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Robust repeated pole placement

Robert Schmid, Lorenzo Ntogramatzidis, Thang Nguyen and Amit Pandey

Abstract— We consider the classic problem of pole place-
ment by state feedback. Recently [1] offered an eigenstructure
assignment algorithm to obtain a novel parametric form for the
pole-placing gain matrix to deliver any set of desired closed-loop
eigenvalues, with any desired multiplicities. In this paper we
employ this parametric formula to introduce an unconstrained
nonlinear optimisation algorithm to obtain a gain matrix th at
delivers any desired pole placement with optimal robustness.

I. I NTRODUCTION

We consider the classic problem of repeated pole place-
ment for linear time-invariant (LTI) systems in state space
form

ẋ(t) = Ax(t)+Bu(t), (1)

where, for all t ∈ R, x(t) ∈ R
n is the state andu(t) ∈

Rm is the control input, andA and B are appropriate
dimensional constant matrices. We also assume thatB has
full column rank, and that the pair(A,B) is reachable.
We let L = {λ1, . . . ,λν} be a self-conjugate set ofν ≤ n
complex numbers, with associated algebraic multiplicities
M = {m1, . . . ,mν} satisfyingm1+ · · ·+mν = n. The problem
of exact pole placement (EPP) by state feedback is that of
finding a real gain matrixF such that the closed-loop matrix
A+BF has eigenvalues given by the setL with multiplicities
given byM , i.e., F satisfies the equation

(A+BF)X = X Λ, (2)

whereΛ is a n× n Jordan matrix obtained from the eigen-
values ofL , including multiplicities, andX is a matrix of
closed-loop eigenvectors of unit length. The matrixΛ can be
expressed in the Jordan (complex) canonical form

Λ =







J(λ1) · · · 0
...

...
...

0 · · · J(λν)






, (3)

where eachJ(λi) represents a Jordan matrix for the eigen-
value λi of order mi, and may be composed of up tom
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mini-blocks1

J(λi) =







J1(λi) · · · 0
...

...
...

0 · · · Jgi(λi)






(4)

wheregi ≤ m. We useP , {pi, j |1≤ i ≤ ν,1≤ j ≤ gi} to
denote the order of each Jordan mini-blockJ j(λi), and we
assume without loss of generality that for eachi, these are
in descending orderpi,1 ≥ pi,2 ≥ ·· · ≥ pi,gi . It is well-known
that for controllable(A,B), arbitrary multiplicities can be
assigned, but the possible orders of the associated Jordan
structures are constrained by the systemcontrollability in-
dices (or Kronecker invariants) {q1, . . . ,qm} as follows: [2]

ν

∑
i=1

pi,1 ≥ q1 (5)

ν

∑
i=1

pi,1+ pi,2 ≥ q1+ q2 (6)

...
ν

∑
i=1

m

∑
j=1

pi, j ≥ q1+ q2+ · · ·+ qm (7)

The last equation assumespi, j = 0 if gi < j ≤ m. If L , M

andP satisfy the conditions of the Rosenbrock theorem, we
say thatL , M andP define anadmissible Jordan structure.

In order to consider optimal selections for the gain matrix,
it is important to have a parametric formula for the set of
gain matrices that deliver the desired pole placement, and
numerous such parameterisations have appeared in the liter-
ature in the past three decades. Kautskyet al. [3] introduced
a parametric form involving a QR-factorisation for matrix
B and a Sylvester equation forX , but requiredΛ in (2) to
be a diagonal matrix. In particular this requires the desired
multiplicities to satisfymi ≤ m for all i ∈ {1, . . . ,ν}. This
limitation is inherited by the MATLABR© routineplace.m
that is based on [3]. The pole-placement methods of Byers
and Nash [4] and Tits and Yang [5] similarly employed
the parametric form of [3] and likewise cannot assign poles
with multiplicity greater than the rank ofB. Our own recent
paper [6] offered a novel parametric form based on Moore’s
algorithm [7], but this also requiredΛ to be diagonal, and
hence also assumed the closed-loop eigenvalues to have
multiplicities of at mostm.

Other parameterisations have been presented in the litera-
ture that do not impose a constraint on the multiplicity of the

1Each J(λi) is composed of up tom mini-blocks because, as will be
mentioned in the sequel, when the pair(A,B) is reachable, the dimension
of ker[A−λ I B ] is equal tom for any λ ∈ C.



eigenvalues to be assigned. Bhattacharyya and de Souza [8]
gave a procedure for obtaining the gain matrix by solving
a Sylvester equation in terms of ann×m parameter matrix,
provided the closed-loop eigenvalues do not coincide with
the open loop ones. Fahmy and O’Reilly in [9] presented
a parametric form in terms of the inverses of the matrices
A−λi In (whereIn denotes then×n identity matrix), which
also required the assumption that the closed-loop eigenvalues
were all distinct from the open loop ones.

More recently, Chu [10] revisited the parametric formula
of [3] for the case whereΛ was any admissible Jordan matrix,
and obtained a parameterisation for the pole placing matrix
F by using the eigenvector matrixX as a parameter. Ait
Ramiet al. [11] also considered the case whereL contained
any desired closed-loop eigenvalues and multiplicities, and
proposed a parametric form forF in terms of the solution
to a Sylvester equation, also using the eigenvector matrix
X as a parameter. Thus the parametric forms forF offered
in [10] and [11] are the most general currently available in
the literature. On the other hand, maximum generality in
these parametric formulae has been achieved at the expense
of efficiency. Where methods [3]-[9] all employed parameter
matrices of dimensionm×n, the parameter matrices in [10]
and [11] have dimensionn× n. In our recent work [1], we
gave a parameterisation for the pole-placing feedback that
combines the generality of [10] and [11] with the efficiency
that comes from anm × n dimensional parameter matrix.
The parametric form for the pole-placing gain matrixF
can obtain any desired Jordan structure that satisfies the
structural constraints imposed by the Rosenbrock theorem in
terms of the controllability indices, without any additional
requirement on their multiplicity or non-overlap with the
open-loop eigenstructure.

In [1] we employed this novel parametric form to seek the
solution to theminimum gain exact pole placement problem
(MGEPP), which involves solving the EPP problem and also
obtaining the feedback matrixF that has the smallest gain,
which in turn minimises the control amplitude or energy
required. In this paper we employ the parametric form to
consider therobust exact pole placement problem (REPP),
which involves obtainingF that solves the EPP problem
and also renders the eigenvalues ofA+ BF as insensitive
to perturbations inA, B andF as possible. Numerous results
[12], [13], [14] have appeared linking the sensitivity of the
eigenvalues to various measures of the conditioning ofX ,
the matrix of closed loop eigenvectors. A commonly used
measure is the Frobenius condition number ofX .

For the case of diagonalΛ, there has been considerable
literature on this problem. Papers addressing the conditioning
of the eigenvector matrix include [3], [4], [5], [11], [15],and
our own earlier work [6]. In this paper we extend our earlier
work and address the general problem of robust pole place-
ment for a possibly defectiveΛ. We utilise our parametric
form for the matricesX andF that solve (2) to introduce an
unconstrained nonlinear optimisation problem that seeks the
parameter matrixK that minimises the condition number of
X with respect to Frobenius norm. Finally we demonstrate

the performance of our algorithm by considering an example
involving the assignment of deadbeat modes, and compare
the performance against the method of [11].

II. REPEATEDPOLE PLACEMENT

Here we briefly summarise the parametric formula for a
gain matrixF that solves the exact pole placement problem,
in terms of an arbitrary real parameter matrix that appears in
[1]. We begin with some definitions and notation. For each
i ∈ {1, . . . ,ν}, we define the matrix

S(λi),
[

A−λi In B
]

. (8)

Since eachS(λi) hasn rows andn+m columns, and the pair
(A,B) is reachable, the dimension of the kernel ofS(λi) is
equal tom. We denote byNi a basis matrix for the kernel
of S(λi). It follows that, if λi+1 = λ i, thenNi+1 is given by
Ni+1 = N i.

We let
Mi ,

[

A−λi In B
]†
, (9)

where† indicates the Moore-Penrose pseudo-inverse.
For any matrixX we useX(l) to denote thel-th column

of X . If X is a vector or matrix withn+m rows, we define
the vectors or matricesπ{X} andπ{X}, obtained by taking
the firstn and lastm rows of X , respectively.

Given a set ofν self-conjugate complex numbersL =
{λ1, . . . ,λν} containing exactlyσ complex conjugate pairs,
we say thatL is σ -conformably ordered if the first 2σ
values of L are complex while the remaining are real,
and for all oddk ≤ 2σ we haveλk+1 = λ k. For example,
the setL = {10 j,−10 j,2+2 j,2−2 j,7} is 2-conformably
ordered. Notice that, sinceL is symmetric, we havemi =
mi+1 for odd i ≤ σ .

Let L = {λ1, . . . ,λν} be σ -conformably ordered. LetL ,
M and P define anadmissible Jordan structure. Let K ,

diag{K1, . . . ,Kν}, where Ki is a real matrix of dimension
m×mi, for eachi ≥ 2σ , Ki is a real matrix of dimension
m×mi, and for all oddi ≤ 2σ , we haveKi = Ki+1. Further,
let eachKi matrix be partitioned as

Ki =
[

Ki,1 Ki,2 . . . Ki,gi

]

, (10)

where eachKi,k is of dimension m × pi,k. For all odd
i ∈ {1, . . . ,2σ} and for eachi ∈ {2σ + 1, . . . ,ν} and k ∈
{1, . . . ,gi} we build vector chains of lengthpi,k as follows:

hi,k(1) = Ni Ki,k(1), (11)

hi,k(2) = Mi π{hi,k(1)}+Ni Ki,k(2), (12)
...

hi,k(pi,k) = Mi π{hi,k(pi,k −1)}+Ni Ki,k(pi,k). (13)

From these column vectors we construct matrices

Hi,k , [hi,k(1)|hi,k(2)| . . . |hi,k(pi,k)] (14)

of dimension(n+m)× pi,k, and real matrices

Hi ,







Re
{[

Hi,1 . . . Hi,gi

]}

i ∈ {1, . . . ,2σ} odd
Im

{[

Hi−1,1 . . . Hi−1,gi

]}

i ∈ {1, . . . ,2σ} even
[

Hi,1 . . . Hi,gi

]

i ∈ {2σ +1, . . . ,ν}



of dimension(n+m)×mi. Finally, we define

HK , [H1| . . . |Hν ] (15)

VK , π{HK} (16)

WK , π{HK} (17)

of dimensions(n+m)×n, n×n andm×n, respectively. The
dependence uponK of the matrices defined in (15-17) has
been made explicit.

The main result of [1] is the following.
Theorem 2.1: [1] For almost all choices of the parameter

matrix K, matrix VK is invertible, i.e.,VK is generically
invertible for every choice ofK except possibly those laying
in a proper algebraic variety. The set of all feedback matrices
such that the Jordan structure ofA + BF is described by
L ,M andP is parameterised inK as

FK =WK V−1
K (18)

whereVK andWK are obtained with a parameter matrixK
such thatVK is invertible.

The above formulation takes its inspiration from the proof
of Proposition 1 in [16], and hence we shall refer to (18) as
the Klein-Moore parametric form for F . Next we illustrate
the procedure of construction of theVK , WK andF in a simple
example.

Example 2.1: Consider the reachable pair(A,B) with

A =





0 0 0
0 3 0
0 0 0



 , B =





1 0
2 0
0 3



 .

Our aim is to ultimately find a feedback matrixF that
assigns the eigenvalue−2 with multiplicity equal ton = 3,
i.e., L = {−2} and M = {3}. It is easy to see that the
controllability indices of this pair are 2 and 1. Hence, the
Rosenbrock theorem tells us that it is not possible to find
a feedback matrixF such thatΛ has three Jordan blocks
relative to the closed-loop eigenvalue−2. In other words,
in this case the closed-loop matrix will be defective, and its
only admissible Jordan structures are given by





−2 1 0
0 −2 0
0 0 −2



 and





−2 1 0
0 −2 1
0 0 −2



 .

Hence,L = {−2} and M = {3}, while P = {2,1} and
P = {3} are the admissible Jordan structures. Let us con-
sider first the caseP = {2,1}. Here,ν = 1, i = 1, g1 = 2,
p1,1 = 2 and p1,2 = 1. In order to construct the chains
defined above, we compute a basisN1 for the null-space
of [A− (−2) In B ] andM1 = [A− (−2) In B ]†. We obtain

N1 =













5 0
4 0
0 −3

−10 0
0 2













, M1 =













58
141 − 4

141 0
− 10

141
25
141 0

0 0 2
13

25
141

8
141 0

0 0 3
13













.

Sinceν = 1 andg1 = 1, we haveK =K1 = [K1,1 K1,2 ], where
K1,1 is m× p1,1 = 2×2 andK1,2 is m× p1,2 = 2×1. Let us

choose for example the parameter matrices

K1,1 =

[

1 3
−1 −1

]

and K1,2 =

[

2
1

]

.

With this choice we find

h1,1(1) = N1

[

1
−1

]

=
[

5 4 3 −10 2
]T

h1,1(2) = M1





5
4
3



+N1

[

3
−1

]

=
[

2389
141

1742
141

45
13 − 4073

141 − 17
13

]T

h1,2(1) = N1

[

2
1

]

=
[

10 8 −3 −20 2
]T

.

Now, we defineH1,1 = [h1,1(1) h1,1(2) ] whose size is(n+
m)× p1,1 = 5× 2, andH1,2 = [h1,2(1) ] whose size is(n+
m)× p1,2 = 5×1. Thus,H = H1 = [H1,1 H1,2 ] is (n+m)×
mi = 5×3. Finally, using (16)-(17) we compute

VK =





5 2389
141 10

4 1742
141 8

3 45
13 −3



, WK =

[

−10 − 4073
141 −20

2 − 17
13 2

]

.

Notice that with this choice of the parameter matrixK =
K1 = [K1,1 K1,2 ] the square matrixVK is invertible. Indeed,
as we will show in Theorem 2.1,(i) for almost all choices
(in a Lebesgue measure sense) of the parameter matrixK,
the square matrixVK is invertible. Moreover,(ii) for such
K, a feedback matrix that assigns the desired closed-loop
eigenstructure is given byWK V−1

K . Finally, (iii) all feedback
matrices yielding the desired closed-loop eigenstructurecan
be computed as the productWK V−1

K for a suitable parameter
matrixK such thatVK is invertible. Indeed, it is easily verified
that the feedback matrix

FK =WK V−1
K =

1
6

[

8 −25 0
4 −5 −4

]

yields a closed-loop matrixA+BFK whose Jordan structure
is given by diag

{[

−2 1
0 −2

]

,−2
}

as required.
We conclude this example by showing that a single Jordan

mini-block of size 3 is also possible. In this case,K = K1 =
[K1,1 ] and p1,1 = 3. Let us choose for example

K1,1 =

[

1 0 1
2 1 0

]

.

The Jordan chain is built as

h1,1(1) = N1 K1,1,

h1,1(2) = M1 π{h1,1(1)}+N1K1,1(2),

h1,1(3) = M1 π{h1,1(2)}+N1K1,1(3),

andH1,1 = [h1,1(1) h1,1(2) h1,1(3) ] whose size is(n+m)×
p1,1 = 5×3. Thus,H = H1 = [H1,1 ], which leads to

VK =





5 274
141

115097
1412

4 50
141 − 78034

1412

−6 − 51
13 − 102

132



 , WK =

[

−10 157
141 − 191560

1412

4 8
13 − 153

132

]

.

ComputingFK as WK V−1
K delivers a defective closed-loop

matrix which is similar to
[

−2 1 0
0 −2 1
0 0 −2

]

.



III. ROBUST OPTIMAL POLE PLACEMENT

We firstly note some classic results on eigenvalue sensi-
tivity.

Theorem 3.1: [12, Theorem 4.4.2]
Let A andX be such thatA=XJX−1, whereJ is the Jordan

form of A, and letA′ = A+H. then for each eigenvalue of
A′, there exists an eigenvalueλ of A such that

(a) If A is diagonalisable, then

|λ −λ ′| ≤ κ2(X)‖H‖2 (19)

(b) If A is defective, then

|λ −λ ′|

(1+ |λ −λ ′|)l−1 ≤ κ2(X)‖H‖2 (20)

whereκ2(X) := ‖X‖2‖X−1‖2 is the spectral condition
number ofX , and l is the size of the largest Jordan
mini-block associated withλ .

Result (a) is known as the Bauer–Fike Theorem. Both results
indicate that the condition number of the matrixX may
be used a measure of the eigenvalue sensitivity of the
matrix A. Since the spectral condition numberκ2(X) is non-
differentiable, it is not amenable to optimisation via gradient
search methods. The Frobenius condition numberκ f ro(X) =
‖X‖ f ro‖X−1‖ f ro is differentiable, and sinceκ2(X)≤ κ f ro(X),
many authors, including [4], [11], [15], [18], have used this
as their robustness measure. Note it is possible to reduce
the Frobenius condition number of a matrixX by suitably
scaling the lengths of its column vectors, yet whenX is a
matrix of eigenvectors, such scaling does not improve the
eigenvalue conditioning. Hence when making comparisons
of the closed-loop robustness achieved by different control
methodologies, we will assume that the column vectors of
X have been normalised.

As pointed out in [4], to minimiseκ f ro(X), for efficient
computation we may instead consider the alternative objec-
tive function

f (K) = ‖VK‖
2
f ro + ‖V−1

K ‖2
f ro, (21)

with Vk as in (16). In order to determine the optimal input
parameter matrixK that minimisesf , we will exploit a gradi-
ent search employing the first and second order derivatives of
‖VK‖

2
f ro and‖V−1

K ‖2
f ro. From these expressions, the gradient

and Hessian off are easily obtained, and unconstrained
nonlinear optimisation methods can then be used to seek
local minima. Firstly, we define

Ξi ,







Re{Ki} i ∈ {1, . . . ,2σ} odd,
Im{Ki−1} i ∈ {1, . . . ,2σ} even,
Ki i ∈ {2σ +1, . . . ,ν}.

Define Ξi,k(l,r) as ther-th entry of Ξi,k(l). We compute
the derivative ofHp,q in (14) with respect toΞi,k. We have

∂Hp,q

∂Ξi,k(l,r)
= 0

for p ∈ {1, . . . ,2σ} with p 6= i, p 6= i+σ , p+σ 6= i and p ∈
{2σ +1, . . . ,ν} with p 6= i. Define

P(i, l),







Ni if l = 0,
Mi π{Mi}

l−1 π{Ni} if l ≥ 1,
0 otherwise.

For eachi ∈ {1, . . . ,σ}, k ∈ {1, . . . ,gi}, h, l ∈ {1, . . . , pi,k}
and r ∈ {1, . . . ,m} we find

∂Re{Hi,k(h)}

∂Ξi,k(l,r)
=Re{P(i,h− l)}(r),

∂Im{Hi,k(h)}

∂Ξi,k(l,r)
= Im{P(i,h− l)}(r),

∂Re{Hi,k(h)}

∂Ξi+σ ,k(l,r)
=−Im{P(i,h− l)}(r),

∂Im{Hi,k(h)}

∂Ξi+σ ,k(l,r)
=Re{P(i,h− l)}(r).

For each i ∈ {2σ + 1, . . . ,ν}, k ∈ {1, . . . ,gi}, h, l ∈
{1, . . . , pi,k} and r ∈ {1, . . . ,m} we have

∂Hi,k(h)

∂Ξi,k(l,r)
= P(i,h− l)(r).

Let VK andWK be given by (16) and (17) respectively, and
let UK :=V−1

K . Then

∂VK

∂Ξi,k(l,r)
= π

{

∂H
∂Ξi,k(l,r)

}

,

∂WK

∂Ξi,k(l,r)
= π

{

∂H
∂Ξi,k(l,r)

}

.

The derivatives of‖VK‖
2
f ro and‖UK‖

2
f ro are given as

∂‖VK‖
2
f ro

∂Ξi,k(l,r)
= 2trace

(

V T
K

∂VK

∂Ξi,k(l,r)

)

,

∂ 2‖VK‖
2
f ro

∂Ξi1,k1(l1,r1)∂Ξi2,k2(l2,r2)

= 2trace

(

∂V T
K

∂Ξi1,k1(l1,r1)

∂VK

∂Ξi2,k2(l2,r2)

)

Using the well-known formula ∂UK
∂Ξi,k(l,r)

= −UK
∂VK

∂Ξi,k(l,r)
UK ,

we compute

∂‖UK‖
2
f ro

∂Ξi,k(l,r)
= 2trace

(

−U T
KUK

∂VK

∂Ξi,k(l,r)
UK

)

and

∂ 2‖UK‖
2
f ro

∂Ξi1,k1(l1,r1)∂Ξi2,k2(l2,r2)

= 2trace
(

U T
K

∂V T
K

∂Ξi2,k2(l2,r2)
U T

KUK
∂VK

∂Ξi1,k1(l1,r1)
UK

+U T
KUK

∂VK

∂Ξi2,k2(l2,r2)
UK

∂VK

∂Ξi1,k1(l1,r1)
UK

+U T
KUK

∂VK

∂Ξi1,k1(l1,r1)
UK

∂VK

∂Ξi2,k2(l2,r2)
UK

)

.



IV. PERFORMANCECOMPARISON

In this section, we compare the algorithm presented in this
paper with the methods given in [11].

Example 4.1: We consider the Example 8 in the Byers
Nash [4] collection of benchmark systems that have been
investigated over the years by many authors [5], [15], [10],
[11]. We use the state matricesA and B from that system,
with n = 4 states andm = 3 inputs. Differing from [4],
we seek to assign all the closed-loop eigenvalues to zero
to obtain a deadbeat response, and thus we haveL = {0}
and M = {4}. The controllability indices are{2,1,1} and
so we see that this can be achieved with a single Jordan
mini-block of dimension two, and two blocks of dimension
one. Using the method of [11] to minimise the Frobenius
condition number of the matrix of eigenvectorsX , we obtain

F1 =





0.0201 −0.6157 −0.1026 0.0178
5.5108 −3.7659 0.8791 2.8245
−0.2685 4.5596 −5.2342 −0.2367





yielding normalised closed-loop eigenvector matrixX1 with
κ f ro(X1) = 4.000 and ‖F1‖ f ro = 10.099. Applying our
Method (see [1]), we obtain

F2 =





0.0201 −0.3818 −0.1026 0.0178
5.5108 0.0005 0.8791 2.8245
−0.2685 −0.0182 −5.2342 −0.2367





yielding κ f ro(X2) = 4.000, and‖F2‖ f ro = 8.173, indicating
that our method can achieve the same Frobenius conditioning
of the eigenvectors, but with reduced gain.

V. CONCLUSION

In our recent paper [1] we introduced a novel parametric
form for the gain matrix that solves the classic problem of
exact pole placement with any desired eigenstructure. In this
paper we employed the parametric form to offer a method
for obtaining a robust eigenstructure. The effectiveness of the
method was compared against a recent alternative method
from the literature and shown to achieve equivalent robust
conditioning, but with reduced matrix gain. Directions for
future research include investigations on the problem of non-
overshooting, non-undershooting and monotonic tracking
control [19]-[22] with repeated pole placement of the closed-
loop spectrum.
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