
©2006 IEEE. Personal use of this material is permitted. However, permission

to reprint/republish this material for advertising or promotional purposes or for

creating new collective works for resale or redistribution to servers or lists, or

to reuse any copyrighted component of this work in other works must be

obtained from the IEEE.

Visual Modeling of Behavioral Properties in the LVM for XML Using
XSemantic Nets

Rajugan, R.1, Elizabeth Chang2, Ling Feng3 and Tharam S. Dillon1
1eXel Lab, Faculty of IT, University of Technology, Sydney, Australia

{rajugan, tharam}@it.uts.edu.au
2School of Information Systems, Curtin University of Technology, Australia

Elizabeth.Chang@cbs.cutin.edu.au
3Faculty of Computer Science, University of Twente, The Netherlands

ling@ewi.utwente.nl

Abstract

Due to the increasing dependency on self-

describing, schema-based, semi-structured data (e.g.
XML), there exists a need to model, design and
manipulate semi-structured data and the associated
semantics at a higher level of abstraction than at the
instance or document level. In this paper, we extend
our research and propose to visually model (at the
conceptual level) and transform dynamic properties of
views in the Layered View Model (LVM) using the
eXtensible Semantic (XSemantic) net notation. First,
we present the modeling notation and then discuss the
declarative transformation to map the dynamic XML
view properties to XML query expressions, namely
XQuery.

1. Introduction

Since the early software models, abstraction and
conceptual semantics have proven their importance in
software engineering methodologies. For example,
Object-Oriented (OO) conceptual models offer the
power in describing and modeling real-world data
semantics and their inter-relationships in a form that is
precise and comprehensible to users. Conversely,
XML is becoming the dominant standard for storing,
describing and interchanging data among various
Enterprises Information Systems (EIS) and databases.
With the increased reliance on such self-describing,
schema-based, semi-structured data languages, there is
a need to model, design, and manipulate these data
(namely XML) and the associated semantics at a
higher level of abstraction, than at the instance level.
However, in many real-world scenarios, existing OO

conceptual modeling notations and languages provide
insufficient modeling constructs for utilizing XML
schema like data descriptions and constraints, while
most semi-structured schema languages lack the ability
to provide higher levels of abstraction (such as
conceptual models) that are easily understood by
humans [1-3]. To this end, it is interesting to
investigate conceptual and schemata extensions as a
means of providing higher level semantics in XML-
related data modeling. In this context, many traditional
database concepts and techniques (such as querying,
DBMS, views, etc.) have been or are in the process of
being transformed to support XML. For example,
works [4, 5] are some of the good examples in this
direction.

Similarly, in our work, we have proposed a Layered
View Model (LVM) for XML with the notion of
conceptual and schemata extension [3, 6]. There, we
presented in a systematic way with formal semantics
for: (a) a view formalism for XML with three levels of
abstractions, namely, conceptual, schema, and
instance; (b) detailed OO modeling primitives of static
properties such as domains, attributes, constraints [3]
and semantic relationships using two OO modeling
languages and (c) the transformation methodology of
such static properties between varying levels of
abstraction. Since the OO models are capable of
describing both static and dynamic properties of a
domain in question, in this paper, we present a
modeling notion to capture dynamic XML view
properties in the LVM. It should be noted that the
intention of this paper is neither to propose a new view
standard for XML nor extensions to XML query
languages. Rather, we focus on providing XML view
mechanism at the conceptual, schema, and document
levels by means of OO conceptual modeling.

10th International Database Engineering and Applications Symposium (IDEAS'06)
0-7695-2577-6/06 $20.00 © 2006

The motivation for the research presented in this
paper includes: (i) Develop an approach that permits
separation of implementation aspects and conceptual
aspects of views so that there is a clear separation of
concerns, thereby allowing analysis and design of
views to be separated from their implementation, (ii)
Define representations to express these views in a
conceptual model as first-class citizens, (iii) Define a
mechanism to permit construction of views at such a
higher level of abstraction than being tied to a specific
data manipulation language, (iv) To define a view
development methodology for XML views that utilizes
conceptual semantics and carries out schemata
transformation to an XML schema for the views as
well as transformation of the view construction to an
appropriate XML query language, such as XQuery [7].

The rest of this paper is organized as follows. In
section 2 we present some of the early work done in
relation to XML views, followed by section 3, which
describes our view model, view constructs and the
view methods in detail. Section 4 describes a real-
world case study example that is used to illustrate our
concepts presented in this paper. This is followed by
section 5 that provides a detailed discussion on
modeling dynamic view properties in the LVM using
the eXtensible Semantic nets notation. In section 6, a
detailed discussion on the declarative transformation of
the LVM view dynamic properties to query
expressions is given followed by section 7 that
concludes this paper with some discussion on our
future research directions.

2. Related Work

We can group the existing view mechanisms into
four categories, namely; (a) classical (or relational)
views [8, 9], (b) views for Object-Oriented (OO)
paradigm, (c) semi-structured (namely XML) view
mechanisms and (d) view models for the Semantic
Web [10] (SW). A comprehensive discussion on these
view mechanisms can be found in our work [3, 11].
Here, we focus only on the view mechanism for XML.

One of the early discussion on XML views was by
Serge Abiteboul [12] and later more formally by
Sophie Cluet et al. [13] and Aguilera et.al [14]. They
proposed a declarative notion of XML views.
Abiteboul et al. pointed out that, a view for XML,
unlike classical views, should do more than just
providing different presentation of underlying data
[12]. This he argues, arises mainly due to the nature
(semi-structured) and the usage (primarily as common
data model for heterogeneous data on the web) of
XML. He also argues that, an XML view specification

should rely on a data model (like ODMG [15] model)
and a query language. In the paper [13], they discuss in
detail on how abstract paths/DTDs are mapped to
concrete paths/DTDs. These concepts, which are
implemented in the Xyleme project [16, 17], provide
one of the most comprehensive mechanisms to
construct an XML view to-date. The Xyleme project
uses an extension of ODMG Object Query Language
(OQL) to implement such an XML view. But, in
relation to conceptual modeling, these view concepts
provide no support. The view model is derived from
the instantiated XML documents (instant level) and is
associated with DTD in comparison to flexible XML
Schema. Also, the Xyleme view concept is mainly
focused on web based XML data.

Another XML view model; the MIX (Mediation of
Information using XML) [18] view system, is a by-
product of developing web scale mediator systems.
The MIX system is based on mediator architecture
supporting to provide the user with an integrated view
of the underlying heterogeneous information/data
sources. The MIX system employs XML as the data
exchange and integration medium between mediator
components and the XML DTD to provide structural
descriptions of the data. Though MIX system provides
support for the construction of XML views, but it does
not provide a mechanism for explicit XML view
specification. It is a by-product to support data
mediation for web-based information systems. Though
powerful, the drawback includes no standalone
framework to support XML views and non-standard
language/(s) used to query/manipulate data. Also the
view formalism is not independent of the MIX
architecture.

One of the first XML view mechanism to utilize
visual representation is based on Object-Relationship-
Attribute model for Semi-Structured data (ORA-SS)
and was proposed by authors in [19]. It is an intuitive
data model for XML based on Entity-Relationship
(ER) model and the static OO model. An object in
ORA-SS is similar to that of an entity in ER (similar to
that of an XML element), while a relationship is
similar to that of a relationship between two entities in
ER. Attributes of ORA-SS describe the objects and
relationships. This is one of the first view models that
support some of abstraction above the data language
level.

It should be note that, of all the view models
discussed above, provides discussion only on static
properties of views and provides no mechanism for
capturing and/or modeling dynamic view properties. In
a related work in Active XML [4, 20, 21], authors have
provided an extensive support for dynamic properties
for views in Active XML views, but those views are

10th International Database Engineering and Applications Symposium (IDEAS'06)
0-7695-2577-6/06 $20.00 © 2006

based on active rules rather than data or document
centric view specification and/or definitions.

3. Our Work: The Layered View Model
(LVM) for XML

In our work with views for XML, we proposed a
Layered View Model (LVM) for XML [6, 11] that is
comprised of three different levels of abstraction,
namely, conceptual level, logical(or schema) level,
and document (or instance) level.

The top conceptual level describes the structure and
semantics of views in a way that is more
comprehensible to human users. It hides the details of
view implementation and concentrates on describing
objects, relationships among the objects, as well as the
associated constraints upon the objects and
relationships. This level can be modelled using some
well-established modelling language such as
UML/OCL [22], or our own XML-specific XSemantic
net [1, 3], etc. The output of this level is a well-defined
valid conceptual model in UML or XSemantic nets
which can be either visual (such as UML class
diagrams) or textual (in the case of XMI models).
Also, at this level the views are referred to as
conceptual views.

The middle level of the view model is the schema
(or logical) level and describes the schema of views
using the XML Schema (XSD) [23] definition
language. Views at the conceptual level (conceptual
views) are mapped into the views at the schema level
(referred to as logical views) via the extended
schemata transformation methodology described in the
previous works such as [1, 2]. The output of this level
will be in either textual (XSD) or some visual (graph)
notations that comply from the schema language. In
our previous works such as [3, 6, 11, 24] we have
shown how conceptual views are mapped to XSD.
This includes mapping UML (view specific)
stereotypes, constraints (both UML and XSemantic
nets) and constructional constructs (such as bag, set,
list etc.) to XSD.

The third level is the document or instance level,
implies a fragment of instantiated XML data, which
conforms to the corresponding view schema defined at
the upper level. Here, the conceptual operators [3]
(and other view dynamic properties) are mapped to
language specific query expressions (e.g. XQuery,
SQL ’03 [25]), which are syntax specific. Formal
semantics of the LVM for XML can be found in our
work [3]. At this level views are referred to as
document views.

There are two types of dynamic properties we
address in our LVM, namely; (a) view constructs:
These are the sequence of one ore more conceptual
operators that constructs the views and (b) internal
view methods (weak encapsulation) such as generic
and update (or user) defined functions. In this paper
we address only the view constructs, the generic
methods and their declarative transformation to query
expression.

3.1. Conceptual Operators

Conceptual operators are operators that operate on
conceptual artefacts. They are grouped into set
operators, namely; union, difference, intersection,
Cartesian product, join and unary operators namely;
projection, rename, restructure and selection. These
conceptual operators can facilitate systematic
construction of conceptual views (at the conceptual
level) from a context [6] and can be easily transformed
into query expressions, user-defined functions and/or
procedures for implementation. By doing so, they help
the modeler to capture view constructs at the abstract
level without knowing or worrying about query
language syntax. The set of binary and unary operators
provided here (except intersection and join) are a
complete or primitive set; i.e. other operators, such as
division, join, intersection and compression operators
can be derived from these complete set of operators. A
detailed description and formal semantics of these
conceptual operators are presented in [3].

3.2. Internal View Methods and Update
Functions

Since the introduction of views in relational DBMS
in early ’80s, there have been constant discussions and
research directions on data manipulation in views
(including view updates) to date; view updatability is
well-studied and implemented for relational
environments in the context of materialized views and
data warehouses. But, the concept of data manipulation
in views, to date, has very few approved standards in
both relational and OO models. Also, this is still a
vendor/platform specific task (e.g. Oracle™ DBMS,
IBM™ DB2, MySQL™ or O2 OODBMS) and lacks
consistency.

Our intention here is neither to address view
updatability issues in the LVM nor to put forward a
proposal for view updatability issues using XQuery.
Our focus here is to enable conceptual modelling of a
minimal set of dynamic view properties (e.g. generic
methods) and the corresponding transformation of such

10th International Database Engineering and Applications Symposium (IDEAS'06)
0-7695-2577-6/06 $20.00 © 2006

properties to document view query expressions. This,
we argue, would provide some degree of accessibility
and the encapsulation concept to views in the LVM.
Our aim is to provide both static and dynamic
modelling facility for the views in the LVM, at a
higher-level of abstraction and the automated
transformation its properties to view schema and query
expressions.

However, it should be noted here that, in practice,
view update issues are strongly coupled with the
underlying (XML) database management system and
the query language (i.e. supported operators, storage
model etc.) and many restrictions and constraints may
result from this. For the purpose of this research, we
discuss only generic methods and use the newly
proposed W3C XQuery update facility [26], which is a
W3C working draft. Thus, given below are a set of
declarative conditions that have to be met in order to
perform querying and data accessibility in the LVM
views for XML.

There are three kinds of views in the LVM based on
their construction operator and the stored document/(s)
type [11]. A summery of permitted generic operations
for view types in the LVM is given in Table 1.

Table 1: Summary of the generic operations
permitted in the LVM

View Types /
Operation (or

method)

Derived
Imaginary
Document

(DID)

Constructed
Imaginary
Document

(CID)

Triggered
Imaginary
Document

(TID)
Get (or retrieve)
methods yes yes yes

Set (or insert)
methods conditional conditional no

Update methods yes conditional no
Delete methods conditional conditional no

4. Case Study Example

To demonstrate our concepts and formalisms
presented in this paper, we use a real-world case study
called e-Sol. The e-Sol aims to provide logistics,
warehouse, and cold storage space for its global
customers and collaborative partners. The e-Sol
solution includes a standalone and distributed
Warehouse Management System (WMS/e-WMS), and
a Logistics Management System (LMS/e-LMS) on an
integrated e-Business framework called e-Hub [27] for
all inter-connected services for customers, business
customers, collaborative partner companies, and LWC
staff (for e-commerce B2B and B2C). Some real-world
applications of such company, its operations and IT
infrastructure can be found in [27-29].

In WMS, customers book/reserve warehouse and
cold storage space for their goods. They send in a
request to warehouse staff via fax, email, or phone, and
depending on warehouse capacity and customers’
grade (individual, company or collaborative partner),
they get a booking confirmation and a price quote. In
addition, customers can also request additional services
such as logistics, packing, packaging etc. When the
goods physically arrive at the warehouse, they are
stamped, sorted, assigned lots numbers and entered
into the warehouse database (in Lots-Master). From
that day onwards, customers get regular invoices for
payments. In addition, customers can ask the
warehouse to handle partial sales of their goods to
other warehouse customers (updates Lots-Movement
and Goods-Transfer), sales to overseas (handled by
LMS) or take out the goods in full or in partial (Lots-
Movement). Also customers can check, monitor their
lots, buy/sell lots and pay orders via an e-Commerce
system called e-WMS. In LMS, customers use/request
logistics services (warehouse or third-party logistics
providers) provided by the warehouse chains. This
service can be regional or global including multi-
national shipping companies. Like e-WMS, e-LMS
provide customers and warehouses an e-Commerce
based system to do business. In e-Hub, all warehouse
services are integrated to provide one-stop warehouse
services (warehouse, logistics, auction, goods tracking,
payment etc) to customers, third-party collaborators
and potential customers.

In e-Sol, due to the business process, data have to
be in different formats to support multiple systems,
customers, warehouses and logistics providers. Also,
data have to be duplicated at various points in time, in
multiple databases, to support collaborative business
needs. In addition, since new customers/providers to
join the system (or leave), the data formats has to be
dynamic and should be efficiently duplicated without
loss of semantics. This presents an opportunity to
investigate how to use our XML conceptual, schema
and instance views to design e-Sol at a higher level of
abstractions to support changing business,
environments, and data formats.

5. Modelling Views in the LVM Using
XSemantic Nets

The XSemantic net modelling notion is an intuitive
approach to conceptually model XML domains. The
modelling efficiency and flexibility come from its
structural similarity to an XML document structure and
the ability to capture all the static properties of OO
concept; objects, relationships (hierarchical and non-

10th International Database Engineering and Applications Symposium (IDEAS'06)
0-7695-2577-6/06 $20.00 © 2006

hierarchical) and dependencies to name a few. Here,
the concept of nodes and associated constrains are
similar or more explicit than the notion of classes in
OO models. Also, due to structural similarity, the
transformation between XSemantic net and XML is
single levelled (i.e. one step) and automatic [1]. The
proposed methodology is comprised of three design
levels: (i) semantic level, (ii) schema level, and (iii)
instance level. The aim is to enforce conceptual
modelling power to XML (and views) in order to
narrow the gap between real-world objects and XML
document structures. The XSemantic net notion used
here is given in Fig. 1.

Figure 1: XSemantic net notation

The first level of the XSemantic net design
methodology corresponds to the Object-Oriented (OO)
conceptual level and is composed of two models,
namely, the domain and the view models. This level is
based on an (extended) modified semantic network [1],
that provides semantic modelling of XML domains
through five major components, namely:
(i) a set of nodes representing real-world objects

and view objects,
(ii) a set of directed edges representing semantic

relationships between these objects,
(iii) a set of labels denoting different types of

semantic relationships, including; (a)
aggregation, (b) generalization, (c)
association, (d) of-property, (e) view and (f)
operator.

(iv) a set of constraints, such as; (a) defined over
a node (e.g. uniqueness, referential integrity,
etc.), (b) defined over an edge (e.g.
cardinality, adhesion, etc.), (c) defined over a
set of edges (e.g. exclusive disjunction, etc.)

(v) a set of conceptual operators to systemically
construct conceptual views such as; (a) unary
operators and (b) binary operators.

(vi) a set of event nodes representing generic and
user defined methods (or triggers) in the view
objects.

The second level of the proposed methodology is
concerned with detailed XML schema design for both
domain and view objects defined at the semantic level,
including element/attribute declarations and
simple/complex type definitions. The mapping between
these two design levels are extension of the schemata

transformation proposal stated in [1] and proposed to
transform the semantic models into the XML Schema,
based on which XML documents can be systematically
created, managed, and validated.

The third level of the design methodology is
concerned with a detailed query design for the views,
defined at the semantic level including query language
specific expressions and syntax declarations. The
mapping between semantic level conceptual operators
and the query language specific expressions is
proposed to transform valid conceptual operators into
executable native XML query expressions, such as
XQuery FLOWR expressions or SQL 2003/SQLX
statements. The resulting query expressions/statements
are able to construct imaginary XML documents that
can be validated against the XML (view) schemas
generated at the schema level of the design
methodology. At this level, it is also proposed to
transform generic and user defined methods to query
expressions in the form of triggers, user defined
functions (UDF) and external procedure calls.

Example 1: The relationship between conceptual
view Logistics-Staff, Admin and Site-
Manager is generalization/specialization, as shown in
Fig. 2.

Example 2: The relationship between conceptual
views Site-Manager and Warehouse-Manager
is association, as shown in Fig. 2. Site-Manager
manages Warehouse-Manager.

Example 3: The relationship between conceptual
view Warehouse-Staff and Warehouse-
Manager is generalization/specialization, as shown in
Fig. 2.

Example 4: The relationship between conceptual
views Warehouse-Manager and
Collaborative-Partner is association, as
shown in Fig. 2. Warehouse-Manager deals-with
Collaborative-Partner.

Example 5: In the case of the conceptual view
Income (shown in Fig. 3), the conceptual construct is
a conceptual JOIN operator with join conditions,
where x = Staff, y = Salary-Pkg and z =
Benefit-Pkg:

)(

)(

)..(

)..(),,(

zx

ANDyx

staffIDzstaffIDx

staffIDystaffIDxzyx

=

=

→

→=><

Example 6: There exists an object-attribute

relationship (i.e. of-property) staffID,
baseSalary, totalBenefits etc. of the
conceptual view Income as shown in Fig. 3.

Example 7: For example (Fig. 3), we have shown
how a simple join conceptual operator is represented

10th International Database Engineering and Applications Symposium (IDEAS'06)
0-7695-2577-6/06 $20.00 © 2006

using an event node. In Fig. 4, the same example
(Income) is shown with some generic methods.

Figure 2: Conceptual view semantic relationship

examples (generalization, association)

Figure 3: A conceptual view example in the e-Sol

(“Income”)

Figure 4: Conceptual view (Income) and generic methods

6. Declarative Transformation of LVM
Dynamic Properties to Document View
Expressions

In our work, we selected XQuery as the document
view expression as it is well-suited for our purpose and
better than other XML query languages (such as XPath
or XSLT) because: (i) XQuery is easy to read and
write in comparison to XPath and XSLT, (ii) XQuery
has powerful For-Let-Where-Order-Return (FLWOR)
expression, in comaprions to XPath/XSLT are (purely)
presentation oriented expressions, (iii) XQuery
provides User-Defined Functions (UDF) and variable
binding, (iv) XQuery support XML Schema and (v)
XQuery provide extension mechanism to support new
functionalities and data models such as RDF, OWL,
etc., such as in [5, 30].

The formal semantics of XQuery can be found in
[31] and the new working draft on XQuery update
facilities in [26]. In this research, we briefly discuss
XQuery as the document view language and for
specifying view specific generic methods (namely the
get, set, delete or retrieve methods). This is because
XQuery standards do not fully support XML data
manipulation yet. But, we choose XQuery as the
document view constructor as it is gaining momentum
as the language of choice for XML databases and
repositories and in the future it will support many of
the data manipulation features.

6.1. Transformation of Conceptual Operators
to Document View Expressions

The transformation of conceptual operators to
XQuery is a 2-step transformation: (a) the declarative
transformation of conceptual operator definitions to
W3C XQuery expressions; and (b) refinement and
validation of XQuery expressions to query engine
specific executable code (outside the scope of this
research and not addressed in this research). The
transformation is done in two steps so as: (a) to keep
the conceptual operators and textual XQuery
expressions separated from the actual executable
XQuery expressions (including both standalone and

10th International Database Engineering and Applications Symposium (IDEAS'06)
0-7695-2577-6/06 $20.00 © 2006

embedded code), to keep the transformation functions
simpler (almost one-to-one declarative mapping
between the conceptual operators to XQuery
expressions) and independent of one specific query
engine (and one predefined XQuery specification); (b)
to achieve MDA like PIM to PSM transformation with
more emphasis on reducing vendor specific XQuery
engine (or platform) specific syntax and maintain close
proximity to the original W3C XQuery syntax; (c) to
support forthcoming (and new) XQuery standards
(e.g. such as those proposed in [26] and extensions
(e.g. XQuery support for Semantic Web meta
languages, such as OWL [30]); (d) to achieve
portability and cross-platform interoperability between
various present and future implementations of XQuery
engines.

In addition, here we provide the basic (or skeletal)
transformation, that is, it is declarative. This is
because: (i) XQuery standards are still evolving and
providing a definitive non-declarative transformation
may restrict the utilization of new XQuery standards,
(ii) if the transformation is generic (i.e. only the
resulting skeletal syntax is defined), thus, the
document view construction is left as part of the
deployment option, that is; (a) document view
expression may be stored as predefined functions
within a database management system (e.g. Oracle,
Tamino, SQL Server, etc., such as stored procedures,
triggers or user-defined functions. Also, a given
operator may also be mapped to a generic XQuery
function template (analogues to User Defined
Functions (UDF) [32] in relational and Object-
Relational (O-R) models). However, given the
evolving nature of the XQuery standards, it is desirable
to have the mapping to be as simple as possible, an
approach used in this research, UDF syntax, notation,
and definition may vary from programmer to
programmer and between query engines, (b) document
view expression may be deployed as embedded code
within a script enabled page or external program
modules (e.g. Oracle PL/SQL) and (c) document view
expression may be made part of the customized
XQuery extensions, such as in [5] or [30], where there
exists a need to support application specific or domain
specific LVM view construction and (iii) Since the
transformations produce skeletal XQuery expression, it
can be customized and/or optimized by allowing it be
extended (or restricted) to add platform specific
requirements and/or environment settings.

It should be noted that the intention of this section is
not to introduce and elaborate on XQuery syntax and
functions, but rather to address the declarative
mapping of conceptual operators to XQuery functions.
The transformation described below also includes

some of the proposed XQuery extensions by the
working draft in [26]. Also, in real-world scenario,
conceptual operators used will be a combination of one
more basic set as described above, and can be mapped
to a sequence of XQuery expressions using the core
mappings described in the following sections. Table 1
illustrates a brief summary the proposed
transformation described here.

The transformation of the conceptual binary
operators to XQuery is to map the conceptual operator
to XQuery set operators. Let node-1 and node-2 be
two node sequences. Here, the nodes can be from one
document or from two documents. The transformation
of unary operators can be mapped directly to an
XQuery FLWOR expressions, except for the rename
and restructure operators. For the transformation of
rename and restructure operators, we use the proposed
XQuery extensions in the W3C working draft [26] to
XQuery rename and transform operators.

Example 8: As shown in Fig. 5, the conceptual
selection operator of the view Warehouse-Staff
can be mapped to the document view construct as
shown below in the Code Listing 1.

for $staff in document ("staff.xml")
where
 $staff//StaffMember/Work/@workGroup =
"warehouse"
order by $staff-member/lastName
return <Warehouse-Staff> {$staff/*
 } </Warehouse-Staff>

Code Listing 1: Transformation of

)("" StaffwarehouseworkGroup=σ to XQuery FLWOR

expression

Example 9: As shown in Fig. 5, the conceptual

selection operator of the view Warehouse-
Manager can be mapped to the document view
construct as shown in Code Listing 2.

for $staff in document ("staff.xml")
where $staff//StaffMember/Role = "manager"
return <Warehouse-Manager> {$staff/*

 } </Warehouse-Manager>

Code Listing 2: Transformation of

)("" StaffmanagerRole=σ to XQuery

Example 10: The Code Listing 3 illustrates an order
(staffID, lastName, firstName, deptNo)
constraint applied to the conceptual view
Warehouse-Staff, as shown in Fig. 5.

Example 11: A Cartesian product conceptual
operator (Fig. 6) can be mapped to the XQuery

10th International Database Engineering and Applications Symposium (IDEAS'06)
0-7695-2577-6/06 $20.00 © 2006

expression, at the document level as illustrated in Code
Listing 4.

Figure 5: Conceptual view example (Warehouse-Staff)

Example 12: The Code Listing 5 illustrates the

transformation of the Income conceptual view
construct (Fig. 3) to document view expression.

The rename conceptual operator is mapped to the
XQuery update facility rename operator. The syntax is
given in Code Listings 6 - 7. It should be noted here
that the rename operator can be also used with
projection and selection operator, using the new
extensions provided for the XQuery FLWOR
expression to support the rename operator.

The restructure conceptual operator can be mapped
to XQuery using: (i) Implicit mapping: Here, the
restructure operator is mapped to a sequence of
FLWOR expressions together with optional order
and/or where clause and (ii) Explicit mapping: Here,
the restructure operator is mapped the new XQuery
update facility transform operator to create new
structure of an existing document/(s). The syntax is
given in Code Listing 8.

Example 13: Code Listing 9 illustrates a generic
restructure operator mapped to document view
expression using the XQuery transform operator.

6.2. Transformation of Generic Methods to
Document View Expressions

To transform the generic methods/functions to
document view expressions, unlike SQL in relational
data model, XQuery standards do not fully support
XML data manipulation yet. However, with the
prospect of new extensions being proposed for
XQuery, transformation described below also includes
some of the proposed XQuery extensions by the
working draft in [26]. Given the declarative conditions
stated in Table 1 above are satisfied for a given view
type in the LVM, we can summarise the transformation
of its generic methods to XQuery expressions as given

in Table 2, which summaries some of the mapping to
generic XQuery expressions. Let node-1 and node-2 be
two node sequences.

Figure 6: Conceptual view construct (Cartesian product)

example

It should be noted here that, generic methods
described above (and summarised in Table 2) may also
be mapped to XQuery using elaborate UDFs in
XQuery [33]. An example of such UDF XQuery
syntax is shown in Code Listing 10. However, here we
do not use such transformation. Another similar
transformation methodology, to map generic and user
defined methods to SQL, in the context of Object-
Relational paradigm can be found in [32].

Table 2: Summary of the transformation of LVM
generic methods to document view expressions

(XQuery)

Generic
Methods

Comments XQuery expression

Get
methods

Simple FLWOR
expression
(simple project
operators for
attribute or
elements)

doc (“node-1.xml”)//node/*
or
doc (“node-1.xml”)//node/@*

Update
methods

XQuery
replace
operator

* Note: here
only replacing
element values
are considered.

replace value of
{fn:doc (“node-
1.xml”)//element-a[1]
with $new-value

Set
methods

XQuery
insert
operator
* Note: here the
new items are
always assumed
to be inserted as
last

insert {$new-sub-node}
as last into
fn: doc(“node-
1.xml”)//nodes

/node[OID=$param-
oid]

Delete
methods

XQuery
delete
operator

delete
{ fn: doc(“node-1.xml”)
//nodes[element=$del-value]
}

10th International Database Engineering and Applications Symposium (IDEAS'06)
0-7695-2577-6/06 $20.00 © 2006

for $staff in document ("staff.xml")
where $staff//StaffMember/Work/@workGroup = "warehouse"
order by $staff-member/lastName, $staff-member/firstName
return

<Warehouse-Staff>
<personal-info>
(: ordered :)

<staffID> {$staff/@staffID} </staffID>
{$staff/lastName}
{$staff/@firstName}
<deptNo> {$staff/@deptNO} </deptNo>

</personal-info>
<Address> $staff/address/* </Address>
<Contact-No> $staff/contactNo/* </Contact-No>

</Warehouse-Staff>

Code Listing 3: Transformation of conceptual selection operator (with order constraint) to XQuery expression

for $memo in document ("Warehouse-Manager.xml")//Admin,

 $msg in document ("Messages.xml")//Msg
where $msg/@date= today()
return <Memo> {

$memo/Memos}
<newMemo> {$msg/@*} {$msg/MsgBody} </newMemo>

</Memo>

Code Listing 4: Transformation of to XQuery expression (Cartesian product)),/(MessageMemoManagerWareohuse−×

for $staff in document ("staff.xml")//Staff-member,

$sal in document ("staff.xml")//Salary-Pkg,
$benefits in document ("staff.xml")//Benefit-Pkg

let $totBenefits := $sal/Family-Support/totalAmount +
$sal/Executive-Support/totalAmount

let $netSal := $sal + $totBenefits - $sal/deductionAmount
where $staff/@staffID = $sal/@staffID and

$staff/@staffID = $benefits/@staffID
return <Income> {$staff/@staffID}

{$staff/FirstName}
{$staff/LastName}
{$staff/Tax-SSN}
<baseSalary> {$sal/base} </baseSalary>
<totalBenefits> {$totBenefits} </totalBenefits>
<totalDeductions> {$sal/deductionAmount} </totalDeductions>
<payMonth> {month (), year()} </payMonth>
<netSalary > {$netSal} </netSalary>

</Income>

Code Listing 5: Transformation of the Income conceptual view construct)()..(),,(yx staffIDystaffIDxzyx =→=><

 to XQuery expression)()..(zxand staffIDzstaffIDx =→

rename

{fn:document (“node-1.xml”)/old-element-name}
to “new-element-name”

Code Listing 6: Transformation conceptual rename operator to XQuery expression (renaming an element)

10th International Database Engineering and Applications Symposium (IDEAS'06)
0-7695-2577-6/06 $20.00 © 2006

rename

{fn:document (“node-1”)/nodes[1]/element-old-value[1]}
to $value0in-variable

Code Listing 7: Transformation conceptual rename operator to XQuery expression (renaming a value using a
variable)

for $a document ("node-1.xml")
where $a//selection-condition = value-or-nested-query
order by $a/element-2 (: new ordered structure :)
return <new-structure-1>

{$a//element-4/*
<new-structure-2>{$a//element-3/*

<new-structure-3> {$a//element-1/*
}</new-structure-3>

} </new-structure-2>
} </new-structure-1>

Code Listing 8: Transformation of conceptual restructure operator to XQuery expression (option (i))

for $a in doc (“node-1.xml”)//nodes
return

transform
copy $trans-a := $a
do delete {$trans-a/node-1}

return $trans-a

Code Listing 9: Transformation of restructure operator to XQuery expression (option (ii))

define function get-Warehouse-Staff-firstName ($param-staffID)as element ()*
{

for $staffMem in document ("staff.xml")//StaffMember
where some $staffID in $staffMem/@staffID satisfies
 ($staffID = $param-staffID)
 and
 ($staffMem/Work/@workGroup = "warehouse")
return $staffMem/@firstName

}

Code Listing 10: An example transformation of a generic get method (getFirstName()) in Warehouse-Staff to an
XQuery UDF

7. Conclusion & Future Work

In this paper, we presented a modeling notation to
capture dynamic properties in the layered view model
using XSemantic nets. We also provided a declarative
transformation of such dynamic properties into
document view (query) expressions.

For future work, some further issues deserve
investigation. First, the investigation of a formal
mapping approach to conceptual view (dynamic)
properties to query expressions and the automation of
such transformation. Second, is the investigation into
dynamic perspectives of such conceptual view
formalism that can be applied to traditional, Semantic
Web and web service data to conceptually model the
domain in question.

8. References

[1] L. Feng, E. Chang, and T. S. Dillon, "A Semantic

Network-based Design Methodology for XML
Documents," ACM Transactions on Information
Systems (TOIS), vol. 20, No 4, pp. 390 - 421, 2002.

[2] L. Feng, E. Chang, and T. S. Dillon, "Schemata
Transformation of Object-Oriented Conceptual Models
to XML," International Journal of Computer Systems
Science & Engineering, vol. 18, No. 1, pp. 45-60, 2003.

[3] R.Rajugan, "A Layered View Model for XML with
Conceptual and Logical Extension, and its
Applications," in Faculty of Information Technology.
Sydney: University of Technology, Sydney (UTS),
Australia, 2006, pp. 460.

[4] S. Abiteboul, O. Benjelloun, I. Manolescu, T. Milo, and
R. Weber, "Active XML: Peer-to-Peer Data and Web

10th International Database Engineering and Applications Symposium (IDEAS'06)
0-7695-2577-6/06 $20.00 © 2006

Services Integration," Proceedings of the 28th
International Conference on VLDB, HK, China, 2002.

[5] L. Feng and T. S. Dillon, "An XML-Enabled Data
Mining Query Language XML-DMQL," International
Journal of Business Intelligence and Data Mining,
2005.

[6] R.Rajugan, E. Chang, T. S. Dillon, and L. Feng,
"Modeling Views in the Layered View Model for XML
Using UML," International Journal of Web Information
Systems (IJWIS), Troubador Publisher Ltd., vol. 2(2),
pp. 95-117, 2006.

[7] W3C-XQuery, "XQuery 1.0: An XML Query Language
(http://www.w3.org/TR/xquery)," in XML Query
Language (XQuery): The World Wide Web Consortium
(W3C), 2004.

[8] C. J. Date, An introduction to database systems, 8th ed.
New York: Pearson/Addison Wesley, 2003.

[9] E. F. Codd, The Relational Model for Database
Management: Version 2: Addison Wesley Publishing
Company, 1990.

[10] W3C-SW, "The Semantic Web
(http://www.w3.org/2001/sw/)," W3C, 2005.

[11] R.Rajugan, E. Chang, T. S. Dillon, and L. Feng, "A
Three-Layered XML View Model: A Practical
Approach," 24th International Conference on
Conceptual Modeling (ER '05), Klagenfurt, Austria,
2005.

[12] S. Abiteboul, "On Views and XML," Proceedings of the
eighteenth ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems (PODS
'99), Philadelphia, Pennsylvania, USA, 1999.

[13] S. Cluet, P. Veltri, and D. Vodislav, "Views in a Large
Scale XML Repository," Proceedings of the 27th
VLDB Conference (VLDB '01), Roma, Italy, 2001.

[14] V. Aguilera, S. Cluet, T. Milo, P. Veltri, and D.
Vodislav, "Views in a Large-Scale XML Repository,"
The VLDB Journal — The International Journal on
Very Large Data Bases, vol. 11(3), pp. 238-255, 2002.

[15] R. G. G. Cattell, D. K. Barry, M. Berler, J. Eastman, D.
Jordan, C. Russell, O. Schadow, T. Stanienda, and F.
Velez, "The Object Data Standard: ODMG 3.0,"
Morgan Kaufmann, 2000, pp. 300.

[16] Xyleme, "Xyleme Project (http://www.xyleme.com/),"
2001.

[17] Lucie-Xyleme, "Lucie Xyleme: A dynamic warehouse
for XML Data of the Web," IEEE Data Engineering
Bulletin, vol. 24, No 2, pp. 40-47, 2001.

[18] B. Ludaescher, Y. Papakonstantinou, P. Velikhov, and
V. Vianu, "View Definition and DTD Inference for
XML," Post-ICDT Workshop on Query Processing for
Semistructured Data and Non-Standard Data Formats,
1999.

[19] Y. B. Chen, T. W. Ling, and M. L. Lee, "Designing
Valid XML Views," Proceedings of the 21st
International Conference on Conceptual Modeling (ER
'02), Tampere, Finland, 2002.

[20] S. Abiteboul, O. Benjelloun, I. Manolescu, T. Milo, and
R. Weber, "Active XML: A Data-Centric Perspective
on Web Services," BDA, 2002.

[21] S. Abiteboul, B. Amann, S. Cluet, A. Eyal, L. Mignet,
and T. Milo, "Active Views for Electronic Commerce,"
Proceedings of the 25th International Conference on
VLDB, Edinburgh, Scotland, 1999.

[22] OMG-UML™, "UML 2.0 Final Adopted Specification
(http://www.uml.org/#UML2.0)," vol. 2005: OMG,
2003.

[23] W3C-XSD, "XML Schema
(http://www.w3.org/XML/Schema)," vol. 2004, 2 ed:
W3C, 2001.

[24] R.Rajugan, E. Chang, T. S. Dillon, and L. Feng,
"Alternate Representations for Visual Constraint
Specification in the Layered View Model," The Seventh
International Conference on Information Integration
and Web Based Applications & Services (iiWAS '05),
Kuala Lumpur, Malaysia, 2005.

[25] ANSI and ISO, "ANSI - SQL 2003," ANSI / ISO 2003.
[26] W3C-XQuery-UF, "XQuery Update Facility

(http://www.w3.org/TR/2006/WD-xqupdate-
20060127/) - W3C Working Draft 27 January 2006," in
XML Query Language (XQuery): The World Wide Web
Consortium (W3C), 2006.

[27] E. Chang, T. Dillon, W. Gardner, A. Talevski,
R.Rajugan, and T. Kapnoullas, "A Virtual Logistics
Network and an e-Hub as a Competitive Approach for
Small to Medium Size Companies," 2nd International
Human.Society@Internet Conference, Seoul, Korea,
2003.

[28] E. Chang, W. Gardner, A. Talevski, E. Gautama,
R.Rajugan, T. Kapnoullas, and S. Satter, "Virtual
Collaborative Logistics and B2B e-Commerce," e-
Business Conference, Duxon Wellington, NZ, 2001.

[29] ITEC, "iPower Logistics
(http://www.logistics.cbs.curtin.edu.au/)," 2002.

[30] P. Lehti and P. Fankhauser, "SWQL – A Query
Language for Data Integration Based on OWL," First
IFIP WG 2.12 & WG 12.4 International Workshop on
Web Semantics (SWWS '05), In conjunction with On
The Move Federated Conferences (OTM '05), Agia
Napa, Cyprus, 2005.

[31] W3C-XqFM, "XQuery 1.0 and XPath 2.0 Formal
Semantics (http://www.w3.org/TR/xquery-semantics/),"
W3C Candidate Recommendation 3 November 2005
ed: The World Wide Web Consortium (W3C), 2005.

[32] J. W. Rahayu, "Object-Relational Transformation
Methodology," in Department of Computer Science &
Computer Engineering: La Trobe University,
Melbourne, Australia, 2000.

[33] D. D. Chamberlin and H. Katz, XQuery from the
experts : a guide to the W3C XML query language.
Boston: Addison-Wesley, 2003.

10th International Database Engineering and Applications Symposium (IDEAS'06)
0-7695-2577-6/06 $20.00 © 2006

