixels with

smaller distance values. In Figure 4f-i and 5f-i, we

represent the video segmentation results obtained by our

approach. In the “flower garden” sequence, the edge

information is preserved well in intensity segmentation

field (see Figure 4d). The algorithm is capable of

distinguishing the different objects in the scene by

successfully grouping the small regions that are spatio-

temporally coherent. While in the “table tennis” sequence,

the boundary information lost in Figure 5d (boundary

information may be lost even in an oversegmentation,

e.g., the left arm in Figure 5i) is recovered according to

the information from the motion vector field. However,

boundaries are detected more accurately when both

spatial and temporal features are matched (e.g., the tree in

Figure 4i and the body in Figure 5h). The segmentation

algorithm is robust even at the largely homogeneous areas

(e.g., the sky in Figure 4h and table in Figure 5f), where

there is little motion information.

  (a)   (b)   (c)

  (d)   (e)   (f)

  (g)   (h)   (i)
Figure 4. (a) and (b) Two consecutive frames (the previous and current frames) of the “flower garden” sequence. (c) The
motion vector field. (d) The intensity segmentation field. (e) The distance transformed image. (f)-(i) The video segmentation
results.
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  (a)   (b)   (c)

  (d)   (e)   (f)

  (g)   (h)   (i)
Figure 5. (a) and (b) Two consecutive frames (the previous and current frames) of the “table tennis” sequence. (c) The
motion vector field. (d) The intensity segmentation field. (e) The distance transformed image. (f)-(i) The video segmentation
results.

It should be noted that eq. (14b) does not destroy the

symmetry of the two-pixel clique potential in MRF. (14b)

is associated with the objective function (20) and the

optimization algorithm in Section 3.1. The optimization

algorithm updates the label by locally minimizing the

objective function at each site. A two-point potential is

accounted on both sites. (14b) is equivalent to the

following ))(),(( yx kk DTDT  for the objective function.

))(),(( yx kk DTDT

= ))]()((1[
2

1
yx kk DTDT . (21)

(21) is symmetric and it complies with the definition of

MRF. (21) and (14b) are equivalent for the object

function because the total penalty for the entire field (or

the objective function) is the same. The difference

between them occurs in the local minimization of the

optimization process. We prefer the form of (14b) since in

our experiments, we found that the convergence can be

fastened by giving all the penalty to the site near the

boundary (see (14b)) instead of evenly allocating the

penalty for both sites (see (21)).

The intensity segmentation constraint helps generate

accurate boundaries in spatio-temporally coherent areas.

Since one area of similar intensity may belong to different

objects, the intensity segmentation constraint becomes

weak when the motion information in an intensity

segment is incoherent. This is why boundaries lost in the

intensity segmentation can be recovered by the motion

information in our work. As a compromise, the boundary

is not anticipated to be accurate in the incoherent area

because the intensity segmentation constraint is weak

there. Our approach may not consistently produce

accurate segmentation edges in the entire field. However,

the approach has an advantage in application areas where

it is important to discover areas with different motions

(such as in human machine interaction and video

indexing). Therefore, the new approach is complementary

to region merging methods in this aspect.

5. Conclusion

In this paper, we have proposed a unified framework

for segmentation of video sequences. The spatial and
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temporal consistency is expressed in terms of interactions

between the motion field, the intensity segmentation field,

and the video segmentation field. The solution is obtained

by the MAP criteria and an optimization strategy that

iteratively maximizes the conditional probability density

of the three fields is proposed. There are two main

contributions within the paper. The first is building a

belief network based framework that combines both the

spatial and temporal information in the video

segmentation process. The second is to formulate the

spatio-temporal constraints by utilizing distance

transformation, Markov random fields, and multivariate

normal distribution. The approach deals with video

segmentation from a relatively comprehensive and

general viewpoint, and thus can be universally applied.

Our method exhibits good robustness and spatio-temporal

coherence.

To simplify the computation, we do not consider the

localization properties in the sequences. More advanced

segmentation techniques that account for both local

information and spatio-temporal information could be

adopted, but that requires load reduction through efficient

optimization schemes [5] [11]. This could be our future

study. Moreover, adaptive methods for automatic

determination of the number of layers and selection of the

parameters would be beneficial [2].
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