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Abstract
We prove that, in general, for anisotropic nonuniform continua, seismic

rays are geodesics in Finsler geometry. In particular, for separable velocity
functions, the geometry is Wagnerian. We provide concrete examples with
theoretical discussions and introduce the seismic Finsler metric.

1 Introduction

In seismological studies one often measures traveltime of a signal propagating
between a source and a receiver. It is common to think of a signal propagation in
terms of rays. Seismic ray theory has been discussed extensively in the literature.
For instance, the books of Achenbach (1973), Červený (2001), Achenbach et al.
(1982), and Kravtsov and Orlov (1990) constitute an important contributions to
this field. Rays can be obtained either by solving the elastodynamic equations
with the method of characteristics or by considering a generalization of Fermat’s
variational principle. It can be shown that these two approaches are almost
equivalent (Epstein and Śniatycki, 1992).

In view of Fermat’s variational principle, rays are geodesics in a certain
geometry. Since rays are not, in general, straight lines, the geometry in question
is not the Euclidean geometry of physical space. In this paper, we discuss the
relevance of the geometry of Fermat’s principle, which we show to be a Finsler
geometry. Recent developments in Finsler geometry have been described by
Antonelli et al. (1993), Bao et al. (2000), Miron and Anastasiei (1994), and
Shen (2001).

2 Concept of a ray

Fundamentally, rays are mathematical entities resulting from the solution of the
eikonal equation by the method of characteristics. The eikonal equation arises
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by considering the elastodynamic equations, which are the Cauchy equations of
motion – namely1,

ρ (x)
d2ui

dt2
=
∂σij

∂xj
,

where ρ (x) is the mass density at point x, u is a vector describing the displace-
ment of the continuum, and σij is the stress tensor – in the context of linear
elasticity, where stress is given by

σij = cijkl (x) εkl,

with cijkl (x) denoting the elasticity constants at point x, and εkl being the
strain tensor.

If we assume the solution of the elastodynamic equations to be of the form

u (x, t) = A (x) f (ψ (x)− t) ,

where the level sets of ψ correspond to wavefronts, the Cauchy equations of
motion become


∂cijkl (x)
∂xj

∂Ak

∂xl + cijkl (x) ∂2Ak

∂xj∂xl = 0
∂
∂xj

(
cijkl (x)Al

∂ψ
∂xk

)
+ cijkl (x) ∂Ak

∂xl
∂ψ
∂xj = 0

cijkl (x)Ak
∂ψ
∂xj

∂ψ
∂xl − ρ (x)Ai = 0

. (1)

The condition for existence of nontrivial solutions for the last equation of the
set (1) can be stated as

det

[
cijkl (x)

∂ψ

∂xj
∂ψ

∂xl
− ρ (x) δik

]
= 0.

Denoting

pj :=
∂ψ

∂xj
, (2)

we obtain a third-degree polynomial in p2, which can be written as
p2 − 1

v21

(
x, p|p|

)




p2 − 1

v22

(
x, p|p|

)




p2 − 1

v23

(
x, p|p|

)

 = 0. (3)

Herein, the quantities 1/v2i (x, p/ |p|) are the roots of the polynomial and, in gen-
eral, correspond to the three phase slownesses of the threes wave types that exist
in anisotropic continua. Each factor of expression (3) is the eikonal equation for
a given wave type, namely,

p2 =
1

v2
(
x, p|p|

) . (4)

1In this paper we use the Einstein summation convention.
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Equation (4) is the key equation of ray theory. This equation states that
the slowness of the wavefront propagation – given by p2 = pip

i, where, as
defined in expression (2), p = ∇ψ is a vector normal to the wavefront – is
a function of the properties of the continuum, v (x, p/ |p|), which depend on
position and direction, respectively. The function v (x, p/ |p|) is called the phase-
velocity function. In a mathematical context, equation (4) belongs to the class
of the Hamilton-Jacobi equations.

To solve the eikonal equation we use the method of characteristics. Setting
the Hamiltonian H to be

H (x, p) =
1

2
p2v2

(
x,

p

|p|
)
, (5)

the equations of the characteristics are the Hamilton ray equations, given by{
ẋi := dxi

dt = ∂H
∂pi

ṗj :=
dpj
dt = − ∂H

∂xj

,

where the factor of 1/2 in the Hamiltonian, defined in expression (5), comes
from the parametrization of the rays by the physical time.

Considering the Hamiltonian to be regular, which is always the case for the
fastest wave in a linearly elastic continuum (Musgrave, 1970), one can use the
Legendre transformation to state the raytracing problem in the context of the
calculus of variations, namely,

δ

∫
Ldt = 0,

where the Lagrangian is
L = piẋ

i −H .

Hence, rays satisfy the Euler equation2

∂L

∂xi
− d

dt

(
∂L

∂ẋi

)
= 0. (6)

This variational problem is, however, parameter dependent. To obtain a
parameter independent variational problem one must consider a function F (x, ẋ)
that is homogeneous of degree one in the ẋi and yields the same solutions as L.

Considering expression (5) and the fact that, for physical reasons, the phase-
velocity function, v (x, p/ |p|), is homogeneous of degree zero in the pi, we con-
clude that H (xi, pi) is homogeneous of degree two in the pi. Since H (xi, pi) is
homogeneous of degree two in the pi, then

L [xi, ẋi (xi, pi)] = H (xi, pi) ,

where, by the inverse Legendre transformation, ẋi = ∂H/∂pi. Moreover, the
Lagrangian, L (xi, ẋi), is homogeneous of degree two in the ẋi. For this reason

2These equations are also commonly referred to as the Euler-Lagrange equations.
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a natural candidate for the function F is given by L = F 2/2. It is easy to show
that, if dF/ dt = 0 and if F �= 0, then if x (t) is a solution of Euler equations
(6), becomes the then x (t) is also the solution of the Euler equations

∂F

∂xi
− d

dt

(
∂ F

∂ẋi

)
= 0. (7)

The fact that F yields the same solutions as L and is homogeneous of degree
one in the ẋi makes it the proper choice to state Fermat’s principle of stationary
traveltime as

δ

∫
Fdt = 0.

3 Finsler geometry

3.1 Geodesics and connections

Euler equations (7) suggest studying a geometry for which the rays are geodesics.
To find such a geometry let Mn denote a closed, connected, C∞-manifold and
TMn its tangent bundle with 0-section removed. Let

F : TMn → R (8)

be a C∞ function (positively)-homogeneous of degree one in yi = ẋi, i =
1, 2, . . . , n.

If the Hessian matrix

gij(x, y) = ∂̇i∂̇j

(
1

2
F 2

)
(9)

of second partial derivatives with respect to yi and yj (or, what is the same,
dxi/dt = ẋi and dxj/dt = ẋj) is non-singular in some open conical subset
D ⊆ TMn, then the Euler equations are equivalent to the geodesic equations

d2xi

dt2
+ γijk(x, y)

dxj

dt

dxk

dt
= 0, i = 1, . . . , n (10)

where

γijk(x, y) =
1

2
gir(∂kgrj + ∂jgrk − ∂rgjk) (11)

are the so-called Christoffel symbols of 2nd kind. Here t is traveltime and

(dt)2 = F 2(x, dx) = gij(x, y)dx
idxj (12)

and gi�g�k = δik, so that (gij) is the inverse of (gij), and ∂k is the partial with
respect to xk. Moreover, upon non-singular coordinate transformation xi → x̄i,
and the induced transformation yi → ȳi, by the Jacobian, gij(x, y) transforms
as a Finsler tensor covariant of rank 2, which is to say it transforms as in
classical tensor analysis (this is true of all Finsler tensors regardless of type).

4



We remark that F (x, dx/dt) is conserved along geodesics. It has value one and
defines the indicatrix surface at each point x. Introduce the unit length element
of support �i = yi/F and the angular metric tensor

hij = gij − �i�j (13)

where �i = gir�
r. hij is the induced metric tensor defined on the indicatrix

surface. It is globally defined on the indicatrix subbundle of the slit tangent
bundle TMn, just as gij is globally defined on TMn. Another important Finsler
object is the Cartan torsion tensor.

Cijk =
1

2
∂̇kgij(x, y), (14)

from where we get
V ijk := Cijk := girCjrk, (15)

which defines a vertical connection, that is, a vertical covariant differentiation
(∇v). For example, for any tensor Aij(x, y),

∇v
kA

i
j := ∂̇kA

i
j +ArjC

i
rk −AirC

r
jk. (16)

We remark that Cijk = 0 if and only if gij is Riemannian (i.e., independent of
the ẋi).

Using the geodesic equations (10) in the form

d2xi

dt2
+ 2Gi

(
x,
dx

dt

)
= 0, i = 1, . . . , n (17)a

we define the nonlinear Berwald connection coefficients of (Mn, F ) by

Gij := ∂̇jG
i (17)b,

and introduce the Berwald gradient operator δi = ∂i − Gri∂̇r. The horizontal
and vertical Berwald connection coefficients are defined by

Gijk := ∂̇kG
i
j , and V ijk = 0, (17)c,

in (16). From (17)b,c, we define the horizontal covariant differentiation ∇h, for
example,

∇h
kA

i
j := ∂kA

i
j − (∂̇rA

i
j)G

r
k +ArjG

i
rk − AirG

r
jk. (17)d

The Ricci identities are given by the usual commutation relations

∇h
k∇h

sA
i
j −∇h

s∇h
kA

i
j = ArjG

i
rsk −AirG

r
jsk − (∂̇rA

i
j)R

r
sk,

∇h
k∇v

sA
i
j −∇v

s∇h
kA

i
j = ArjD

i
rsk −AirD

r
jsk,

where
Gijsk = δkG

i
js +GrjsG

i
rk − δsG

i
jk −GrjkG

i
rs
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is so-called (h) h-curvature and

D
i
jhk := ∂̇kG

i
jh, (18)

which detects angular dependence in the connection Gijk, is the Douglas tensor
(or (v) h-curvature of the Berwald connection), while

R
i
hk = ∂kG

i
h −GrkG

i
hr − ∂hG

i
k +GrhG

i
kr (19)

is the so-called (v) h-torsion. See Antonelli et al. for explanation of the prefixes.
We remark that geodesics are Euclidean straight lines if and only if D = 0 =
R in (18) and (19).

We now turn our attention to another important connection called the Car-

tan connection CΓ =
(
Γijk, G

i
j , C

i
jk

)
of (Mn, F ). 3 It is characterized by five

axioms, namely,

1. ∇h
kgij = 0 (h-metrical)

2. ∇v
kgij = 0 (v-metrical)

3. Sijk := Cijk − Cikj = 0 (v- symmetric)

4. T ijk := Γijk − Γikj = 0 (h-symmetric)

5. Di
j = yrΓirj −Gij = 0 (deflection tensor D vanishes)

Note that axiom 3 is superfluous in our development here because we defined
the vertical covariant derivative in terms of the tensor of Cartan (15). Had we
used a general tensor V ijk, then axiom 3 would have been necessary to secure

Γijk as the coefficients of the Cartan connection. Note that δif is a covariant
Finsler vector field, while, in general, ∂if is not when f is a smooth function on
TMn. Of course, if f has no y-dependence then ∂if is a vector.

We now have the following theorem.

Theorem 1 The (horizontal) Cartan connection coefficients are given locally
by (11) with ∂k being replaced by δk.

Using the triple notation we have CΓ = (Γijk, G
i
j , C

i
jk) for the Cartan con-

nection CΓ and BΓ = (Gijk, G
i
j , 0) for the Berwald connection BΓ. Thus, (16) is

the vertical covariant derivative of Aij according to the Cartan connection CΓ
while

B∇v
kA

i
j := ∂̇kA

i
j (20)

gives it for the Berwald connection BΓ (the missing term, compared to (17)d,
explains the zero in the third slot of the Berwald triple). We remark that if
there are coordinates x̄ for which F is independent of x̄, then (17)a has Gi ≡ 0.

3Here we use the “triple” notation of Matsumoto, (Antonelli et al.).
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Such a space is called locally Minkowski. However, Cijk are not generally zero
even in this case.

Both the above connections are important in Finsler geometry. The Cartan
CΓ is defined entirely in terms of the metric function F and its derivatives. The
Berwald connection BΓ comes directly from the geodesic equations of (Mn, F ).
However, the Berwald connection satisfies

B∇h
kgij = −2B∇h

l Cijky
l. (21)

This expression is generally not zero! If we replace B∇ (Berwald) by ∇ (Cartan)
in (21), the left side must be equal to zero. This is the so-called h-Ricci lemma.
In fact, both h and v-Ricci lemmas hold for CΓ and both fail for BΓ. For the well-
known axiomatic characterization of the Berwald connection and more detail on
that of Cartan (Antonelli et al., 1993).

We wish to consider yet another connection, called the Wagner connection,
WΓ. A Wagner connection WΓ on (Mn, F ) is similar to the Cartan connection
in that the above axioms are the same except for the axiom 4, which is replaced
by 4′,

τ ijk = T ijk −
1

n+ 1
δijT

a
ak −

1

n+ 1
δikT

a
ja = 0,

where τ ijk is called the Thomas’ tensor (J.M. Thomas). The vanishing of
Thomas’ tensor is equivalent to the existence of a covariant field σi(x, y) such
that

T ijk = δijσk − δikσj . (22)

In the classical literature the Wagner connection is said to have semi-symmetric
torsion. To link the Wagner geometry with seismology let us recall the following
theorem.

Theorem 2 (Hashiguchi) A Finsler space (Mn, F ) is conformal to a locally
Minkowski space if and only if there exists a Wagner connection WΓ =
(F ijk, G

i
j , C

i
jk) on (Mn, F ) such that F ijk depends at most on xi, σi(x) = ∂iσ(x),

and the h-curvature of WΓ vanishes.

Note that many spaces are conformally Minkowski but by no means all
of them, even in dimension two! But let us recall that every 2 dimensional
Riemannian space is conformally Euclidean. Note also that the vertical Wagner
connection is identical to that of the Cartan connection.

3.2 Separable velocity function

In anisotropic nonuniform continua, we often describe the signal velocity along
the raypath by a separable velocity function of the form

V (x, ẋ) = f(x)φ(ẋ), (23)
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and consider Lagrangians of the form

F (x, ẋ) =

√
ẋiẋi

V (x, ẋ)
.

In expression (23), f characterizes the nonuniformity while φ characterizes the
anisotropy.Following Huygens’ formulation, the function φ can be associated
with an elementary wavefront at any given location within a continuum. Theo-
rem 2 gives necessary and sufficient conditions for separability.

3.3 Two-dimensional Finsler spaces

We now turn our attention to n = 2. In this two-dimensional case we assume gij
to be positive-definite on an open conical region of TMn. We have, in addition
to the unit element of support �i, a vector field mi such that gijm

imj = 1,
gijm

i�j = 0 and hij = mimj (see equation (13)), where mi = girm
r and,

finally,
gij = �i�j +mimj . (24)

The pair (�i,mi) is the so-called Berwald frame of (M2, F ). Using Cijk�
k = 0,

one can show that
FCijk = Imimjmk, (25)

where I(x, y) is the main scalar of (M2, F ). The sign of I depends on the
orientation of mi (there are two choices), but I2 does not. I is analogous to the
eccentricity of an ellipse for Riemannian indicatrices.

Let g denote the determinant of the matrix tensor gij . It is well known that√
g dv is the elemental volume form, such that, area of Ω ⊆ TMn is given by∫

Ω

√
gdV.

Letting ϑ be the arclength along the indicatrix at a point P, the formula (An-
tonelli et al., 1993)

∂ϑ
√
g = I

√
g

or
∂ϑ ln

√
g = I

can be interpreted as a rate of change, relative to ϑ, of the solid angle of rays
intersecting the elementary wavefront Fp = 1 .

Furthermore, Berwald’s classical result

R
i
jk = FRmi(�jmk − �kmj), (26)

where R(x, y) is Berwald’s Gauss Curvature Scalar is very important. It is well-
known that I and R determine the geometry of (M2, F ) up to local isometry
(Antonelli et al., 1993.).

R determines the spreading (R ≤ 0) and focusing (R >0) of the Finsler
geodesics. In a geophysical context, if the ray velocity increases with the depth
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and the indicatrices (elementary wavefronts) are convex, the rays are spreading
so the curvature R is expected to be non-positive. For nonconvex elementary
wavefronts one can encounter focusing of the rays, which leads to caustics (e.g.,
Hanyga and Slawinski, 2000).

3.4 Berwald spaces and Wagner spaces

The simplest kind of Finsler spaces beyond the locally Minkowski (whose tan-
gent planes are curved for n ≥ 3, in general) are the Berwald spaces. These are
characterized by

C∇h
�Cijk = 0 (27)a,

or, equivalently, by

B∇h
�Cijk = 0. (27)b

For n = 2 a complete isometric classification was given by L. Berwald (see
Antonelli et al., 1993). All of these two-dimensional Berwald spaces which are
not locally Minkowski have main scalar I equal to a constant. Of these, exactly
four classes are distinguished, three are positive-definite with I2 < 4, I2 = 4,
I2 > 4, (Antonelli et al., 1993). In this classic case R = 0.

Wagner spaces of dimension n are by definition Finsler spaces which have a
Wagner connection with its σi-field being a gradient, σi(x) = ∂iσ(x). They are
generalizations of Berwald spaces in many respects. A notable example of this
relationship is the

Theorem 3 A. (Mn, F ) is σ-Wagner if and only if

W∇h
�Cijk = 0. (28)

B. (Mn, F ) is Berwald if and only if (43)b holds.

All Berwald spaces are trivial (i.e., σi ≡ 0) examples of Wagner spaces. From
Theorem 2, we can start with any locally Minkowski space (Mn, F ) and form
a Wagner space by using F = eσ(x) · F̄ in Mn. This Wagner space (Mn, F ) has
a linear (affine) connection F ijk(x) and its (usual) curvature tensor is just the
horizontal Wagner curvature, which vanishes. It is notable that the geodesics
of (Mn, F̄ ) are never, for σi �= 0, the autoparallels

d2xi

dt2
+ F ijk(x)

dxj

dt

dxk

dt
= 0 (29)

of WΓ (Antonelli et al., 1993). As an example, let us write

F

(
z,
ẋ

ż

)
= eσ(z) ·

√
(ẋ)2 + (ż)2

φ( ẋż )
= eσ(z) · F̄

(
ẋ

ż

)
(30)

with σ(z) = − ln f(z). Here x1 = x, x2 = z, ẋ1 = ẋ, ẋ2 = ż, and F̄ , the
anisotropic part, is a Finsler function of a Minkowski space. The Wagner au-
toparallels are solutions of

d2xi

dt2
+
(
δijσk

) dxj
dt

dxk

dt
= 0, (31)
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where σ1 = ∂1σ = ∂xσ, σ2 = ∂2σ(z) = ∂zσ(z), whereas the geodesics are the
solutions of

d2xi

dt2
+ (δijσk)

dxj

dt

dxk

dt
= Ki, (32)a

where

Ki = F̄ 2ḡijσj − δijσk
dxj

dt

dxk

dt
, (32)b

with ḡij being the inverse of

ḡij = ∂̇i∂̇j

(
1

2
F̄ 2

)
. (33)

Moreover, Ki is orthogonal to dxj/dt, namely,

ḡijKi dx
j

dt
= 0, (34)

so thatKi isWagner curvature of a solution of (32)a,b. This means that geodesics
are curved in Wagner geometry and Ki measures that “curvature”. Of course,
geodesics are not curved in their usual geometry.

Let us take a specific form for φ(ẋ/ż) above, say

φ
( ẋ
ż

)
=

[(ẋ)2 + (ż)2]1/2

[(ẋ)m + (ż)m]1/m
. (35)a

where m is an even integer ≥ 2. Furthermore, let us take the linear form (α1,
α2 positive constants)

σ = − ln f(x, z) = − ln(α1 + α2z) (35)b

to allow z dependence. We then obtain the Finsler space (M2, F ) called the
seismic Finsler space with metric function

F
(
x, z,

ẋ

ż

)
= e− ln f · [(ẋ)m + (ż)m]1/m, (35)c

where

I =
m− 2

2
√
m− 1


1− (

ż
ẋ

)m√(
ż
ẋ

)m

 .

The Berwald Gauss curvature scalar R of this space is

R =
1
4mb

2(ż)2−2m · [(m− 2) · (ẋ)m −m · (ż)m]

(m− 1)2
(
(ẋ)m + (ż)m

) 2−m
m

. (36)a

From this, we see that for m > 0, b > 0, the ray angle θ determines where the
curvature vanishes

R = 0 ⇐⇒ ẋ

ż
:= tan θ =

1(
1− 2

m

)1/m . (36)b
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Ray spreading (R ≤ 0) occurs when

tan θ ≤ 1(
1− 2

m

)1/m .

The boundary of the (m > 2)-case is a straight line whose slope is tan θ, and
as m → +∞, this θ approaches π/4. The negatively curved region is between
the above line and the ż-axis. The case m = 2 is Riemannian and R = −b2, a
negative constant and there is no boundary. The region of positive curvature
(ray focusing) arises from ż being very small. For ż small we expect “surface
effects”.

Finally, the Douglas tensor Dijkl is never zero if m > 2 and vanishes for

m = 2. This means the connection coefficients of the ray paths, Gijk, depend on
the ray angle, θ, if and only if m > 2.

4 Conclusions and future work

In general, for propagation of seismic signals in anisotropic, nonuniform con-
tinua, raypaths are geodesics of a Finsler geometry. In such a case, velocity
along the raypath is a function of both direction and position. Also, in seismic
investigations, we often use a velocity function that is separable. In other words,
anisotropy and nonuniformity are described by a product of two functions that
correspond to the angular and spatial dependence, respectively. In such a case
the subset of the Finsler geometry in question is the Wagner geometry.

The study of seismic raypaths in terms of a Finsler geometry allows us to
investigate these mathematical entities in their natural mathematical context as
geodesics. Furthermore, Finsler geometry has been intensely studied over last
quarter of a century and provides a fruitful platform for convenient formulations
of physical problems, Antonelli et al. (1993), Bao et al. (2000), Miron and
Anastasiei (1994), and Shen (2001).
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