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1. Introduction

In this paper we explore methods for the combination of
relative positioning and attitude determination for moving
platforms, where each platform has multiantennas with
known baseline lengths on its own surface and baseline
vectors with unknown length to the other platforms. The
objective of this research is to develop a method that
optimally makes use of all the information available (i.e.,
the integerness of the ambiguities, the relationship between
the ambiguities on the different baselines, and the known
baseline length of the constrained baselines) to determine the
relative position and orientation of a multiantenna system
with unconstrained and constrained baselines. We develop
a rigorous integrated method and investigate its ambiguity
resolution performance for the unconstrained baselines and
the overall success rate of the ambiguity resolution between
a number of antennas. The paper begins with a discussion
of potential applications and a literature review of previous
work that has been done in this field. In Section 2 a
general model for unconstrained and constrained baselines
is introduced. Section 3 describes the standard methods
for ambiguity resolution for unconstrained (e.g., relative
navigation) and constrained (e.g., attitude determination)
baseline applications. Section 4 introduces three methods
for multiantenna ambiguity resolution and describes the
methods mathematically for triple and quadruple antenna

configurations. In Section 5 the methods are tested using
simulated data.

1.1. Applications

1.1.1. Relative Navigation. Currently precise relative nav-
igation using GNSS is under development for a large
number of applications on land, on water, in the air, and
even in space. The automotive industry shows interest in
this application for relative navigation not only between
vehicles and reference stations but also between vehicles [1].
Maritime applications, especially inshore relative navigation,
require precise and robust methods [2]. Obviously this kind
of technique not only is required for a swarm of Unmanned
Aerial Vehicles (UAVs) [3, 4] or spacecraft [5] but also
could be beneficial for swarms of manned vehicles [6]. Other
aircraft applications are aerial refueling as well as, potentially,
landing [7]. For relative navigation between aircraft and
vessels, landing on aircraft carriers is an important applica-
tion [8]. If the vehicles have multiple antennas, GNSS could
potentially be used for determination of the attitude of the
vehicle(s) [9–11]. Traditionally the relative positioning and
attitude determination problems are treated as independent.
In this contribution we investigate the possibility of using
multiantenna data, not only for attitude determination but
also to improve the relative positioning.
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1.1.2. Absolute and Relative Attitude Determination. Attitude
determination using GNSS signals is becoming more and
more accepted for real world applications. With 2 antennas/1
baseline, a direction estimate similar to a magnetic compass
can be obtained. With 3 antennas/2 baselines, placed at
appropriate relative positions, the full attitude can be
determined. For some applications we would like to know
the relative attitude between two platforms, which also could
be provided by GNSS if both platforms have a number of
antennas. Examples of these applications are not only aerial
refueling, landing on aircraft carriers and rendezvous and
docking in space but also formation flying if the elements of
the formation have to point in certain directions relative to
each other.

1.2. Previous Work. In [12] the use of a quadruple receiver
system consisting of two static GPS receivers and two GPS
receivers mounted on a single platform was considered
for improved On The Fly (OTF) ambiguity resolution
with single frequency receivers. The ambiguities between
the two static receivers and between the two receivers
on the same platform could be determined within a few
seconds due to the short and fixed baselines between them.
These ambiguities could, in turn, be used as constraints to
reduce the number of potential ambiguity solutions for the
unconstrained baseline between the static station and the
platform and, therefore, to reduce the time to resolution
from 810 to about 470 seconds for a configuration without
choke rings and from 355 to 180 seconds for a configuration
with choke rings. The research used the relationship between
the ambiguities but did not model the correlation between
the observations at the antennas.

In [13] a system was proposed which provides carrier-
based positioning and two axis attitude measurements using
three single frequency GPS receivers (i.e., triple-antenna
configuration). The aim of this triple-antenna configuration
was to increase the success rate of the integer ambiguity
resolution process when relative positioning the platform
to a base station by utilising knowledge of the integer
ambiguities obtained from a constrained baseline in the
attitude determination system. The use of baseline length or
geometry constraints in the attitude determination environ-
ment increased the integer ambiguity success rate. In that
paper the knowledge of the integer ambiguities from the
attitude determination system is used to reduce the number
of candidates during the search for the integer ambiguities
arising when the third receiver is included. When these
ambiguities are resolved, the unknown baselines between
the roving (attitude) receivers and base receiver may be
determined and the relative position obtained. The relation
between the work of [13] and this paper will be discussed in
more detail later.

Also commercial products are starting to use multi-
antenna data in their relative positioning solutions. One
example is the TRIUMPH-4X from JAVAD, which uses
quadruple antennas at both the base station and rover to
calculate Real Time Kinematic (RTK) solutions, in what they
call cluster RTK [14]. As it is a commercial product no details
about their processing strategy are available.

2. Modelling

2.1. Model for Unconstrained Baselines. Precise GNSS
receivers make use of two types of observations: pseudorange
and carrier phase. The pseudorange observations typically
have an accuracy of decimeters, whereas carrier phase obser-
vations have accuracies up to millimeter level. The double
difference (hereafter coined DD) observation equations can
be written as a system of linearized observation equations
[15]:

E
(
y
) = Aa + Bb, D

(
y
) = Qy , (1)

where E is the mean or the expected value and D is the
variance or dispersion of y. y is the vector of “observed
minus computed” DD carrier phases and/or code observa-
tions of the order m, a is the unknown vector of ambiguities
of the order n expressed in cycles rather than range to
maintain their integer character, b is the baseline vector,
which is unknown for relative navigation applications but
for which the length in attitude determination is known, B
is the geometry matrix containing normalized line-of-sight
vectors, that is, a matrix containing DD direction cosines,
and A is a design matrix that links the data vector to the
unknown vector a. In this paper the assumption is made that
the antennas are close to each other and thus atmospheric
effects can be neglected. The variance matrix of y is given
by the positive definite matrix Qy which is assumed to be
known. As explained in [15], the least squares solution of the
linear system of observation equations as introduced in (1) is
obtained, using ‖ · ·‖2

Qy
= (··)TQ−1

y (··), from

min
a∈Zn,b∈R3

∥
∥y − Aa− Bb∥∥2

Qy
. (2)

2.2. Model for Constrained Baselines. For a baseline-
constrained application, as, for example, GNSS-based atti-
tude determination, we can make use of the knowledge that
the length of the baseline is known and constant. Hence
the baseline-constrained integer ambiguity resolution can
make use of the standard GNSS model by adding the length
constraint of the baseline ‖b‖I3 = l , where l is known. The
observation equations then become [16]

E
(
y
) = Aa + Bb, D

(
y
) = Qy ,

‖b‖I3 = l, a ∈ Zn, b ∈ R3.
(3)

Then the least squares criterion reads

min
a∈Zn,b∈R3,‖b‖I3=l

∥
∥y − Aa− Bb∥∥2

Qy
. (4)

This least squares problem is coined a Quadratically Con-
strained Integer Least Squares (QC-ILSs) problem in [17].

3. Ambiguity Resolution

High-precision positioning and attitude determination
require the use of the very precise GNSS carrier phase obser-
vations, which however are ambiguous by an unknown inte-
ger number of cycles. For ambiguity resolution we make use
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of the LAMBDA (Least-squares AMBiguity Decorrelation
Adjustment) method and its recently developed baseline-
constrained extension [16]. These methods will briefly be
discussed. A large number of ambiguity resolution tech-
niques have been developed for the attitude determination
application, as, for example, [18–26]. These are discussed
in more detail in [27]. In this publication we focus on the
standard and the constrained LAMBDA method but the
proposed combination of relative positioning and attitude
determination should also work with the other ambiguity
resolution techniques.

3.1. The Standard LAMBDA Method. The least squares
criterion for the unconstrained problem reads as [15, 28]

min
a∈Zn,b∈R3

∥
∥y − Aa− Bb∥∥2

Qy

= ∥∥ê
∥∥2
Qy

+ min
a∈Zn,b∈R3

(∥∥â− a∥∥2
Qâ

+
∥
∥
∥b̂(a)− b

∥
∥
∥

2

Qb̂(a)

)
,

(5)

where ê = y − Aâ − Bb̂ is the least squares residual of the

float solution â, b̂, and b̂(a) is the least squares solution for
b, assuming that a is known and Qb̂(a) = Qb̂ − Qb̂âQ

−1
â Qâb̂.

The last term of (5) can be made zero for any a. We solve the
vector of integer least-squares estimates of the ambiguities ǎ:

ǎ = arg
(

min
a∈Zn

∥
∥â− a∥∥2

Qâ

)
, (6)

where ǎ is the vector of integers that minimize the term
within the brackets (arg or argument). A so-called integer
search is needed to find ǎ. The search space for this problem
is defined as

Ψ
(
χ2
)
=

{
a ∈ Zn | ∥∥â− a∥∥2

Qâ
≤ χ2

}
, (7)

where χ2 is a properly chosen constant. The LAMBDA
method is an efficient way to find the minimizer of (6) [29–
31].

Once the solution ǎ has been obtained, the residual (â−
ǎ) is used to adjust the float solution b̂ of the first step, and
therefore the final fixed baseline solution is obtained as b̌ =
b̂(ǎ) = b̂ −Qb̂âQ

−1
â (â− ǎ).

3.2. Baseline-Constrained LAMBDA Method. The least
squares criterion for (4) of the baseline-constrained problem
reads as

min
a∈Zn,
b∈R3,
‖b‖=l

∥
∥y − Aa− Bb∥∥2

Qy

= ∥
∥ê

∥
∥2
Qy

+ min
a∈Zn

⎛

⎜
⎝
∥
∥â− a∥∥2

Qâ
+ min
b∈R3,
‖b‖=l

(∥∥
∥b̂(a)− b

∥∥
∥

2

Qb̂(a)

)
⎞

⎟
⎠.

(8)

â
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Figure 1: Baseline-constrained LAMBDA using the “Expansion
approach.”

In the constrained approach we will search for the integer
least-squares ambiguity vector in the search space:

Ψ1

(
χ2
)
=

{
a ∈ Zn | ∥∥â− a∥∥2

Qâ
+
∥
∥∥b̂(a)− b̌(a)

∥
∥∥

2

Qb̂(a)

≤ χ2
}

,

(9)

where b̌(a) is the fixed solution for b, assuming that a

is known: b̌(a) = arg(minb∈Rn,‖b‖=l‖b̂(a)− b‖2

Qb̂(a)
). The

method applied in this contribution, and in [27, 32], is
referred to as “Expansion approach.” In the Expansion
approach, we first use the standard LAMBDA method to
collect integer vectors inside the search spaceΨ(χ2) and store
all those that fulfill the inequality:

∥
∥
∥b̂(a)− b̌(a)

∥
∥
∥

2

Qb̂(a)

≤ χ2 − ∥
∥â− a∥∥2

Qâ
. (10)

The initial search space is defined as the value χ2
1 =

‖â− ǎB‖2
Qâ

where ǎB is the bootstrapped solution of a
[15, 29]. This initial value χ2

1 is increased k times until the
search spaceΨ1(χ2

k) is nonempty, using the logic visualized in
Figure 1. For every step we enumerate all the integer vectors
contained in Ψ1(χ2

k). If the set is nonempty, we pick up the
minimizer; otherwise we increase χ2

k and thus the size of the
search space Ψ1(χ2

k).
For completeness we would like to mention that another

method, the so-called “Search and Shrink approach,” was
developed to solve the same problem [33].

4. Baseline-Constrained Multiantenna
Ambiguity Resolution

Precise relative positioning of two moving platforms usually
requires dual-frequency phase data, whereas—due to the
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y13 on b13

y23 on b23
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y12 on b12
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Platform 2 Platform 1

Figure 2: Definition of the triple-antenna configuration (solid
arrows indicate baseline with known length).

baseline length constraints—single-frequency phase data
may suffice for the precise determination of platform
attitudes [5, 27, 32]. These two GNSS problems, relative
positioning and attitude determination, are usually treated
separately and independent from one another. In this
contribution we combine the two into a multiantenna
ambiguity resolution problem of which some of the base-
line lengths are constrained. Insight in the numerical and
statistical properties of these different approaches will be
given. First we will introduce a 3- or triple- and 4-
or quadruple-antenna configuration, which we will use
to investigate the processing strategies theoretically. These
triple- and quadruple-antenna configurations are simpli-
fied models that represent experiments as described in
[5, 27, 34, 35].

4.1. Multibaseline Setup. Consider three or four antennas
on two platforms as shown in Figures 2 and 3, respectively.
The baselines between antenna j (Ant j) and the antennas
i (Anti) are called baseline i j (bi j). The unconstrained
baselines between an antenna at one platform and the
antennas onboard another platform are b23, b13, and b24

and the constrained baselines are baseline 12 (b12) and
baseline 34 (b34) with lengths l12 and l34, respectively. The
antennas are assumed to be sufficiently close, an assumption
generally acceptable for the kind of applications discussed
in Section 1.1, so that the relative antenna-satellite geometry
may be considered the same for all antennas. The design
matrices A and B and the variance-covariance matrix Qy are
assumed to be identical. We take the ordering of the four
antenna pairs such that yi j is the difference of the single-
differenced data of antenna j minus that of antenna i.

4.2. Model and Unconstrained Float Solution

4.2.1. Triple-Antenna Configuration. For an integrated
approach, we can use the known relationship between
constrained and unconstrained baselines. For constrained
baseline b12 and unconstrained baselines b23 and b13,
respectively, with common antennas we have the following
relationship for the baseline, DD ambiguities, and DD

Ant4

y34 on b34

Ant3

y13 on b13

y23 on b23

y24 on b24

Ant1

y12 on b12

Ant2

Platform 2 Platform 1

Figure 3: Definition of the quadruple-antenna configuration (solid
arrows indicate baseline with known length).

observation vectors:

b13 = b12 + b23,

a13 = a12 + a23,

y13 = y12 + y23.

(11)

This equation shows that two out of three DD data vectors
are sufficient to set up the GNSS model.

For the 3-antenna configuration, if we use y12 and y23,
the model becomes

E

⎡

⎣
y12

y23

⎤

⎦ =
⎡

⎣
A B 0 0

0 0 A B

⎤

⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

a12

b12

a23

b23

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

D

⎡

⎣
y12

y23

⎤

⎦ =
⎡

⎣
−1 1 0

0 −1 1

⎤

⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
2
Qy 0 0

0
1
2
Qy 0

0 0
1
2
Qy

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

−1 0

1 −1

0 1

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

Qy −1
2
Qy

−1
2
Qy Qy

⎤

⎥
⎥
⎦.

(12)

Note the presence of the nonzero covariance matrix
C(y12, y23) = −(1/2)Qy , which is due to the fact that the DD
vectors y12 and y23 have an antenna in common.

Applying P2 =
[ 1 −1/2

−1/2 1

]
and the Kronecker product

(or symbol) ⊗ gives the following model:

E

⎡

⎣
y12

y23

⎤

⎦ = I2 ⊗ (A,B)

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

a12

b12

a23

b23

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, D

⎡

⎣
y12

y23

⎤

⎦ = P2 ⊗Qy.

(13)
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For a complete reference on the properties of the Kronecker
product we refer to [36]. Now the least squares solution and
corresponding variance matrix of the 3-antenna configura-
tion can be given as

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

â12

b̂12

â23

b̂23

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=
[
I2 ⊗

([
(A,B)TQ−1

y (A,B)
]−1

(A,B)TQ−1
y

)]⎡

⎣
y12

y23

⎤

⎦,

D

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

â12

b̂12

â23

b̂23

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

= P2 ⊗
[

(A,B)TQ−1
y (A,B)

]−1
.

(14)

This shows that âi j and b̂i j are solely determined by the
DD vector of the corresponding antenna pair, that is, yi j ,
thus parallel processing is possible for the float solution. In
Section 4.3, it will be demonstrated that this property is lost
once the integer constraints are applied. If we denote the

variance-covariance matrix of âi j and b̂i j as

[
(A,B)TQ−1

y (A,B)
]−1 =

⎡

⎣
Qâ Qâb̂

Qb̂â Qb̂

⎤

⎦, (15)

then the dispersion of the 3-antenna model can also be
written as

D

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

â12

b̂12

â23

b̂23

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=
⎡

⎣P2 ⊗
⎡

⎣
Qâ Qâb̂

Qb̂â Qb̂

⎤

⎦

⎤

⎦ (16)

or after reordering

D

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

â12

â23

b̂12

b̂23

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=
⎡

⎣
P2 ⊗Qâ P2 ⊗Qâb̂

P2 ⊗Qb̂â P2 ⊗Qb̂

⎤

⎦. (17)

If one wants to determine a13 and b13 from the above results
it can be obtained from (see (11))

⎡

⎣
â13

b̂13

⎤

⎦ =
⎡

⎣(1, 1)⊗
⎡

⎣
In 0

0 I3

⎤

⎦

⎤

⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

â12

b̂12

â23

b̂23

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (18)

Application of the variance propagation law shows that both
the integer and baseline solutions on this baseline have the

same precision as the integer and baseline solutions at the
other baselines:

D

⎡

⎣
â13

b̂13

⎤

⎦ =
⎡

⎣(1, 1)⊗
⎡

⎣
In 0

0 I3

⎤

⎦

⎤

⎦

⎡

⎣P2 ⊗
⎡

⎣
Qâ Qâb̂

Qb̂â Qb̂

⎤

⎦

⎤

⎦

×
⎡

⎣(1, 1)⊗
⎡

⎣
In 0

0 I3

⎤

⎦

⎤

⎦

T

=
⎡

⎣
Qâ Qâb̂

Qb̂â Qb̂

⎤

⎦.

(19)

4.2.2. Quadruple-Antenna Configuration. For constrained
baselines b12 and b34 and unconstrained baselines b23, b13,
and b24, respectively, with common antennas we have the
following relationship for the baseline, ambiguities, and
observation vectors:

b13 = b12 + b23,

a13 = a12 + a23,

y13 = y12 + y23,

b24 = b23 + b34,

a24 = a23 + a34,

y24 = y23 + y34.

(20)

This equation shows that now three out of five double
difference data vectors are sufficient to set up the GNSS
model.

Using the Kronecker symbol we can write also this model
in a more compact form:

E

⎡

⎢
⎢
⎢
⎣

y12

y23

y34

⎤

⎥
⎥
⎥
⎦
= I3 ⊗ (A,B)

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a12

b12

a23

b23

a34

b34

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, D

⎡

⎢
⎢
⎢
⎣

y12

y23

y34

⎤

⎥
⎥
⎥
⎦
= P3 ⊗Qy

(21)

with

P3 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 −1
2

0

−1
2

1 −1
2

0 −1
2

1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (22)
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The dispersion of the quadruple-antenna model can
again be written as

D

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

â12

b̂12

â23

b̂23

â34

b̂34

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=
⎡

⎣P3 ⊗
⎡

⎣
Qâ Qâb̂

Qb̂â Qb̂

⎤

⎦

⎤

⎦ (23)

or again after reordering

D

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

â12

â23

â34

b̂12

b̂23

b̂34

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=
⎡

⎣
P3 ⊗Qâ P3 ⊗Qâb̂

P3 ⊗Qb̂â P3 ⊗Qb̂

⎤

⎦. (24)

If one wants to determine a13, a24 and b13, b24 from the above
results, it can be obtained from

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

â13

b̂13

â24

b̂24

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=
⎡

⎣

⎡

⎣
1 1 0

0 1 1

⎤

⎦⊗
⎡

⎣
In 0

0 I3

⎤

⎦

⎤

⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

â12

b̂12

â23

b̂23

â34

b̂34

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (25)

4.3. Optimal Solution of the Fully Integrated Approach

4.3.1. Triple-Antenna Configuration. For the derivation of
the integer least squares solution, which is the optimal
solution, we use the 3-antenna configuration introduced in
Section 4.1, for which the baseline b12 is constrained and
the baseline b23 is unconstrained. First we write the sum-of-
squares decomposition as

∥
∥
∥∥
∥
∥

y12 − Aa12 − Bb12

y23 − Aa23 − Bb23

∥
∥
∥∥
∥
∥

2

P2⊗Qy

=
∥
∥
∥∥
∥
∥

ê12

ê23

∥
∥
∥∥
∥
∥

2

P2⊗Qy

+

∥
∥
∥∥
∥
∥

â12 − a12

â23 − a23

∥
∥
∥∥
∥
∥

2

P2⊗Qâ

+

∥∥
∥
∥
∥∥

b̂12(a12, a23)− b12

b̂23(a12, a23)− b23

∥∥
∥
∥
∥∥

2

P2⊗Qb̂(a)

.

(26)

The ambiguity-constrained baseline solution with variance-
covariance matrix is given as

⎡

⎣
b̂12(a12, a23)

b̂23(a12, a23)

⎤

⎦

=
⎡

⎣
b̂12

b̂23

⎤

⎦−
(
P2 ⊗Qb̂â

)
(P2 ⊗Qâ)−1

⎡

⎣
â12 − a12

â23 − a23

⎤

⎦

=
⎡

⎣
b̂12

b̂23

⎤

⎦− I2 ⊗Qb̂âQ
−1
â

⎡

⎣
â12 − a12

â23 − a23

⎤

⎦

=
⎡

⎣
b̂12(a12)

b̂23(a23)

⎤

⎦,

D

⎡

⎣
b̂12(a12, a23)

b̂23(a12, a23)

⎤

⎦ = P2 ⊗Qb̂(a) .

(27)

Therefore we can conclude that knowledge about a12 does

not improve the conditional baseline b̂23(a23), and similarly,

knowledge about a23 does not help to improve b̂12(a12).
This is as expected from (12) assuming that the integers are
known.

In order to obtain the unknown parameters we need to
solve the following minimization problem:

F(a12, a23, b12, b23)

= min
a12,a23∈Zn,
b12,b23∈R3,
‖b12‖I3=l

∥
∥
∥∥
∥
∥

y12 − Aa12 − Bb12

y23 − Aa23 − Bb23

∥
∥
∥∥
∥
∥

2

P2⊗Qy

=
∥∥
∥
∥∥
∥

ê12

ê23

∥∥
∥
∥∥
∥

2

P2⊗Qy

+ min
a12,a23∈Zn,
b12,b23∈R3,
‖b12‖I3=l12

⎛

⎜
⎜
⎝

∥
∥
∥
∥∥
∥

â12 − a12

â23 − a23

∥
∥
∥
∥∥
∥

2

P2⊗Qâ

+

∥
∥
∥
∥∥
∥

b̂12(a12)− b12

b̂23(a23)− b23

∥
∥
∥
∥∥
∥

2

P2⊗Qb̂(a)

⎞

⎟
⎟
⎠.

(28)

The last term on the right-hand side can be rewritten as

∥∥
∥
∥
∥∥

b̂12(a12)− b12

b̂23(a23)− b23

∥∥
∥
∥
∥∥

2

P2⊗Qb̂(a)

=
∥∥
∥b̂12(a12)− b12

∥∥
∥

2

Qb̂(a)

+
∥∥
∥b̂23(a23, b12)− b23

∥∥
∥

2

(3/4)Qb̂(a)

.

(29)
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With the constraint on the baseline b12 and the ambiguities,
the conditional solution of the baseline b23 becomes

b̂23(a23, b12)

= b̂23(a23)−
(
−1

2
Qb̂(a)

)(
Qb̂(a)

)−1(
b̂12(a12)− b12

)

= b̂23(a23) +
1
2

(
b̂12(a12)− b12

)
.

(30)

The variance for this ambiguity constrained baseline is

D(b̂23(a23, b12)) = (3/4)Qb̂(a), and hence the knowledge of
the constrained baseline allows us to improve the precision of
the ambiguity constrained baseline from Qb̂(a) to (3/4)Qb̂(a).

The integer least squares solution of (28) then becomes
⎡

⎣
ǎ12

ǎ23

⎤

⎦ = arg min
a12,a23∈Zn

⎛

⎜
⎝

∥
∥
∥∥
∥
∥

â12 − a12

â23 − a23

∥
∥
∥∥
∥
∥

2

P2⊗Qâ

+ min
‖b12‖=l12

(∥
∥
∥b̂12(a12)− b12

∥
∥
∥

2

Qb̂(a)

)
⎞

⎟
⎠,

b̌12 = arg min
‖b12‖=l12

(∥∥
∥b̂12(ǎ12)− b12

∥∥
∥

2

Qb̂(a)

)
,

b̌23 = b̂23

(
ǎ23, b̌12

)

= b̂23(ǎ23) +
1
2

(
b̂12(ǎ12)− b̌12

)
;

(31)

for which the ambiguity vector can also be written as
⎡

⎣
ǎ12

ǎ23

⎤

⎦ = arg min
a12,a23∈Zn

(∥∥â12 − a12
∥∥2
Qâ

+ min
‖b12‖=l12

(∥
∥
∥b̂12(a12)− b12

∥
∥
∥

2

Qb̂(a)

)

+
∥
∥â23(a12)− a23

∥
∥2

(3/4)Qâ

)
.

(32)

The first two terms of the right-hand side of the equation
form the ambiguity objective function for the constrained
baseline as described in Section 3.2 (see (8)). The third term
is due to the correlation between the ambiguities at the two
baselines, where â23(a12) = â23 − (−(1/2)Qâ)(Qâ)−1(â12 −
a12) = â23 + (1/2)(â12 − a12). This term contributes to
the optimal solution, but because of the low correlation we
expect this contribution to be small.

The processing strategy makes use of the steps explained
in Sections 3.1 and 3.2 of the standard and the baseline-
constrained LAMBDA method. We use the baseline-
constrained LAMBDA to enumerate the ambiguities of the
constrained baseline b12 in combination with ambiguity
vectors for baseline b23 using the correlation between the
ambiguities on the two baselines. In the final step we will use
(31) to find the integer least squares solution.

4.3.2. Quadruple-Antenna Configuration. For the quadruple-
antenna configuration with a constrained baseline, b12 and
b34, respectively, on both sides of the ambiguity constrained
baseline b23, we can write

∥
∥
∥∥
∥
∥
∥∥
∥
∥

b̂12(a12)− b12

b̂23(a23)− b23

b̂34(a34)− b34

∥
∥
∥∥
∥
∥
∥∥
∥
∥

2

P3⊗Qb̂(a)

=
∥
∥∥b̂12(a12)− b12

∥
∥∥

2

Qb̂(a)

+
∥∥
∥b̂23(a23, b12, b34)− b23

∥∥
∥

2

(1/2)Qb̂(a)

+
∥∥
∥b̂34(a34)− b34

∥∥
∥

2

Qb̂(a)

.

(33)

With the constraint on the baselines b12 and b34 and the
ambiguities, the conditional solution of the baseline b23

becomes

b̂23(a23, b12, b34) = b̂23(a23) +
1
2

(
b̂12(a12)− b12

)

+
1
2

(
b̂34(a34)− b34

)
.

(34)

The second term on the right-hand side of (33) can be
made zero for every a23, and therefore we can write the
minimization problem as

min
a12,a23,a34∈Zn,
b12,b34∈R3,
‖b12‖I3=l12,
‖b34‖I3=l34

⎛

⎜
⎜
⎜
⎝

∥
∥∥
∥
∥
∥∥
∥
∥

â12 − a12

â23 − a23

â34 − a34

∥
∥∥
∥
∥
∥∥
∥
∥

2

P3⊗Qâ

+

∥
∥
∥∥
∥
∥

b̂12(a12)− b12

b̂34(a34)− b34

∥
∥
∥∥
∥
∥

2

I2⊗Qb̂(a)

⎞

⎟
⎟
⎟
⎠
.

(35)

The integer least squares solution becomes for the 4-antenna
configuration

⎡

⎢
⎢
⎢
⎣

ǎ12

ǎ23

ǎ34

⎤

⎥
⎥
⎥
⎦
= arg min

a12,a23,a34∈Zn

⎛

⎜
⎜
⎜
⎝

∥∥
∥
∥
∥∥
∥
∥∥

â12 − a12

â23 − a23

â34 − a34

∥∥
∥
∥
∥∥
∥
∥∥

2

P3⊗Qâ

+ min
‖b12‖=l12

(∥
∥
∥b̂12(a12)− b12

∥
∥
∥

2

Qb̂(a)

)

+ min
‖b34‖=l34

(∥∥
∥b̂34(a34)− b34

∥∥
∥

2

Qb̂(a)

)

⎞

⎟
⎟
⎟
⎠

,

b̌12 = arg min
‖b12‖=l12

(∥∥
∥b̂12(ǎ12)− b12

∥∥
∥

2

Qb̂(a)

)
,

b̌34 = arg min
‖b34‖=l34

(∥
∥
∥b̂34(ǎ34)− b34

∥
∥
∥

2

Qb̂(a)

)
,
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Ant4

y34 on b34

Ant3

y13 on b13

y23 on b23

y24 on b24

Ant1

y12 on b12

Ant2

Platform 2 Platform 1

Figure 4: Definition of a different quadruple-antenna configura-
tion (solid arrows indicate baseline with known length).

b̌23 = b̂23

(
ǎ23, b̌12, b̌34

)

= b̂23(ǎ23) +
1
2

(
b̂12(ǎ12)− b̌12

)
+

1
2

(
b̂34(ǎ34)− b̌34

)
.

(36)

Now the variance for this ambiguity-constrained baseline is

D(b̂23(a23, b12, b34)) = (1/2)Qb̂(a), and hence the knowledge
of 2 constrained baselines, one at each side of the uncon-
strained baseline, improves the precision of this baseline
from Qb̂(a) to (1/2)Qb̂(a).

4.3.3. Intermezzo: Alternative Quadruple-Antenna Configu-
ration. In Section 4.3.2 we have considered a quadruple-
antenna configuration, assuming that we have two platforms,
each with two antennas. The baseline lengths between the
antennas on both platforms were assumed known (b12 and
b34 in Figure 3). For completeness we assume now that we
have a quadruple-antenna configuration with 3 antennas on
one platform, again with known baseline lengths between
the antennas, and 1 antenna on another platform. We
will also give a solution for this configuration where both
constrained baselines are placed at the same side of the
unconstrained baseline (see Figure 4). For a quadruple-
antenna configuration with the two constrained baselines b12

and b23 and the unconstrained baseline as b34 we can write

∥
∥
∥∥
∥
∥
∥∥
∥
∥

b̂12(a12)− b12

b̂23(a23)− b23

b̂34(a34)− b34

∥
∥
∥∥
∥
∥
∥∥
∥
∥

2

P3⊗Qb̂(a)

=
∥
∥∥b̂12(a12)− b12

∥
∥∥

2

Qb̂(a)

+
∥∥
∥b̂23(a23, b12)− b23

∥∥
∥

2

(3/4)Qb̂(a)

+
∥∥
∥b̂34(a34, b12, b23)− b34

∥∥
∥

2

(2/3)Qb̂(a)

.

(37)

With the constraint on both the baselines b12 and the
ambiguities, the conditional solution of the baseline b23

becomes

b̂23(a23, b12) = b̂23(a23) +
1
2

(
b̂12(a12)− b12

)
. (38)

With the constraint on the baselines b12 and b23 and the
ambiguities, the conditional solution of the baseline b34

becomes

b̂34(a34, b12, b23) = b̂34(a34) +
1
3

(
b̂12(a12)− b12

)

+
2
3

(
b̂23(a23)− b23

)
.

(39)

The third term on the right-hand side of (37) can be
made zero for every a34, and therefore we can write the
minimization problem, using the decomposition of (29), as

min
a12,a23,a34∈Zn,
b12,b23∈R3,
‖b12‖I3=l12,
‖b23‖I3=l23

⎛

⎜
⎜
⎜
⎝

∥
∥
∥
∥∥
∥
∥∥
∥

â12 − a12

â23 − a23

â34 − a34

∥
∥
∥
∥∥
∥
∥∥
∥

2

P3⊗Qâ

+

∥∥
∥
∥∥
∥

b̂12(a12)− b12

b̂23(a23)− b23

∥∥
∥
∥∥
∥

2

P2⊗Qb̂(a)

⎞

⎟
⎟
⎟
⎠
.

(40)

The integer least squares solution becomes for this 4-antenna
configuration

⎡

⎢
⎢
⎢
⎣

ǎ12

ǎ23

ǎ34

⎤

⎥
⎥
⎥
⎦

= arg min
a12,a23,a34∈Zn

⎛

⎜
⎜
⎜
⎝

∥∥
∥
∥
∥∥
∥
∥∥

â12 − a12

â23 − a23

â34 − a34

∥∥
∥
∥
∥∥
∥
∥∥

2

P3⊗Qâ

+ min
‖b12‖I3=l12,
‖b23‖I3=l23

⎛

⎜
⎜
⎝

∥
∥∥
∥
∥∥

b̂12(a12)− b12

b̂23(a23)− b23

∥
∥∥
∥
∥∥

2

P2⊗Qb̂(a)

⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎠

,

⎡

⎣
b̌12

b̌23

⎤

⎦ = arg min
‖b12‖I3=l12,
‖b23‖I3=l23

⎛

⎜
⎜
⎝

∥
∥
∥
∥∥
∥

b̂12(a12)− b12

b̂23(a23)− b23

∥
∥
∥
∥∥
∥

2

P2⊗Qb̂(a)

⎞

⎟
⎟
⎠,

b̌34 = b̂34

(
ǎ34, b̌12, b̌23

)

= b̂34(ǎ34) +
1
3

(
b̂12(ǎ12)− b̌12

)
+

2
3

(
b̂23(ǎ23)− b̌23

)
.

(41)

Now the variance for this ambiguity constrained baseline is

D(b̂34(a34, b12, b23)) = (2/3)Qb̂(a), and hence the knowledge
of two constrained baselines, at the same side of the uncon-
strained baseline, improves the precision of the ambiguity
constrained baseline from Qb̂(a) to (2/3)Qb̂(a). This means
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that the improvement is larger than for the triple-antenna
configuration, as the model becomes stronger due to the
two constrained baselines at one side, and less than the
quadruple-antenna configuration of the previous section.
This is also as expected as the unconstrained baseline is now
only constrained at one side; the other side is left free.

4.4. Suboptimal Solution of the Fully Integrated Approach

4.4.1. Triple-Antenna Configuration. An approximation of
the integer least squares solution as given in Section 4.3.1 can
be obtained by first solving the first two terms on the right-
hand side of (32) for a12, and then the third term for a23,
as if the correlation would be absent. The result is a vectorial
bootstrapping approach in which we first solve the ambiguity
on the constrained baseline and apply the found ambiguity
vector in the solution of the unconstrained baseline. This
is also the difference with the uncoupled approach from
Section 4.5 in which the solutions are found completely
independent of each other. This solution, hereafter coined
the suboptimal solution, is then given as

ǎ12 = arg min
a12∈Zn

(
∥
∥â12 − a12

∥
∥2
Qâ

+ min
‖b12‖=l12

(∥
∥∥b̂12(a12)− b12

∥
∥∥

2

Qb̂(a)

))

,

(42a)

ǎ23 = arg min
a23∈Zn

(∥
∥â23(ǎ12)− a23

∥
∥2

(3/4)Qâ

)
, (42b)

b̌12 = arg min
‖b12‖=l12

(∥
∥∥b̂12(ǎ12)− b12

∥
∥∥

2

Qb̂(a)

)
, (42c)

b̌23 = b̂23(ǎ23) +
1
2

(
b̂12(ǎ12)− b̌12

)
. (42d)

For this approach in the first step we use the baseline-
constrained LAMBDA to estimate the ambiguities of the
constrained baseline b12. In the second step we use standard
LAMBDA with â23(ǎ12) and (3/4)Qâ on the unconstrained
baseline. From (42), and (32), it is expected that the success
rate of the integer least squares (optimal) approach is better
than the vectorial bootstrapping (suboptimal) approach
[37], but because of the low correlation between the two
baselines the difference is anticipated to be minimal as
discussed in the previous section. This is analyzed using
simulated data in Section 5.

Next we will demonstrate that the suboptimal solution is
the same as the solution from [13] in which the ambiguity
vector for b23 that minimizes the cost function in the metric
of Qâ was found as

ǎ23 = arg min
a23∈Zn

(∥
∥â23 − a23

∥
∥2
Qâ

+
∥
∥(â13 − a12)− a23

∥
∥2
Qâ

)
.

(43)

We recall that we have obtained in Section 4.3.1 that
â23(a12) = â23 + (1/2)(â12 − a12), which we can rewrite using
â12 = â13 − â23, as

â23(a12) = 1
2

(â23 + â13 − a12). (44)

Thus â23(a12) is the average of â23 and â13 − a12. Next
we introduce the following identity, which is valid for any
u, v, x ∈ Rn and arbitrary positive definite matrix M:

∥
∥∥
∥

1
2

(u + v)− x
∥
∥∥
∥

2

M
= 1

2
‖u− x‖2

M +
1
2
‖v − x‖2

M −
1
4
‖u− v‖2

M.

(45)

With this identity we obtain

∥
∥â23(a12)− a23

∥
∥2
Qâ
=

∥
∥
∥∥

1
2

(â23 + (â13 − a12)− a23)
∥
∥
∥∥

2

Qâ

= 1
2

∥
∥â23 − a23

∥
∥2
Qâ

+
1
2

∥∥(â13 − a12)− a23
∥∥2
Qâ

− 1
4

∥
∥â23 − (â13 − a12)

∥
∥2
Qâ
.

(46)

As the last term on the right-hand side is constant, we obtain
the following solution:

ǎ23 = arg min
a23∈Zn

(
‖â23(ǎ12)− a23‖2

Qâ

)
(47a)

= arg min
a23∈Zn

(
‖â23 − a23‖2

Qâ
+ ‖(â13 − a12)− a23‖2

Qâ

)
.

(47b)

The first expression (i.e., (47a)) is the same as (42b) with Qâ

instead of (3/4)Qâ. This difference in scaling will not affect
the outcome of the minimization. The second expression
(i.e., see (47b)) is the one used in [13].

4.4.2. Quadruple-Antenna Configuration. An approximation
of the integer least squares solution as given in Section 4.3.2
can again be obtained by solving the unconstrained baselines,
after the constrained baselines are resolved. This would result
in three minimizations, one for either a12 and a34 and one
for a23, if the correlation would be absent. The result is
a vectorial bootstrapping approach in which we first solve
the ambiguity on the constrained baselines b12 and b34 and
apply the found ambiguity vector in the solution of the
unconstrained baseline a23. Hence the suboptimal solution
for the 4-antenna configuration is given as

ǎ12 = arg min
a12∈Zn

(∥
∥â12 − a12

∥
∥2
Qâ

+ min
‖b12‖=l12

(∥
∥
∥b̂12(a12)− b12

∥
∥
∥

2

Qb̂(a)

))

,

ǎ34 = arg min
a34∈Zn

(∥∥â34 − a34
∥∥2
Qâ

+ min
‖b34‖=l34

(∥
∥
∥b̂34(a34)− b34

∥
∥
∥

2

Qb̂(a)

))

,
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Table 1: Simulation specification.

Date and time 22 Jan 2008 00:00

Location Lat: 50◦, Long: 3◦

GPS week 439

Scenario Triple- and Quadruple-antenna, orthogonal configuration, stationary

Frequency L1

Number of satellites 5-6-7-8

Undifferenced code noise σp [cm] 30-15-5

Undifferenced phase noise σφ [mm] 3-1

Baseline length ‖b12‖ = ‖b23‖ = ‖b34‖ = l 2.0 m

Epochs simulated 105

ǎ23 = arg min
a23∈Zn

(∥
∥â23(ǎ12, ǎ34)− a23

∥
∥2

(1/2)Qâ

)
,

b̌12 = arg min
‖b12‖=l12

(∥
∥
∥b̂12(ǎ12)− b12

∥
∥
∥

2

Qb̂(a)

)
,

b̌34 = arg min
‖b34‖=l34

(∥
∥∥b̂34(ǎ34)− b34

∥
∥∥

2

Qb̂(a)

)
,

b̌23 = b̂23(ǎ23) +
1
2

(
b̂12(ǎ12)− b̌12

)
+

1
2

(
b̂34(ǎ34)− b̌34

)
.

(48)

For this approach in the first step we use the baseline-
constrained LAMBDA to estimate the ambiguities of the two
constrained baselines b12 and b34. In the second step we use
standard LAMBDA with â23(ǎ12, ǎ34) and (1/2)Qâ on the
unconstrained baseline.

4.5. Uncoupled Approach Using Unconstrained and Con-
strained Baselines. The simplest way to combine constrained
and unconstrained baselines is the uncoupled approach in
which the baselines are treated completely independently.
This approach provides a lower bound for the empirical
success rate of the optimal and suboptimal approaches
described in the previous two sections. This follows from the
demonstration for these two approaches that the precision of
the variance matrix of the ambiguities on the unconstrained
baseline, evidently only if the success rate of the constrained
baseline is close enough to 1, was improved. For a discussion
on lower bounds of the probability of obtaining the correct
integer ambiguity vector, we refer to [37].

5. Verification through Simulation

In this section, the introduced approaches are applied,
using simulated data, to the most challenging application of
single epoch, single frequency ambiguity resolution. We will
investigate the experimental or empirical success rate, which
depends on the strength of the underlying GNSS model. For
analysis of the performance of the described approaches, we
compare the true integer ambiguity vector (the “true solu-
tion” known in the simulations) and the estimated integer
ambiguity vector at every epoch. The empirical success rate is
defined as the number of epochs where the obtained integer

ambiguity vector was equal to the true integer ambiguity
vector divided by the total number of epochs. The baseline
length, as long as the atmospheric effects on the GPS
observations are negligible (typically if the baseline is shorter
than 10 km, see [5]), will not influence the performance
of the ambiguity resolution method. In this contribution
we will simulate and analyze short baselines; however the
results will also apply to longer baselines (between different
platforms) as long as the atmospheric influences are small.
We will analyze performance both on individual baselines
and on the solution of combined baselines (the “overall”
solution). The first result is important as the information
of the constrained baseline could improve the solution of
the unconstrained baseline, and furthermore we would like
to confirm that the success rate for the constrained baseline
is not changed in the integrated solution compared to
the uncoupled solution. The second result is important, as
for some applications as described in Section 1.1, we are
interested in the estimation of a number of baseline vectors
on or between a number of platforms.

5.1. Simulation Setup. In order to investigate the perfor-
mance of the proposed approaches, we analyze the empirical
success rates using simulated data. Table 1 summarizes the
conditions of the simulations. Utilizing the VISUAL software
[38], based on the location of the receivers and an actual GPS
constellation, the design matrices of the model are calculated.
In order to obtain good approximations, the number of
samples must be sufficiently large [39]. Assuming different
levels of noise on the undifferenced phase (from 1 mm to
3 mm) and undifferenced code (from 5 cm to 30 cm) data,
a set of 105 data was generated; then each simulation was
repeated for different numbers of satellites varying between
5 and 8. Our choice for simulation parameters was to show
the improvement of the integrated method compared to
uncoupled. The subsets of GPS satellites were selected based
on elevation angles.

5.2. Simulation Results. In this section we will analyze the
proposed integrated approaches. For the suboptimal solution
we observed a maximum difference in the empirical success
rate with the optimal solution of 0.1%; therefore there is only
a marginal difference between the two and we include only
the optimal solution’s results in this paper.
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Table 2: Simulation results: single-frequency, single-epoch success rates for the constrained baseline b12 using one constrained baseline
(C = 1, i.e., two antennas for uncoupled and triple-antenna configuration for the optimal solution).

NSV #C
σφ [mm] = 3 σφ [mm] = 1

σp [cm] σp [cm]

30 15 5 30 15 5

1 Uncoupled P(ã12 = a12)

1 Optimal P(ǎ12 = a12)

5
1 0.72 0.89 1.00 0.97 1.00 1.00

1 0.72 0.89 1.00 0.97 1.00 1.00

6
1 0.96 0.99 1.00 1.00 1.00 1.00

1 0.96 0.99 1.00 1.00 1.00 1.00

7
1 0.99 1.00 1.00 1.00 1.00 1.00

1 1.00 1.00 1.00 1.00 1.00 1.00

8
1 1.00 1.00 1.00 1.00 1.00 1.00

1 1.00 1.00 1.00 1.00 1.00 1.00

Table 3: Simulation results: single-frequency, single-epoch success rates for the unconstrained baseline b23 using zero (C = 0), one (C = 1,
i.e., triple-antenna configuration), or two (C = 2, i.e., quadruple-antenna configuration) constrained baselines.

NSV #C
σφ [mm] = 3 σφ [mm] = 1

σp [cm] σp [cm]

30 15 5 30 15 5

0 Uncoupled P(ã23 = a23)

1 Optimal P(ǎ23 = a23)

2 Optimal P(ǎ23 = a23)

5
0 0.03 0.19 0.87 0.06 0.27 0.95

1 0.04 0.26 0.93 0.09 0.36 0.98

2 0.09 0.42 0.98 0.15 0.52 1.00

6
0 0.25 0.67 0.97 0.49 0.87 1.00

1 0.36 0.80 0.99 0.59 0.92 1.00

2 0.55 0.92 1.00 0.74 0.97 1.00

7
0 0.50 0.80 1.00 0.75 0.93 1.00

1 0.61 0.89 1.00 0.81 0.97 1.00

2 0.74 0.96 1.00 0.89 0.99 1.00

8
0 0.86 0.95 1.00 1.00 1.00 1.00

1 0.92 0.97 1.00 1.00 1.00 1.00

2 0.97 0.99 1.00 1.00 1.00 1.00

We analyze the optimal solution using one con-
strained baseline (as in the triple-antenna configuration
described in Section 4.3.1) and two constrained baselines
(as in the quadruple-antenna configuration described in
Section 4.3.2). The results are presented in three tables.
Tables 2, 3, and 4 contain empirical success rates as a function
of the number of tracked satellites (NSV ) and the phase and
code level noise (σφ, σp). In Tables 2 and 3, we analyze the
success rate on individual baselines, both uncoupled and as
part of the optimal solution.

In these tables P(ã12 = a12) and P(ǎ12 = a12) stand
for the success rate on the constrained baseline b12 and
P(ã23 = a23) and P(ǎ23 = a23) for the success rate on the
unconstrained baseline b23 in the uncoupled and optimal
solution, respectively. For the unconstrained baseline we will
analyze the uncoupled case P(ã23 = a23), the case where one

constrained baseline is utilized (C = 1) and the case where
two constrained baselines are utilized (C = 2).

In Table 4, we look at the overall empirical success
rate, which is the success rate on both baselines (P(ǎ12 =
a12, ǎ23 = a23)) for the triple-antenna configuration or on all
three baselines (P(ǎ12 = a12, ǎ23 = a23, ǎ34 = a34)) for the
quadruple-antenna configuration in a combined solution.
Again the uncoupled and optimal approaches using one or
two constrained baseline(s) are considered.

Uncoupled versus Optimal Solution. In Table 2, we observe
that the solution on the constrained baseline, as part of
the optimal solution, has the same performance as the
uncoupled baseline-constrained solution.

In Table 3, the unconstrained baseline b23 is presented
as uncoupled (C = 0) and as part of the optimal solution



12 International Journal of Navigation and Observation

Table 4: Simulation results: single-frequency, single-epoch overall success rates for two baselines or three baselines using zero (C = 0), one
(C = 1, i.e., triple-antenna configuration), or two (C = 2, i.e., quadruple-antenna configuration) constrained baselines.

NSV #C
σφ [mm] = 3 σφ [mm] = 1

σp [cm] σp [cm]

30 15 5 30 15 5

0 Uncoupled P(ã12 = a12, ǎ23 = a23)

1 Optimal P(ǎ12 = a12, ǎ23 = a23)

2 Optimal P(ǎ12 = a12, ǎ23 = a23, ǎ34 = a34)

5
0 0.02 0.17 0.86 0.05 0.27 0.95

1 0.04 0.25 0.93 0.09 0.36 0.98

2 0.06 0.38 0.98 0.15 0.52 1.00

6
0 0.24 0.66 0.97 0.49 0.87 1.00

1 0.36 0.79 0.99 0.59 0.92 1.00

2 0.53 0.92 1.00 0.74 0.97 1.00

7
0 0.50 0.80 1.00 0.75 0.93 1.00

1 0.61 0.89 1.00 0.81 0.97 1.00

2 0.74 0.96 1.00 0.89 0.99 1.00

8
0 0.86 0.95 1.00 1.00 1.00 1.00

1 0.92 0.97 1.00 1.00 1.00 1.00

2 0.97 0.99 1.00 1.00 1.00 1.00

using a single constrained baseline (C = 1) and using two
constrained baselines (C = 2). As expected, when comparing
Tables 2 and 3, the baseline-constrained solution clearly pro-
vides much better results than the unconstrained solution.
The differences in success rate are particularly pronounced
when the strength of the underlying GNSS model becomes
weaker (fewer satellites and/or higher measurement noise).
According to Table 2 already 5 satellites and a phase standard
deviation of 3 mm give a higher than 70% success rate for the
constrained solution.

For the unconstrained baseline in Table 3 we observe
that the optimal solution has a better performance than
uncoupled. The improvement is between 0% and 13% using
a single constrained baseline (C = 1) and between 0% and
30% using two constrained baselines (C = 2), with a larger
improvement for weaker GNSS models.

In Table 4 compared to the uncoupled approach (C = 0),
the improvement of the empirical success rate for the optimal
solution is between 0% and 13% if a single constrained
baseline (C = 1) is used, and between 0% and 29% if two
constrained baselines (C = 2) are used. Again we observe a
larger improvement for weaker GNSS models.

Suboptimal versus Optimal Solution. As already mentioned
in the introduction of this section, the suboptimal results
are not included in the tables as these were exactly the
same as optimal. Nevertheless we would like to report some
observations on the difference between the suboptimal and
optimal solution. In the suboptimal solution, the constrained
baseline is not influenced by the unconstrained baseline;
hence the result will be exactly the same as the uncoupled
solution. We observed that the optimal solution and the
suboptimal solution have almost the same performance for
the success rate on individual baselines (i.e., Table 3): the

maximum difference was 0.1% in the empirical success rates.
Also for the overall success rate (i.e., results in Table 4), the
optimal solution and the suboptimal solution have the same
performance. This result is expected from the low correlation
between the constrained and unconstrained baselines as
discussed in Sections 4.3 and 4.4.

Triple versus Quadruple-Antenna Configuration. For the con-
strained baseline, the success rate for the uncoupled and
optimal solution was found to be exactly the same (see
Table 2). This table contains simulation results for the
optimum solution on the triple-antenna configuration, but
the same results are obtained for the quadruple-antenna
configuration. The probability of obtaining the correct
integer value increases as the precision of â improves.
For the unconstrained baseline in the quadruple-antenna
configuration (C = 2 case in Tables 3 and 4) we observe a
higher success rate than for the same baseline in the triple
antenna configuration (C = 1 case in Tables 3 and 4), which
is as expected as the variance-covariance matrix is scaled with
1/2 and 3/4, respectively, of the original Qâ of the uncoupled
solution. Therefore we can say that the quadruple-antenna
configuration is a stronger model than the triple-antenna
configuration.

6. Future Work

The basic theory for a three- and four-antenna configuration,
situated at two platforms with at most two antennas on a
single platform, was developed in this contribution. As future
work we will extend the method to be applicable with more
antennas. The performance has to be evaluated with realistic
noise values for code and carrier observation on moving
vehicles including the effects of multipath. Furthermore, we
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will test the method using data collected in dedicated field
experiments of challenging applications as vessel, air-, and
spacecraft, where the unconstrained baseline between the
platforms will vary rapidly over large distances [5, 34]. In
these field tests also the effect of remaining atmospheric
delays, signal blocking, and multipath has to be investigated.

7. Conclusions

In this paper we explored methods for the combination of
relative positioning and attitude determination for moving
platforms, where each platform has multiantennas with
known baseline lengths. The objective of this research was
to develop a rigorous method that optimally makes use
of all the information available (i.e., the integerness of the
ambiguities, the relationship between the ambiguities on the
different baselines, and the known baseline length of the
constrained baselines) to determine the relative position and
orientation of a multiantenna system with unconstrained
and constrained baselines. In order to obtain more insight
into the problem we investigated an uncoupled and two
integrated strategies (coined the integer least squares or opti-
mal, and vectorial bootstrapping or suboptimal approach)
theoretically and experimentally. As was expected from the
low correlation between the two baselines, the success rate of
the integer least squares approach is similar to the vectorial
bootstrapping approach. This was confirmed with simulated
data for the single epoch, single frequency application. This
is an important result as the suboptimal solution is more
computational efficient and in general could be sufficient
for the type of applications discussed in this paper. Further-
more we investigated triple- and quadruple-antenna con-
figurations. The unconstrained baseline in the quadruple-
antenna configuration provides a higher success rate than
on the same unconstrained baseline in the triple-antenna
configuration. This is as expected from the developed theory,
as in the quadruple-antenna configuration two constrained
baselines are placed at both sides of the unconstrained
baseline, and in the triple-antenna configuration, only one
constrained baseline is aiding the unconstrained baseline.
The methods developed are rigorous and have the additional
advantage that they improve ambiguity resolution on the
unconstrained baseline(s) and the overall success rate of
ambiguity resolution between a number of antennas.
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