Copyright © 2005 IEEE

Reprinted from:

2005 3rd IEEE International Conference on Industrial Informatics
(INDIN) Perth, Australia 10-12 August 2005

IEEE Catalog Number ISBN 05EX1057
ISBN 0-7803-9094-6

This material is posted here with permission of the IEEE. Such permission of the
IEEE does not in any way imply IEEE endorsement of any of Curtin University of
Technology's products or services. Internal or personal use of this material is
permitted. However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or
redistribution must be obtained from the IEEE by writing to
pubs-permissions@ieee.org.

By choosing to view this document, you agree to all provisions of the copyright
laws protecting it.

0-7803-9094-6/05/$20.00 ©2005 |IEEE

2005 3rd |EEE International Conference on Industrial Informatics (INDIN)

Dictionary Module and UDC: Two new approaches to Enhance
Embedding Capacity of a Steganographic Channel

Vidyasagar M. Potdar, Song Han, Elizabeth Chang

School of Information Systems, Curtin University of Technology, Perth, Western Australia
e-mail: Vidyasagar.Potdar, Song.Han, Elizabeth.Chang@cbs.curtin.edu.au

Abstract — In this paper we present a new technique to
enhance embedding capacity of a steganographic channel by
preprocessing the secret data. Here we limit ourselves to
textual data only. By preprocessing we don’t mean
compression; secret data can be compressed after it has been
preprocessed by our technique. W e introduce the concept of
Scrambled Letters, User Defined Codes and the Dictionary
Module to explain our technique. All these concepts when
applied together give a phenomenal embedding capacity.
Theoretical results show that we can achieve at least 25-30%
increase in embedding capacity. We introduce two techniques,
one in which we only apply the dictionary concept while the
other in which we use the user defined codes along with the
dictionary approach. The former technique is generic and can
be applied to any form of textual data, whereas the latter can
only be applied to pure text, i.e. without any form of graphics
like images or graphs. Once the data is preprocessed by using
our technique it can be easily embedded in any steganographic
cover medium by using any steganographic algorithm.

Index Terms — Scrambled Letters, User Defined ASCII
Codes, Dictionary Module, Steganography, Data Embedding
Capacity, GLM Algorithm.

I. INTRODUCTION

Steganography, meaning "covered writing", includes
methods of transmitting secret message through innocuous
looking cover mediums in such a manner that the existence
of the hidden message is undetectable. Using
steganographic techniques we can hide secret information in
digital image files, digital audio and video files, or any other
digital media which have some redundant bits that can be
replaced to hide secret data. Pre-computing steganography
has a long history, but digital steganography as a research
field is avante garde.

II. ADDRESSED PROBLEM

In this paper we address the issue of embedding capacity
of a steganographic channel. All existing techniques
compress the secret data before embedding it in a cover
medium to achieve higher embedding capacity. We propose
to preprocess the secret data before even compressing it.
We introduce this step to reduce the size of data set which
would be compressed and finally embedded. To preprocess
the data we introduce two techniques. The first technique is
generic and can be applied to any form of textual data,
whereas the second technique can only be applied to pure

text, i.e. text without any kind of formatting, or graphics like
images or graphs. Both these techniques reduce the initial
size of the data set. In the first technique we introduce the
concept of Dictionary to reduce the data set, whereas in the
second technique we introduce the concept of User Defined
Codes. Both these concepts are explained in detail in the
later sections.

This paper is organized as follows: in §III we give an
overview of existing research in image steganography; in
§IV we detail our proposed method; in §V we give
examples to prove the concepts, and in §VI we discuss the
preliminary results. Finally, our conclusions and future
directions will be given.

III. IMAGE STEGANOGRAPHY

Simmons first introduced the concept of steganography in
the early 1980s when he discussed the prisoners’ problem
[8]. He discussed the situation in which two prisoners who
are locked in different cells have to communicate innocu-
ously without raising any suspicion. He used the idea of
subliminal channels instead of steganography. This was one
of the first works in the field of steganography.

The literature shows the existence of a variety of tech-
niques for using data so that it can be embedded in images
[2,3,4,5,6,7]. Image steganographic techniques can be clas-
sified on the basis of the domains in which data is embed-
ded. Basically there are two domains: the spatial domain
and the transform domain. Steganographic techniques try to
embed data in these domains.

In the spatial domain image steganography, the
simplest technique is to embed data in the least significant
bit (LSB) of each pixel in the cover image. The LSB
Replacement technique alters the insignificant information
in the cover image. It places the embedding data at the
least significant bit (LSB) of each pixel in the cover image.

Recently, some steganographic techniques have been
reported which directly modify the pixels to embed data.
Some of them are reported here [9]. Potdar et al. (2004)
showed how data can be directly embedded in the spatial
domain of images by directly modifying the absolute values
of pixels. Most of the techniques discussed in the literature
uses error correcting codes (ECC) to manage signal

697

distortions. However using ECC codes increases the
amount of data that is embedded. In this paper we propose
a practical approach to tackle the signal distortion issue.

IV. CONCEPTUAL FRAMEWORK- DICTIONARY MODULE
AND UDC TO ENHANCE EMBEDDING CAPACITY

In this section we propose our conceptual framework.
We discuss two different techniques to reduce the data set in
order to achieve higher embedding capacity. Literature
shows the existence of compression as the only technique to
reduce the data set. However, we propose to preprocess the
data before compressing it. Hence we add one extra step
before compression. This is shown in Fig. 1. We initially
have ‘Raw Textual Data’, which we process using our
technique to get the ‘Processed Data’, which is then
compressed to get the ‘Compressed Data’. Each of these
steps reduces the size of the data by a certain factor. We
assume (and later prove) that this process significantly
reduces the amount of data that we need to embed in a
steganographic cover medium. We initiate this step to
reduce the size of data set which would be compressed and
finally embedded. To preprocess the data we introduce two
techniques. Both these techniques reduce the initial size of
the data set. In the first technique we introduce the concept
of Dictionary to reduce the data set, whereas in the second
technique we introduce the concept of User Defined Codes.
We will now explain them in detail.

Raw Textual
Data I Data "

Compressed
Data

Fig.1 Rate of change in the data size with each step

A. Technique One: Dictionary Approach

This technique is a generic technique and can be applied
to any form of textual data, i.e. word processor file which
has some text, some graphs and some images. By using this
technique we only process the textual portion. The basic
idea behind the Dictionary Approach is to process each
word one after the other to represent it in as minimum letters
as possible. When we mean processing each word, we mean
skipping some letters from a word in a predetermined order,
in such a way that the word can be properly regenerated, if
we know which letters are skipped and from where. In the
proposed algorithm we decide to skip alternate letters in a
word.

To explain this we give an example. Suppose we have a
word ‘Steganography’. We keep the first and the last letter
intact, while we delete the alternate letters within, i.e. in-
stead of ‘Steganography’ we can have ‘Seaorpy’. Asa
result of this step we reduce the size of the data. We would

only transit ‘S e a o r p y’ instead of the complete word
‘Steganography’. But does that mean we can automatically
recover the word ‘Steganography’ from ‘Seaorpy’? No!
Hence to recover the word properly we need some black
box, which takes in the processed word [S e a o r p y] and
returns the original word [Steganography]. This black box
we term the ‘Dictionary Module’ (DM).

[s]t [efglafnfo g rJafp[h[y]

Figure 2: Keep the first and the last letter intact, while
we delete the alternate letters within.

The DM is a small database of words similar to a diction-
ary. But these words are stored in a sorted order, which is
different from a normal dictionary. The sorting criteria are:
Alphabétical Order: Firstly all the words are stored in an

alphabetical order.

Ending Letter: Secondly the words are sorted according to
the letter with which they end but maintaining the alpha-
betical order. E.g. [Steganographic, Steganography]

Number of letters in a word: This sorted list is finally
sorted based on the number of letter they have maintain-
ing the above two criterion.

DM takes the processed word and some parameters to
uniquely identify the proper word. In case of the example
discussed earlier we can recover ‘Steganography’ from S e
a or py using this module. This process is explained in
Figure 2.

Seaorpy Steganography

Figure 2: Dictionary Module

We now discuss the technical details of the DM. Basically
DM is a search algorithm which takes four parameters:

Length of the original word: This can be deduced form the
processed word.

The Starting and the Ending letter of the processed word:
This is the same as in the original word, e.g. S and Y.

List of letters from the processed word: E.g. In case of
‘Seaorpy’, the list of letters would be [e,a,0,r,p]

Location of these letters: E.g. ‘e’ is 3", “a’ is 5™, ‘0" is 7"
etc.

After having all these parameters, the DM conducts a
search looking for words that satisfy this criterion. The out-

698

come of this search is the original word. Thus we can re-
generate the processed word based on the DM. The DM
that we build had all the words listed in an Oxford Diction-

ary.

_ Original Word Processed Word
Information Ifrain
Embedding Ebdig

Secret Scet
The Te
Dictionary Dcinry
Technique Tcnge

Table 1: Sample outcomes form the DM

The concept of DM was inspired by the article posted on
the Internet [1] which said misspelled words can be inter-
preted properly as long as the first and last letters are correct
and are in their proper place, even though the letters in be-
tween can be scrambled or even missing. If you read the
paragraph in Fig 3 you can see that there are several spelling
mistakes. Even though there are so many spelling mistakes
one can easily interpret each word and understand what the
sentence tries to convey. One more interesting fact about
the words in Fig 3 is that in every word the first and the last
letter are in its proper location and the letters in between are
jumbled up. If we maintain this minimum constraint we can
interpret each word easily.

‘Aoccdrnig to a rscheearch at an Elingsh uinervtisy, it
deosn't mttaer in waht oredr the liteers in a wrod are, the
olny iprmoetnt tihng is taht frist and Isat ltteer is at the rghit
pclae. The rset can be a toatl mses and you can sitll raed it
wouthit porbelm. Tihs is bcuseae we do not raed ervey lteter
by it slef but the wrod as a wlohe.'

Fig.3 Words with scrambled letters

This is because humans can assign meaning to data by
means of the known conventions used in their
representation'. Thus when we developed the DM, we
introduce the constraint of skipping alternate letters from a
word, and this worked very well. Another important point
that we want to convey from this description is that if we
want to transmit information we can rely on partial data,
provided we can regenerate is completely. This also
supports Shannon’s Information Theory.

B. Technique Two: Dictionary Approach with User De-
fined Codes

This technique is more specific and can be applied to
only pure form of textual data, i.e. without any other objects
like graphs, tables, images etc. By using this technique we
can process purely textual information. The basic idea
behind this technique is to define a set of codes which can
be used to represent the textual information. We term such

! www.jfcom.mil/about/glossary.htm

codes as User Defined Codes (UDC). An example of such a
code set is shown in Table 2. UDC is a set of codes that
represent alphabets, numbers and some special characters
rather than using the standard 8 bit ASCII code. Users can
define it according to their needs.

Character | Code | Character | Code | Character | Code
a 00000 k 01010 u 10100
b 00001 1 01011 v 10101
[00010 m 01100 w 10110
d 00011 n 01101 X 10111
e 00100 0 01110 y 11000
f 00101 P 01111 z 11001
g 00110 q 10000 . 11010
h 00111 r 10001 ; 11011
i 01000 S 10010 , 11100
j 01001 t 10011 > 11101

space 11110

Table 2: UDC using Sbit Codes

Table 2 shows such a representation using 5 bit UDC.
However, this has some constraints. For example, numbers
are not represented in numeric format; rather they would be
represented in textual format (i.e. 1 = one and 20 = twenty).
But having such a constraint can save a lot of space. We
can make an immediate savings of 37.5% because we repre-
sent data using 5 bit UDC rather than the standard 8 bit
ASCIL

From a practical point of view we can use 6 bit UDC,
which would include characters like [a-z], [0-9] and some
other outlined in Table 3. We can even manage by using
either small (a-z) or capital letters (A-Z) rather than using
both. ’

{ ['@ | # | $ || ?[&] *
1)1y -

+ = } / ““ ¢

; < s > Space

Table 3: Special Characters included in 6 bit
uDC

If we use 6 bits to represent one character, it reduces the
data by 25%. As pointed out by Shannon, data is used to
represent information and we can use Codes to represent the
data that we want to transmit. We try to keep the codes as
small as possible to increase the capacity of the transmission
channel. We understand that our aim here is to transmit in-
formation (in as few bits as possible), and the data used to
represent information can be defined according to the situa-
tion. Our aim here is to transmit information which is in the
form of alphabets, words or numbers. Hence we design our
own code instead of using the default ASCII code which
used 8 bits to represent one character. These codes can be
defined by the user to suit one’s own needs. The concept of
UDC has been introduced to achieve higher embedding ca-
pacity and reduce stego distortion. If we only use 63 com-
monly used characters to write text we can represent them

699

by only 6 bits instead of using 8 bits, which is the normal
case.

V. ALGORITHM DESCRIPTION: IMPLEMENTATION
DETAILS

A. Data Preprocessing Algorithm

Data Processing Step
Input: Raw Textual Data, Output: Processed Data

Begin Data Preprocessing

Open the text data.

Read the first (or next) word.

Keep the first and the last letter intact.

Delete the alternate letters from the remaining word.
Any more words left?

If yes then go to Step 3

Else End Data Preprocessing.

PNO LA W~

After the Step 8 is completed, we can conveniently com-
press the processed data and embed it in any steganographic
cover medium using any steganographic algorithm.

Data Retrieval Step
Input: Processed Data, Output: Raw Textual Data

1. Begin Data Retrieval.

2. Open the processed data.

3. Read the first (or next) word.

4. Keep the first and the last letter intact.

5. Calculate the number of letters in the word
6. Perform the search in the DM.

7. Identify the word.

8. Any more words left?

9. If yes then go to Step 3

10. Else End Data Retrieval.

Next we describe data preprocessing using UDC approach.
Here the user has the freedom to decide on the UDC table.
Based on the situation under consideration one can either
choose a 5 bit or 6 bit UDC.

Data Processing Step
Input: Raw Textual Data in 8 bit ASCII

Output: Binary String of the Raw Textual Data based on
UubDC -

Begin Data Preprocessing

Open the text data.

Define an empty binary string.

Read the first (or next) word.

Convert it into binary based on the UDC.

Concatenate it to the main binary string in Step 3.

Any more words left?

If yes then go to Step 4

Else End Data Preprocessing.

s

.

WRNAN A W=

Data Retrieval Step
Input: Binary String of the Raw Textual Data based on

ubcC
Output: Raw Textual Data in 8 bit ASCII
1. Begin Data Retrieval.
2. Access the binary data string.

3. Define a new String.

4. Read the first 5 bits (or 6 bits) depending on UDC.
5. Map it to the equivalent character.

6. Concatenate it to the main String in Step 3.

7. Any more bits left?

8. [Ifyes then go to Step 4

9. Else End Data Retrieval.

The detail description of the embedding and the extraction
algorithm is outside the scope of this paper. But any steg-
anographic algorithm could be used to embed the processed
data.

VI. CONCLUSION

In this paper we introduced the concept of Dictionary
Module and UDC. We showed how we can generate a word
exactly provided we have the first and the last letter in the
correct place and the word satisfies certain criteria. As a
result of this, our technique uses less data to represent more
information.

VII. REFERENCES

[1] Article posted on Slashdot.org Website by an Anonymous Author.
Mon Sep 15, 2003. Available on the internet at

http:/fscience.slashdot.org/science/03/09/15/2227256.shtml?tid=133

&tid=134&tid=186

[2] Khan, M., Potdar V, Chang E., ‘A prototype implementation of Grey
Level Modification Steganography’, in Proceedings of the 30th
Annual Conference of the IEEE Industrial Electronics Society,
IECON 04, Korea.

[3] Lee, Y. K. & Chen, L. H, 2000. High Capacity Image
Steganographic Model. In IEE Proceedings Vision, Image and
Signal Processing, vol. 147 no. 3, pp. 288-294.

[4] Newman, R. E., Moskowitz, I S., Chang, L., Brahmadesam M.
M., 2002 “ A Steganographic Embedding Undetectable by JPEG
Compatibility Steganalysis”. In: Petitcolas (Ed.): Information
Hiding, 5th International Workshop, IH 2002, Noordwijkerhout, The
Netherlands, October 7-9, 2002 LNCS Springer Verlag 258-277.

[5] Potdar V, Chang E. ‘Grey Level Modification Steganography for
Secret Communication’, 2nd IEEE International Conference on
Industrial Informatics (INDIN2004), Berlin, Germany, June 24-26,
2004

[6] Provos, N., “Defending Against Statistical Steganalysis” 2001. In
Proceedings of the 10th USENIX Security Symposium, pages 323-
335, August 2001

[7] Sallee, P., “Model-Based Steganography” 2003. In International
Workshop on Digital Watermarking, Seoul, 2003,

[8] Simmons, G. J., 1984. “ The prisoner's problem and the subliminal
channel” In Advances in Cryptology -- CRYPTO ‘83", D. Chaum,
ed., Plenum Press, 1984, 51-67.

[9] Soo-Chang, P, Jing-Ming, G., 2003. Hybrid pixel-based data
hiding and block-based watermarking for error-diffused halftone
images. In IEEE Transactions on Circuits and Systems for Video
Technology. 13(8), 867- 884.

[10] Westfeld, A., 2001. "High Capacity Despite Better Steganalysis (F5-
A Steganographic Algorithm)", In: Moskowitz, LS. (eds.): 4th
International Workshop on Information Hiding, LNCS, Vol. 2137.
Springer-Verlag, New York, pp. 289--302, 2001.

700

