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Robust repeated pole placement

Robert Schmid, Lorenzo Ntogramatzidis, Thang Nguyen andt Randey

Abstract— We consider the classic problem of pole place- mini-blockst

ment by state feedback. Recently [1] offered an eigenstrugte ,
. . 3 . Ji(Ai) - 0
assignment algorithm to obtain a novel parametric form for the
pole-placing gain matrix to deliver any set of desired clos#loop J(Aj) = : : 4)
eigenvalues, with any desired multiplicities. In this pape we 0 Iy (M)
e Jg (A

employ this parametric formula to introduce an unconstrained
nonlinear optimisation algorithm to obtain a gain matrix th at whereg < m. We use? Y {pill<i<v,i<j<glto
delivers any desired pole placement with optimal robustnes ' bilm =" =" ~=1="5
denote the order of each Jordan mini-blakkA;i), and we
assume without loss of generality that for eaglthese are
|. INTRODUCTION in descending ordepi 1 > pi2> - > pig. It is well-known

that for controllable(A,B), arbitrary multiplicities can be

we con§|der the c!assu; problem of repea_ted pole placgésigned, but the possible orders of the associated Jordan
ment for linear time-invariant (LTI) systems in state SPaC& - ctures are constrained by the systeantrollability in-

form dices (or Kronecker invariants) {qi,...,qm} as follows: [2]
X(t) = Ax(t) + Bu(t), 1) i b1 > 0 5)
i=

where, for allt € R, x(t) € R" is the state andu(t) € v

R™ is the control input, andA and B are appropriate Zl pi1+pPi2 > i+02 (6)
dimensional constant matrices. We also assume Bhaas i=

full column rank, and that the paifA,B) is reachable.

We let £ = {A1,...,Ay} be a self-conjugate set of <n v om
complex numbers, with associated algebraic multiplisitie le Pij = Qi+0G+--+0dm (7
A ={my, ..., m,} satisfyingmy +---+m, =n. The problem i=1j=1

of exact pole placement (EPP) by state feedback is that of  The last equation assumes; =0 if g < j<m. If &, .#
finding a real gain matri¥ such that the closed-loop matrix and % satisfy the conditions of the Rosenbrock theorem, we
A+ BF has eigenvalues given by the s&twith multiplicities say that?, .# and .2 define aradmissible Jordan structure.

given by.#, i.e.,F satisfies the equation In order to consider optimal selections for the gain matrix,
it is important to have a parametric formula for the set of
(A+BF)X =XA, (2)  gain matrices that deliver the desired pole placement, and

numerous such parameterisations have appeared in the liter
whereA\ is anxn Jordan matrix obtained from the eigen-aiyre in the past three decades. Kautaksl. [3] introduced
values of.Z, including multiplicities, andX is a matrix of 5 parametric form involving a QR-factorisation for matrix
closed-loop eigenvectors of unit length. The matkican be B and a Sylvester equation fot, but requiredA in (2) to
expressed in the Jordan (complex) canonical form be a diagonal matrix. In particular this requires the desire
multiplicities to satisfymy < m for all i € {1,...,v}. This

IA) - 0 limitation is inherited by the MATLAB® routinepl ace. m
A= : : ) (3) that is based on [3]. The pole-placement methods of Byers
0 I and Nash [4] and Tits and Yang [5] similarly employed

the parametric form of [3] and likewise cannot assign poles
where eachl(A;) represents a Jordan matrix for the eigenwith multiplicity greater than the rank dd. Our own recent
value A; of order mj, and may be composed of up m paper [6] offered a novel parametric form based on Moore’s
algorithm [7], but this also required to be diagonal, and
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eigenvalues to be assigned. Bhattacharyya and de Souzatf8 performance of our algorithm by considering an example
gave a procedure for obtaining the gain matrix by solvingnvolving the assignment of deadbeat modes, and compare
a Sylvester equation in terms of arx m parameter matrix, the performance against the method of [11].

provided the closed-loop eigenvalues do not coincide with
the open loop ones. Fahmy and O'Reilly in [9] presented ) ) _
a parametric form in terms of the inverses of the matrices Here we briefly summarise the parametric formula for a
A=Al (wherel, denotes thex n identity matrix), which 9ain matrixF that .solves the exact pole plagement problem_,
also required the assumption that the closed-loop eigeesal iN terms of an arbitrary real parameter matrix that appemrs i

Il. REPEATEDPOLE PLACEMENT

were all distinct from the open loop ones. [1]. We begin with some definitions and notation. For each
More recently, Chu [10] revisited the parametric formuld € {1,---,V}, we define the matrix
of [3] for the case wheré was any admissible Jordan matrix, SAM)E[ A-Aln B]. (8)

and obtained a parameterisation for the pole placing matrix )
F by using the eigenvector matriX as a parameter. Ait Since eact§(A;) hasn rows andn-+mcolumns, and the pair
Ramiet al. [11] also considered the case whetecontained (A,B) is reachable, the dimension of the kernelSff;) is
any desired closed-loop eigenvalues and multiplicities] a €qual tom. We denote byN; a basis matrix for the kernel
proposed a parametric form &t in terms of the solution ©f S(Ai). It follows that, if Aj1 = A, thenN; 1 is given by
to a Sylvester equation, also using the eigenvector matrPh+1 = Ni.

X as a parameter. Thus the parametric formsFooffered We let . t

in [10] and [11] are the most general currently available in M; = [ A—=Ailn B } ; 9)
the literature. On the other hand, maximum generality iyhere' indicates the Moore-Penrose pseudo-inverse.
these parametric formulae has been achieved at the expensgor any matrixx we useX(l) to denote thd-th column
of efficiency. Where methods [3]-[9] all employed parametegf x| X is a vector or matrix witm+m rows, we define
matrices of dimensiomx n, the parameter matrices in [10] the vectors or matriceB{X} and r{X}, obtained by taking
and [11] have dimensionx n. In our recent work [1], We the firstn and lastm rows of X, respectively.

gave a parameterisation for the pole-placing feedback thatgjyen a set ofv self-conjugate complex number® =
combines the generality of [10] and [11] with the efficiency{), . A,} containing exactlyo complex conjugate pairs,
that comes from amm x n dimensional parameter matrix. e say that¥? is o-conformably ordered if the first @
The parametric form for the pole-placing gain matfx yajyes of.# are complex while the remaining are real,
can obtain any desired Jordan structure that satisfies theq for all oddk < 20 we haveAy.1 = Ax. For example,
structural constraints imposed by the Rosenbrock theonemiine sety — {10j,-10j,2+2j,2—2j,7} is 2-conformably

terms of the controllability indices, without any addita@n orgered. Notice that, sinc& is symmetric, we haven =
requirement on their multiplicity or non-overlap with they, ., for oddi < o.
open-loop eigenstructure. Let £ = {A4,...,Ay} be o-conformably ordered. Le?,

In [1] we employed this novel parametric form to seek the  and & define anadmissible Jordan structure. Let K 2
solution to theminimum gain exact pole placement problem  giag(Ky,...,K,}, whereK; is a real matrix of dimension
(MGEPP), which involves SOlVing the EPP problem and a|Spn>< mi, for eachi 2 20—’ Ki is a real matrix of dimension
obtaining the feedback matrix that has the smallest gain, m, my, and for all oddi < 20, we havek; = Ki. Further,
which in turn minimises the control amplitude or energyet eachK; matrix be partitioned as
required. In this paper we employ the parametric form to
consider therobust exact pole placement problem (REPP), Ki = [ Ki1 | Kiz | | Kig } g (10)
which involves obtainingF that solves the EPP problem here eachK;, is of dimensionmx pix. For all odd
and also renders the eigenvalues/f BF as insensitive | o {1,...,20}’and for eachi € {20+1,...,v} andk €
to perturbations i, B andF as possible. Numerous resultsy; 4.1 we build vector chains of length; « as follows:
[12], [13], [14] have appeared linking the sensitivity okth ’
eigenvalues to various measures of the conditioningk of hik(1) = NiKik(1), (11)
the matrix of closed loop eigenvectors. A commonly used hik(2) = MiTt{hi (1)} + NiKi (2), (12)
measure is the Frobenius condition numbeiXof

For the case of diagona, there has been considerable :
literature on this problem. Papers addressing the comdtiiip hik(pix) = MiTi{hi k(Pik—1)} +NiKik(pix). (13)
of the elgenyector matrix mclgde (3], [4], [5], [11], [154nd ._From these column vectors we construct matrices
our own earlier work [6]. In this paper we extend our earlier
work and address the general problem of robust pole place- Hik = [hik(D)]hik(2)]. .. [hik(pik)] (14)
ment for a possibly defectivA. We utilise our parametric ' ' ' o
form for the matrices< andF that solve (2) to introduce an
unconstrained nonlinear optimisation problem that sele&s t Re{[Hi1|...|Hig |} i€{l1,...,20} odd
parameter matriX that minimises the condition number of H; £ (Jm{[Hi_11|...|Hi_1g |} i€{1,...,20} even
X with respect to Frobenius norm. Finally we demonstrate [Hit|...[Hig ] ie{20+1,...,v}

of dimension(n+m) x p; x, and real matrices



of dimension(n+m) x m.. Finally, we define choose for example the parameter matrices

He 2 [Hal...|H] (15) Ko1— [ _11 ‘ _31 } and Kio— [ i ] ,
Vi & Ti{H«} (16) With this choi find
th t
We 2 m{Hg) (17) i is choice we T
.
of dimensiongn+m) x n, nx n andmx n, respectively. The hia(1) = M { -1 ] =[5 4 3|-10 2]
dependence upoK of the matrices defined in (15-17) has 5
been made explicit. ha2) = Mi| 4 |+Ns { 3 }
The main result of [1] is the following. ' 3 -1

Theorem 2.1: [1] For almost all choices of the parameter [ 2380 1742 45 | 4073 17 }T

matrix K, matrix Vk is invertible, i.e.,Vk is generically = 141 14 13 141 T 13
invertible for every choice oK except possibly those laying _ 2| 10 8 -3|-20 217
in a proper algebraic variety. The set of all feedback masric ha(l) = N 1| [ | ] ’

such that the.Jordan strugture.Af—i— BF is described by Now we defineHy 1 = [hy1(1) hy1(2)] whose size ign+
Z,.# and & is parameterised i as m) x p11 = 5x 2, andHi , = [hy2(1)] whose size isn+
Fx :V\4<V|Zl (18) m) x P12 = 5->< 1. ThU.S,H =H;= [Hl,l H1,2] is (n+m) X
m; = 5 x 3. Finally, using (16)-(17) we compute

whereVx andW are obtained with a parameter matix 5 2389 1g

such thatv is invertible. _ |4 7B g W — [ -10 —%” -20
The above formulation takes its inspiration from the proof © — 3 e 3 ’ N 2 —13 2

of Proposition 1 in [16], and hence we shall refer to (18) as 13

the Klein-Moore parametric form for F. Next we illustrate Notice that with this choice of the parameter matkix=

the procedure of construction of thig, Wk andF in a simple K1 = [Ki1 Ki2] the square matri¥k is invertible. Indeed,

example. as we will show in Theorem 2.Xj) for almost all choices
Example 2.1: Consider the reachable pdif, B) with (in a Lebesgue measure sense) of the parameter ntafrix
the square matrix/k is invertible. Moreover(ii) for such
0 00 10 K, a feedback matrix that assigns the desired closed-loop
A=10 3 0}, B=12 0. eigenstructure is given byk Vi L. Finally, (i) all feedback
000 0 3 matrices yielding the desired closed-loop eigenstructare

Our aim is to ultimately find a feedback matrix that be computed as the produsk Vi * for a suitable parameter
assigns the eigenvalue2 with multiplicity equal ton=3, matrixK such thakk is invertible. Indeed, it is easily verified
i.e., ¥ ={-2} and.# = {3}. It is easy to see that the that the feedback matrix
controllability indices of this pair are 2 and 1. Hence, the Fr — Wi Vit — 1/8 -25 0
Rosenbrock theorem tells us that it is not possible to find o K 76| 4 -5 -4
a feedback matrbF such thatA has three Jordan blocks yie|gs a closed-loop matriA -+ BFk whose Jordan structure
relative to the closed-loop eigenvalu€?. In other words, _ . : 21

is given by dlag{[

in this case the closed-loop matrix will be defective, arsd it 0 *2} ’_2} as rqulred. :
o . We conclude this example by showing that a single Jordan
only admissible Jordan structures are given by

mini-block of size 3 is also possible. In this cae=K; =

-2 1] 0 -2 1 0 [Ky1] and py1 = 3. Let us choose for example
0O -2|0 and o -2 1 11011
O 0|-2 O 0 -2 Ki1= { >l1l0 ] .

Hence, ¥ = {-2} and.# = {3}, while & = {2,1} and The Jordan chain is built as
2 = {3} are the admissible Jordan structures. Let us con-

sider first the case” = {2,1}. Here,v =1,i=1, g; = 2, hia(l) = NiKyg,

pr1 =2 and p;2 = 1. In order to construct the chains h11(2) = MiTi{hy1(1)} +N1Ky1(2),
defined above, we compute a badis for the null-space h11(3) = MiTi{h11(2)} +Ni1K11(3),
of [A—(=2)1, B] andM; = [A—(—2)I, B]'. We obtain ' ' '

and H1,1 = [hl,l(l) h1’1(2) hl,l(3)] whose size is{n—i-m) X

5 0 %]0 _21?- 0 Pr1= 5% 3. Thus,H = Hy = [Hl,l]r which leads to
4 0 “i1 i O 5 7 0¥ 157 191560
Ni = 0 -3 R My = 0 0 %3 Ve — 4 iol _]748]034 Wik = —-10 41 ]14}5’%
-10 0 25 8 K 141 1E | 4 & _153
141 141 _ 21 102 13 132
0 2 0 0 1% 13 132

. C ti Vi1 deli defecti losed-I
Sincev = 1 andgy = 1, we haveK = Ky — [Kl,l K1,2], where omputing Fc as Wk Vi elivers a defective closed-loop

N 210
Kyais mx prg=2x2andKyzis mx pro=2x1. Letus Matrix which is similar to[ 92 712}-



I1l. ROBUST OPTIMAL POLE PLACEMENT for pe {1,...,20} with p#£i,p#i+0,p+o#iandpe

' . . 20+1,...,v} with i. Define
We firstly note some classic results on eigenvalue sensﬂ- + } b7

tivity. . N; ?f | =0
Theorem 3.1: [12, Theorem 4.4.2] Pi.l) = ¢ MiTH M} (N} if 1>1,
Let A andX be such thah = XJX 1, whereJ is the Jordan 0 otherwise.
form of A, and letA’ = A+ H. then for each eigenvalue of  Fqr eachi e (1,....0}, ke {L,....g}, hl € {1,...,pix}
A, there exists an eigenvalieof A such that andr € {1,...,m} we find '
(a) If Ais diagonalisable, then ,
IR _ gre i, h— 1)) )
A =N < ke (X)[H] 2 (19) waf[ii_k'('v(%}
m{Hi B .
(b) If Ais defective, then om0 omPah=DH),
A=Al ORAH(} 5 epih— 1))
v < Ka(X)|[H]J2 (20) FER Iy {PG,h=1)}r),
9m{Hix(h)} .
whereky(X) := || X||2][ X~1||2 is the spectral condition m =Re{P(i,h—1)}(r).

number ofX, andl is the size of the largest Jordan

mini-block associated witiA .
Result (a) is known as the Bauer—Fike Theorem. Both resul
indicate that the condition number of the matd may
be used a measure of the eigenvalue sensitivity of the OHik(h) P(i.h—1)(r)
matrix A. Since the spectral condition numbex(X) is non- =ik(l,r) I ’
differentiable, it is not amenable to optimisation via gead
search methods. The Frobenius condition numbgy(X) =
1X | trol| X~/ 1o is differentiable, and sincex(X) < Kro(X),

For eachi € {20 +1,...,v}, k € {1,...,0i}, hl €
.-, Pixt andr € {1,...,m} we have

Let Vk andWk be given by (16) and (17) respectively, and
let Uk ==V, 1. Then

many authors, including [4], [11], [15], [18], have usedsthi 0Vk = JoH
as their robustness measure. Note it is possible to reduce o=ik(l,ry rr{ fEi,k(',f)}
the Frobenius condition number of a matdx by suitably Wk JH
scaling the lengths of its column vectors, yet wheris a m = E{m}

matrix of eigenvectors, such scaling does not improve the
eigenvalue conditioning. Hence when making comparisorkhe derivatives of|Vk [|%,, and Uk ||%,, are given as
of the closed-loop robustness achieved by different cbntro

2
methodologies, we will assume that the column vectors of OH_VKH”O = 2trace (VK 76VK )
X have been normalised. =ix(l,r) Zik(l,r)
As pointed out in [4], to minimiseco(X), for efficient
computation we may instead consider the alternative objec- 92|V |2,
tive function 0=, ki (11,71)0=i, k, (12, 12)
_ v/ oV
F(K) = [Viclro+ IV o (21) - ztrace( K )

fro Ko Sirk (I1,11) =iz, ko(l2,12)
with Vi as in (16). In order to determine the optimal inpu 0UK
parameter matriX that minimisesf, we will exploit a gradi- tUsmg the well-known formulg, W — Uk 5‘ k(' 7 UK

we compute
ent search employing the first and second order derivatives o P

[Vk 1,0 and [[Vic 2[12,,- From these expressions, the gradient  9||Uk||%,,
and Hessian off are easily obtained, and unconstrained a=ik(l,r)
nonlinear optimisation methods can then be used to seek
local minima. Firstly, we define and

= 2trace (—UKTUK 007\/0) UK)
=ik

Re(Ki}  ie{L....20} odd OV i
(402N gy , = =
=2 Jm{Ki_1} ie{1,...,20} even, a"l’kl('l’rl)a—'zikz('zéif) N
Ki ie{20+1,...,v}. _2trace(UK7KUTUK7KUK
a—lz k2(|27r2) a—ll kl(lla rl)
Define Z; k(l,r) as ther-th entry of = (I). We compute LU OV U OV U
the derivative ofHp q in (14) with respect ta; k. We have KK 0=,k (I2,12) K FERACRD)
aHP-,CI -0 +Ug JUk =— Vi Uk =—= Vi UK).
aEi!k(I,r) - a:il,kl(llarl) a:iz,k2(|27r2)



IV. PERFORMANCE COMPARISON [6]

In this section, we compare the algorithm presented in this
paper with the methods given in [11]. (7]
Example 4.1: We consider the Example 8 in the Byers
Nash [4] collection of benchmark systems that have beers;]
investigated over the years by many authors [5], [15], [10],
[11]. We use the state matricédsand B from that system, (9]
with n = 4 states andn = 3 inputs. Differing from [4],
we seek to assign all the closed-loop eigenvalues to zell
to obtain a deadbeat response, and thus we Héve {0} [11]

and .# = {4}. The controllability indices arg2,1,1} and
so we see that this can be achieved with a single Jordan

mini-block of dimension two, and two blocks of dimensionﬁg}
one. Using the method of [11] to minimise the Frobenius
condition number of the matrix of eigenvectotswe obtain  [14]
0.0201 -0.6157 —0.1026 00178 (15]
F,=| 55108 -—-3.7659 08791 28245
—0.2685 45596 —5.2342 -—-0.2367
[16]
yielding normalised closed-loop eigenvector matixwith
Kfro(X1) = 4.000 and ||F1||fro = 10.099. Applying our [17]
Method (see [1]), we obtain
0.0201 -0.3818 —-0.1026 00178 [18]
F,=| 55108 00005 08791 28245
—0.2685 —0.0182 —-5.2342 -0.2367 [19]

yielding Kfro(X2) = 4.000, and||Fz|| ;o = 8.173, indicating
that our method can achieve the same Frobenius conditioning
of the eigenvectors, but with reduced gain. [20]

V. CONCLUSION

In our recent paper [1] we introduced a novel parametri@l]
form for the gain matrix that solves the classic problem of
exact pole placement with any desired eigenstructure.ign th22]
paper we employed the parametric form to offer a method
for obtaining a robust eigenstructure. The effectivenésise
method was compared against a recent alternative method
from the literature and shown to achieve equivalent robust
conditioning, but with reduced matrix gain. Directions for
future research include investigations on the problem of no
overshooting, non-undershooting and monotonic tracking
control [19]-[22] with repeated pole placement of the ctbse
loop spectrum.
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