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This paper investigates the disturbance attraction domain estimation of saturated Markov jump systems with truncated Gaussian
process. The aim is to estimate the disturbance domain of attraction so that the state is maintained in a neighbour around the
origin by a state feedback controller regardless of bounded disturbance. The problem is formulated as parameter-dependent linear
matrix inequalities (LMIs).The optimal disturbance attraction domain is obtained through searching formost appropriate auxiliary
parameters in the defined domain. A numerical example is presented to show the potential application of the results.

1. Introduction

For a system subject to abrupt structural changes, such as
component failures and sudden environmental changes, it
is more appropriate to model it as a Markov jump linear
system (MJS), where the switching behaviour amongst the
different modes of the system is determined by its transition
probability (TP) governed by a finite Markov chain. Many
results related to controller design under the time-invariant
transition probability are now available in the literature (see,
e.g., [1–11] and the references therein). However, the exact
value of the transition probability cannot be easily obtainable.
It is often that only partial information of the transition
probability can be obtained. In this situation, questions on
the stability analysis and controller design (see [12–14]) have
also been addressed. In practice, the environment can be so
complex that the transition probability of the MJS concerned
can only be nonhomogeneous. For example, the delay and
packet loss of a networked control system are distinct among
different working time [15]. Similar phenomena are also
observed in electronic circuits [16] and manpower systems
[17]. For Markov systems with nonhomogeneous transition
probability, some interesting results are now available (see [18,
19]). In [20], a new method for describing the time-varying
transition probability in the statistic sense is proposed. This

approach covers the cases where the transition probabilities
are known either exactly or partially as special cases.

On the other hand, saturation failure is widely encoun-
tered in engineering applications. In the presence of satura-
tion nonlinearity, a linear system will become a highly com-
plex nonlinear system [21]. It is well known that nonlinear
systems do not have, in general, global stability property
[22]. Thus, the problem of attraction domain estimation has
become a fundamentally challenging problem in nonlinear
control theory [23]. For a linear system with saturation, some
results related to attraction domain estimation have been
obtained (see, e.g., [24, 25]). However, it appears that the
estimation of the attraction domain for a saturated Markov
system with nonhomogeneous transition probability has not
been fully investigated.The situationwill becomemuchworse
when there is disturbance to the system, as the behavior of
the system will be significantly degraded by disturbance. The
difficulties mentioned above are the motivation behind this
paper to study the disturbance attraction domain estimation
for discrete-time Markov jump systems with saturation and
subject to truncatedGaussian transition probability. Based on
[20], the aim of this paper is to propose a novel approach to
estimate the optimal domain of attraction which can restrain
the states of system to be within the smallest neighborhood
around the origin under the bounded disturbance.
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The rest of the paper is organized as follows: in Section 2,
the system is defined, Section 3 introduces the concept of
stochastic stability, in Section 4, sufficient conditions for dis-
turbance attraction domain estimation are derived, in Sec-
tion 5, a numerical example is provided to illustrate the
applicability of the results obtained, and Section 6 concludes
the paper.

In the sequel, the notation𝑅
𝑛 stands for an 𝑛-dimensional

Euclidean space; the transpose of the matrix 𝐴 is denoted
by 𝐴

T; 𝐸{⋅} denotes the mathematical statistical expectation
of the stochastic process or vector; 𝜕 is the boundary of a
set; a positive-definite matrix is denoted by 𝑃 > 0; 𝐼 is the
unit matrix with appropriate dimension; and ∗ means the
symmetric term in a symmetric matrix.

2. Problem Statement and Preliminaries

Let (𝑀, 𝐹, 𝑃) be a probability space, where 𝑀, 𝐹, and 𝑃

represent, respectively, the sample space, the 𝜎-algebra of
events, and the probability measure defined on 𝐹. Consider
the following discrete-time Markov jump system:

𝑥
𝑘+1

= 𝐴 (𝑟
𝑘
) 𝑥
𝑘
+ 𝐵 (𝑟

𝑘
) 𝜎 (𝑢
𝑘
) + 𝐸 (𝑟

𝑘
) 𝑤
𝑘
, (1)

where 𝑥
𝑘

∈ 𝑅
𝑛 is the state, 𝑢

𝑘
∈ 𝑅
𝑚 is the input, 𝑤

𝑘
∈

{𝑤
T
𝑘
𝑤
𝑘
≤ 1} is the bounded disturbance of the system, and

𝜎(𝑢
𝑘
) = [𝜎(𝑢

1𝑘
) 𝜎(𝑢
2𝑘
) ⋅ ⋅ ⋅ 𝜎(𝑢

𝑚𝑘
)]
T.

The system is driven by a random process {𝑟
𝑘
, 𝑘 ≥ 0}

which takes values from a finite set Γ = {1, 2, 3, . . . , 𝑠}, where
𝜋
(𝜉𝑘)

𝑟𝑘𝑟𝑘+1

= Pr(𝑟
𝑘+1

= 𝑗 | 𝑟
𝑘

= 𝑖, 𝜉
𝑘
) denotes the transition

probability from mode 𝑖 at time 𝑘 to mode 𝑗 at time 𝑘 + 1.
Here, it is assumed that the TP, which is nonhomogeneous,
is approximated by a set of random variables driven by a
truncated Gaussian stochastic process {𝜉

𝑘
, 𝑘 ≥ 0}. The proba-

bility density function (PDF) of 𝜋(𝜉𝑘)
𝑟𝑘𝑟𝑘+1

is given as follows:

𝜋
(𝜉𝑘)

𝑟𝑘𝑟𝑘+1

=

(1/𝜎
𝑟𝑘𝑟𝑘+1

) 𝑓 ((𝜋
(𝜉𝑘)

𝑟𝑘𝑟𝑘+1

− 𝜇
𝑟𝑘𝑟𝑘+1

) /𝜎
𝑟𝑘𝑟𝑘+1

)

𝐹 ((1 − 𝜇
𝑟𝑘𝑟𝑘+1

) /𝜎
𝑟𝑘𝑟𝑘+1

) − 𝐹 ((0 − 𝜇
𝑟𝑘𝑟𝑘+1

) /𝜎
𝑟𝑘𝑟𝑘+1

)

,

(2)

where 𝑓(⋅) is the PDF of the standard normal distribution,
𝐹(⋅) is the cumulative density function (CDF) of 𝑓(⋅), and
𝜇
𝑟𝑘𝑟𝑘+1

and 𝜎
2

𝑟𝑘𝑟𝑘+1

are, respectively, the mean and variance of
the Gaussian PDF. More specifically, the TP matrix is given
by

𝜋 =

[
[
[
[
[
[
[

[

𝑛 (𝜇
11
, 𝜎
2

11
) 𝑛 (𝜇

12
, 𝜎
2

12
) . . . 𝑛 (𝜇

1𝑠
, 𝜎
2

1𝑠
)

𝑛 (𝜇
21
, 𝜎
2

21
) 𝑛 (𝜇

22
, 𝜎
2

22
) . . . 𝑛 (𝜇

2𝑠
, 𝜎
2

2𝑠
)

...
... d

...
𝑛 (𝜇
𝑠1
, 𝜎
2

𝑠1
) 𝑛 (𝜇

𝑠2
, 𝜎
2

𝑠2
) . . . 𝑛 (𝜇

𝑠𝑠
, 𝜎
2

𝑠𝑠
)

]
]
]
]
]
]
]

]

, (3)

where 𝑛(𝜇
𝑟𝑘𝑟𝑘+1

, 𝜎
2

𝑟𝑘𝑟𝑘+1

) denotes the PDF of truncated Gaus-
sian TP of 𝑝(𝜋(𝜉𝑘)

𝑟𝑘𝑟𝑘+1

), which is assumed to be known a priori.
It is noted that a larger 𝜎

2 implies a larger degree of
uncertainty related to the TP. In this case, a larger 𝜎2 should

be chosen. Otherwise, a smaller 𝜎
2 should be chosen. The

random variables 𝜋(𝜉𝑘)
𝑟𝑘𝑟𝑘+1

which appeared in the TP matrix are
continuous. Taking the expectation of the random variable
yields

�̂�
(𝜉𝑘)

𝑟𝑘𝑟𝑘+1

= 𝐸 (𝜋
(𝜉𝑘)

𝑟𝑘𝑟𝑘+1

)

= ∫

1

0

𝜋
(𝜉𝑘)

𝑟𝑘𝑟𝑘+1

𝑝 (𝜋
(𝜉𝑘)

𝑟𝑘𝑟𝑘+1

) 𝑑𝜋
(𝜉𝑘)

𝑟𝑘𝑟𝑘+1

= 𝜇
𝑟𝑘𝑟𝑘+1

+

𝑓 ((1 − 𝜇
𝑟𝑘𝑟𝑘+1

) /𝜎
𝑟𝑘𝑟𝑘+1

)− 𝑓 ((0 − 𝜇
𝑟𝑘𝑟𝑘+1

) /𝜎
𝑟𝑘𝑟𝑘+1

)

𝐹 ((1 − 𝜇
𝑟𝑘𝑟𝑘+1

) /𝜎
𝑟𝑘𝑟𝑘+1

)− 𝐹 ((0 − 𝜇
𝑟𝑘𝑟𝑘+1

) /𝜎
𝑟𝑘𝑟𝑘+1

)

𝜎
𝑟𝑘𝑟𝑘+1

.

(4)

Consequently, the desired TP matrix can be obtained as
follows:

Π =

[
[
[
[
[
[
[
[
[
[

[

�̂�
(𝜉𝑘)

11
�̂�
(𝜉𝑘)

12
. . . �̂�
(𝜉𝑘)

1𝑠

�̂�
(𝜉𝑘)

21
�̂�
(𝜉𝑘)

22
. . . �̂�
(𝜉𝑘)

2𝑠

...
... d

...

�̂�
(𝜉𝑘)

𝑠1
�̂�
(𝜉𝑘)

𝑠2
. . . �̂�
(𝜉𝑘)

𝑠𝑠

]
]
]
]
]
]
]
]
]
]

]

, (5)

where ∑𝑠
𝑗
�̂�
(𝜉𝑘)

𝑟𝑘𝑟𝑘+1

= 1, �̂�(𝜉𝑘)
𝑟𝑘𝑟𝑘+1

≥ 0, 1 ≤ 𝑖, and 𝑗 ≤ 𝑠.
To proceed further, we need some preliminaries.

Definition 1. Discrete-time Markov jump system (1) (with
𝑤
𝑘
= 0) is said to be stochastically stable if

lim
T→∞

𝐸{

T
∑

𝑘=0

𝑥
T
𝑘
𝑥
𝑘
| 𝑥
0
, 𝑟
0
} < ∞. (6)

Definition 2. Consider system (1); let ℎ
𝑞𝑖
denote the 𝑞th row

of matrix𝐻
𝑖
. Then

Θ(𝐻
𝑖
) = {𝑥

𝑘
∈ 𝑅
𝑛

:

ℎ
𝑞𝑖
𝑥
𝑘


≤ 1, 𝑞 = 1, 2, . . . , 𝑚} (7)

is a symmetric polyhedron set.

Lemma 3 (see [24]). Given matrices 𝑢
𝑘
∈ 𝑅
𝑚 and V

𝑘
∈ 𝑅
𝑚

for system (1), if |V
𝑘
| < 1, then 𝜎(𝑢

𝑘
) = ∑
2
𝑚

𝑡=1
𝜃
𝑡
(𝑀
𝑡
𝑢
𝑘
+𝑀
−

𝑡
V
𝑘
),

where 0 ≤ 𝜃
𝑡
≤ 1,∑2

𝑚

𝑡=1
𝜃
𝑡
= 1,𝑀

𝑡
, and 𝑡 = 1, . . . , 2

𝑚 are𝑚×𝑚

diagonal matrices whose diagonal elements are either 1 or 0,
and𝑀

−

𝑡
= 𝐼 − 𝑀

𝑡
.

Lemma 4 (see [24]). Given matrices V
𝑘
= 𝐻
𝑖
𝑥
𝑘
for system (1),

if 𝑥
𝑘
∈ Θ(𝐻

𝑖
), that is |V

𝑘
| < 1, then 𝜎(𝐹

𝑖
𝑥
𝑘
) = ∑

2
𝑚

𝑡=1
𝜃
𝑡
(𝑀
𝑡
𝐹
𝑖
+

𝑀
−

𝑡
𝐻
𝑖
)𝑥
𝑘
.

Definition 5. For given symmetric matrices 𝑃
𝑖
> 0, let us

define a mode-dependent ellipsoid invariant set given below:

𝜀 (𝑃
𝑖
, 1) = {𝑥

𝑘
∈ 𝑅
𝑛

: 𝑥
T
𝑘
𝑃
𝑖
𝑥
𝑘
≤ 1} . (8)
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3. Estimation of the Attraction Domain

We first derive the sufficient condition for the estimation of
the attraction domain for the case without disturbance. For
simplicity, we assume that the mode at time instant 𝑘 is 𝑟

𝑘
= 𝑖

and the mode at time instant 𝑘 + 1 is 𝑟
𝑘+1

= 𝑗.

Theorem 6. Consider system (1) with nonhomogeneous TP
matrix (5) under the condition𝑤

𝑘
= 0. Suppose that there exist

a set of symmetric positive definite matrices 𝑃
𝑖
> 0 and 𝐹

𝑖
, 𝐻
𝑖
,

∀𝑖 ∈ Γ, such that

(𝐴
𝑖
+ 𝐵
𝑖
(𝐷
𝑡
𝐹
𝑖
+ 𝐷
−

𝑡
𝐻
𝑖
))
𝑇

∑

𝑗∈Γ

�̂�
𝑖𝑗
𝑃
𝑗
(𝐴
𝑖
+ 𝐵
𝑖
(𝐷
𝑡
𝐹
𝑖
+ 𝐷
−

𝑡
𝐻
𝑖
))

− 𝑃
𝑖
< 0, 𝑡 ∈ [1, 2

𝑚

] ,

(9)

𝜀 (𝑃
𝑖
, 1) ⊂ Θ (𝐻

𝑖
) . (10)

Then the set ∩𝑠
𝑖=1

𝜀(𝑃
𝑖
, 1) is the domain of attraction of the

closed-loop system (1).

Proof. Construct a potential Lyapunov function as

𝑉 (𝑥
𝑘
, 𝑟
𝑘
= 𝑖) = 𝑥

T
𝑘
𝑃
𝑖
𝑥
𝑘

(𝑖 ∈ Γ) . (11)

For system (1), it follows from Lemmas 3 and 4 that

Δ𝑉 (𝑥
𝑘
, 𝑖)

= 𝐸 {𝑉 (𝑥
𝑘+1

, 𝑗)} − 𝑉 (𝑥
𝑘
, 𝑖)

= 𝑥
T
𝑘+1

∑

𝑗∈Γ

�̂�
𝑖𝑗
𝑃
𝑗
𝑥
𝑘+1

− 𝑥
T
𝑘
𝑃
𝑖
𝑥
𝑘

= 𝑥
T
𝑘

[

[

(𝐴
𝑖
+ 𝐵
𝑖
(𝐷
𝑡
𝐹
𝑖
+ 𝐷
−

𝑡
𝐻
𝑖
))

T

× ∑

𝑗∈Γ

�̂�
𝑖𝑗
𝑃
𝑗
(𝐴
𝑖
+ 𝐵
𝑖
(𝐷
𝑡
𝐹
𝑖
+ 𝐷
−

𝑡
𝐻
𝑖
)) − 𝑃

𝑖

]

]

𝑥
𝑘

= 𝑥
T
𝑘
Φ
𝑖
(𝑡) 𝑥
𝑘
, 𝑡 ∈ [1, 2

𝑚

] .

(12)

Clearly, condition (9) implies

Δ𝑉 (𝑥
𝑘
, 𝑖) < 0. (13)

Denote 𝛿 = min
𝑡
𝜆min(−Φ𝑖(𝑡)), for all 𝑖 ∈ Γ, where

𝜆min(−Φ𝑖(𝑡)) is the minimal eigenvalue of (−Φ
𝑖
(𝑡)).

Hence,

Δ𝑉 (𝑥
𝑘
, 𝑖) ≤ −𝛿𝑥

T
𝑘
𝑥
𝑘
. (14)

Taking the sum on both sides from 0 to T gives

𝐸{

T
∑

𝑘=0

Δ𝑉 (𝑥
𝑘
, 𝑖)} = 𝐸 {𝑉 (𝑥T+1,T + 1)}

− 𝑉 (𝑥
0
, 𝑟
0
) ≤ −𝛿𝐸{

T
∑

𝑘=0

𝑥
T
𝑘
𝑥
𝑘
} ,

(15)

which implies

lim
T→∞

𝐸{

T
∑

𝑘=0

𝑥
T
𝑘
𝑥
𝑘
} ≤

1

𝛿
𝑉 (𝑥
0
, 𝑟
0
) < ∞. (16)

This completes the proof. ClearlyTheorem 6 implies stochas-
tic stability (see Definition 1).

4. Estimation of Disturbance
Attraction Domain

In this section, we will derive sufficient condition for the
estimation of the attraction domain under bounded distur-
bance. This sufficient condition will ensure that the influence
of disturbance is minimized. To move forward, we assume
that the bounded disturbance satisfies 𝑤T

𝑘
𝑤
𝑘
≤ 1.

Theorem 7. Consider system (1) with nonhomogeneous TP
matrix (5); suppose that there exist symmetric positive definite
matrices 𝑃

𝑖
> 0, and 𝐹

𝑖
,𝐻
𝑖
, for all 𝑖 ∈ Γ, such that

min𝛼, (17)

𝜀 (𝑃
𝑖
, 1) ⊂ 𝛼𝜒

∞
, (18)

(𝐴
𝑖
+ 𝐵
𝑖
(𝐷
𝑡
𝐹
𝑖
+ 𝐷
−

𝑡
𝐻
𝑖
))
𝑇

∑

𝑗∈Γ

�̂�
𝑖𝑗
𝑃
𝑗
(𝐴
𝑖
+ 𝐵
𝑖
(𝐷
𝑡
𝐹
𝑖
+ 𝐷
−

𝑖
𝐻
𝑖
))

+
1

1 + 𝜂
(
1 + 𝜂

𝜂
𝜆max (𝐸

𝑇

𝑖
𝑃
𝑗
𝐸
𝑖
) − 1)𝑃

𝑖
< 0,

𝑡 ∈ [1, 2
𝑚

] ,

(19)

ℎ
𝑖𝑞
𝑥

≤ 1, ∀𝑥 ⊂ ∩𝜀 (𝑃

𝑖
, 1) , 𝑖 ∈ Γ, 𝑞 ∈ [1,𝑚] , (20)

where 𝜒
0
is a reference set, 𝑥

0
is an initial state, and 𝛼 > 0 is a

scalar; then the subset ∩𝜏
𝑖=1

𝜀(𝑃
𝑖
, 1) is the disturbance attraction

domain for system (1) which satisfies an optimal disturbance
attenuation performance index 𝛼.

Proof. Consider a candidate Lyapunov function 𝑉(𝑥) =

𝑥
T
𝑘
𝑃
𝑖
𝑥
𝑘
. It is required to show that

Δ𝑉
𝑘
= 𝑥

T
𝑘

[

[

(𝐴
𝑖
+ 𝐵
𝑖
(𝜎 (𝐹
𝑖
𝑥)) + 𝐸

𝑖
𝑤
𝑘
)
T

× ∑

𝑗∈Γ

�̂�
𝑖𝑗
𝑃
𝑗
(𝐴
𝑖
+ 𝐵
𝑖
(𝜎 (𝐹
𝑖
𝑥)) + 𝐸

𝑖
𝑤
𝑘
)]

]

𝑥
𝑘

− 𝑥
T
𝑘
𝑃
𝑖
𝑥
𝑘
< 0.

(21)
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Noting that (𝑎 + 𝑏)
T
(𝑎 + 𝑏) ≤ (1 + 𝜂)𝑎

T
𝑎 + (1 + (1/𝜂))𝑏

T
𝑏 and

𝑤
T
𝑘
𝑤
𝑘
≤ 1, it follows that

(𝐴
𝑖
+ 𝐵
𝑖
(𝜎 (𝐹
𝑖
𝑥) + 𝐸

𝑖
𝑤
𝑘
))

T

× ∑

𝑗∈Γ

�̂�
𝑖𝑗
𝑃
𝑗
(𝐴
𝑖
+ 𝐵
𝑖
(𝜎 (𝐹
𝑖
𝑥) + 𝐸

𝑖
𝑤
𝑘
))

≤ max
𝑡∈[1,2

𝑚
]

𝑥
T
𝑘
(1 + 𝜂) (𝐴

𝑖
+ 𝐵
𝑖
(𝐷
𝑡
𝐹
𝑖
+ 𝐷
−

𝑡
𝐻
𝑖
))

T

× ∑

𝑗∈Γ

�̂�
𝑖𝑗
𝑃
𝑗
(𝐴
𝑖
+ 𝐵
𝑖
(𝐷
𝑡
𝐹
𝑖
+ 𝐷
−

𝑡
𝐻
𝑖
)) 𝑥
𝑘

+ (1 +
1

𝜂
)𝑤

T
𝑘
𝐸
T
𝑖
∑

𝑗∈Γ

�̂�
𝑖𝑗
𝑃
𝑗
𝐸
𝑖
𝑤
𝑘
− 𝑥

T
𝑘
𝑃
𝑖
𝑥
𝑘

≤ max
𝑡∈[1,2

𝑚
]

𝑥
T
𝑘
(1 + 𝜂) (𝐴

𝑖
+ 𝐵
𝑖
(𝐷
𝑡
𝐹
𝑖
+ 𝐷
−

𝑡
𝐻
𝑖
))

T

× ∑

𝑗∈Γ

�̂�
𝑖𝑗
𝑃
𝑗
(𝐴
𝑖
+ 𝐵
𝑖
(𝐷
𝑡
𝐹
𝑖
+ 𝐷
−

𝑡
𝐻
𝑖
)) 𝑥
𝑘

+ (1 +
1

𝜂
)𝜆max (𝐸

T
𝑖
𝑃
𝑗
𝐸
𝑖
) − 𝑥

T
𝑘
𝑃
𝑖
𝑥
𝑘
.

(22)

To guarantee the attraction domain property for 𝑥
𝑘

∈

∩𝜀(𝑃
𝑖
, 1), it suffices to show that there exists an 𝜂, for all

𝑡 ∈ [1, 2
𝑚

] such that

𝑥
T
𝑘
(1 + 𝜂) (𝐴

𝑖
+ 𝐵
𝑖
(𝐷
𝑡
𝐹
𝑖
+ 𝐷
−

𝑡
𝐻
𝑖
))

T

× ∑

𝑗∈Γ

�̂�
𝑖𝑗
𝑃
𝑗
(𝐴
𝑖
+ 𝐵
𝑖
(𝐷
𝑡
𝐹
𝑖
+ 𝐷
−

𝑡
𝐻
𝑖
)) 𝑥
𝑘

+ (1 +
1

𝜂
)𝜆max (𝐸

T
𝑖
𝑃
𝑗
𝐸
𝑖
) − 1 < 0.

(23)

Noting that 1 = 𝑥
T
𝑘
𝑃
𝑖
𝑥
𝑘
on 𝜕𝜀(𝑃

𝑖
, 1), (23) is guaranteed by (19).

By (18), the sufficient condition for the optimal disturbance
attenuation performance index 𝛼 is implied. This completes
the proof.

Next, we show how to solve the problem by using LMIs.

Theorem 8. Consider system (1) with nonhomogeneous TP
matrix (5) and let 𝛾 = 𝛼

2 be a scalar; suppose that there exist
symmetric positive definite matrices 𝑄

𝑖
= 𝑃
−1

𝑖
> 0 and 𝑌

𝑖
=

𝐹
𝑖
𝑄
𝑖
, 𝑍
𝑖
= 𝐻
𝑖
𝑄
𝑖
, 𝜂 > 0, and 𝜆 ∈ (0, 𝜂/(1 + 𝜂)), for all 𝑖 ∈ Γ,

such that

min 𝛾, (24)

𝑄
𝑖
− 𝛾 ∗ 𝑅

−1

< 0, (25)

[
[
[
[
[
[
[
[
[
[

[

(
𝜆

𝜂
−

1

1 + 𝜂
)𝑄
𝑖

∗ ∗ ∗

√𝜅
1

𝑖
(𝐴
𝑖
+ 𝐵
𝑖
(𝐷
𝑖
𝑌
𝑖
+ 𝐷
−

𝑖
𝑍
𝑖
)) −𝑄

1
∗ ∗

...
... d

...
√𝜅
𝑙

𝑖
(𝐴
𝑖
+ 𝐵
𝑖
(𝐷
𝑖
𝑌
𝑖
+ 𝐷
−

𝑖
𝑍
𝑖
)) ∗ ∗ −𝑄

𝑙

]
]
]
]
]
]
]
]
]
]

]

< 0, ∀𝑖 ∈ Γ, 𝑗 ∈ 𝜋
𝑘

𝑗
,

(26)

[
−𝜆 𝐸

𝑇

𝑖

∗ −𝑄
𝑘

] < 0, ∀𝑖 ∈ Γ, 𝑘 ∈ Γ, (27)

[
−1 𝑍

𝑖𝑞

∗ −𝑄
𝑖

] < 0, ∀𝑖 ∈ Γ, 𝑞 ∈ [1,𝑚] , (28)

where 𝜒
0
is a reference set and 𝑥

0
is an initial state; then the

subset ∩𝜏
𝑖=1

𝜀(𝑃
𝑖
, 1) is the disturbance attraction domain for sys-

tem (1) which satisfies an optimal disturbance attenuation
performance index 𝛼.

Proof. Denote 𝛾 = 𝛼
2. Choose an ellipsoid 𝜀(𝑅, 1) as a refer-

ence set. Then condition (26) can be formulated as 𝑅/𝛾 ≤ 𝑃
𝑖
,

which is implied by (25). By applying Schur complement, it is
clear that (18) and (19) follow from (25) and (26), respectively.
Equation (27) implies the existence of 𝜆max. Equation (20) is
equivalent to (28). This completes the proof.

Remark 9. If we choose a polyhedron 𝑥
0
= [𝑥
1

0
, . . . , 𝑥

𝑛

0
]
T (𝑥𝑛
0

is a point) as a reference set inTheorem 8, then condition (22)
is converted into

[
[

[

−
1

𝛼2
∗

𝑥
𝑞

0
−𝑄

]
]

]

< 0, ∀𝑞 ∈ [1, 𝑛] . (29)

5. Illustrative Example

Consider a nonhomogeneous discrete-time jump system
with four modes:

𝐴
1
= [

0.50 −0.30

0.10 0.60
] , 𝐵

1
= [

−0.026

0.247
] ,

𝐸
1
= [

0.0657

0.0582
] , 𝐴

2
= [

0.36 −0.30

0.20 0.50
] ,

𝐵
2
= [

−0.030

0.100
] , 𝐸

2
= [

0.0308

0.0453
] ,

𝐴
3
= [

0.70 −0.25

0.10 0.70
] , 𝐵

3
= [

−0.010

0.320
] ,

𝐸
3
= [

0.0236

0.0292
] , 𝐴

4
= [

0.65 −0.35

0.25 0.65
] ,

𝐵
4
= [

−0.010

0.220
] , 𝐸

4
= [

0.0586

0.0323
] .

(30)

Assume that the PDF matrix to describe the TP matrix in
Table 1 is given by

𝜋
𝑁

=

[
[
[
[
[
[
[
[

[

𝑛 (0.3, 𝜎
2

) 𝑛 (0.2, 𝜎
2

) 𝑛 (0.1, 𝜎
2

) 𝑛 (0.4, 𝜎
2

)

𝑛 (0.3, 𝜎
2

) 𝑛 (0.2, 𝜎
2

) 𝑛 (0.3, 𝜎
2

) 𝑛 (0.2, 𝜎
2

)

𝑛 (0.1, 𝜎
2

) 𝑛 (0.1, 𝜎
2

) 𝑛 (0.5, 𝜎
2

) 𝑛 (0.3, 𝜎
2

)

𝑛 (0.2, 𝜎
2

) 𝑛 (0.2, 𝜎
2

) 𝑛 (0.1, 𝜎
2

) 𝑛 (0.5, 𝜎
2

)

]
]
]
]
]
]
]
]

]

.

(31)

Table 1 shows the obtained TP matrix with 𝜎
2

= 0.01.
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Table 1: Shows the obtained TP matrix with 𝜎
2

= 0.01.
𝜎
2

= 0.01

0.29917 0.19945 0.10248 0.39890
0.29994 0.20006 0.29994 0.20006
0.10495 0.10495 0.49381 0.29629
0.19881 0.19881 0.10559 0.49679

0 0.5

0

0.2

0.4

0.6

−0.5

−0.6

−0.4

−0.2

x

2

x

1

Figure 1: Disturbance attraction domain.

ByTheorem 8, the feedback gains are calculated as

𝐹
1
= [2.2177 −3.6435] , 𝐹

2
= [2.7909 −6.7110] ,

𝐹
3
= [3.3680 −3.3769] , 𝐹

4
= [2.9303 −4.9250] .

(32)

Figure 1 shows a state trajectory on the boundary of the dis-
turbance attraction domain under the bounded disturbance
𝑤
𝑘

= 0.5 sin(𝑘). Though the bounded disturbance exists,
the state trajectory is regulated to a small neighbourhood
around the origin.When the disturbance disappears, the state
is driven to the origin as expected (see Figure 2), implying
the stochastic stability. Figure 3 shows a trajectory of mode
evolution. Table 2 shows the optimal disturbance attenuation
index.

6. Conclusions

This paper investigated the design of the disturbance attrac-
tion domain estimation for a class of nonhomogeneous
discrete-time Markov jump systems with saturation and
bounded disturbance. Furthermore, the optimal disturbance
attenuation index is satisfied. The numerical example shows
the applicability of the results obtained as expected. The
results obtained may be extended to the systems with time
delay.
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Table 2
Parameters 𝜂

∗

𝜆
∗

𝛼
∗

min

0.998 0.2510 0.1782

0 0.5−0.5
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1

Figure 2: Attraction domain without disturbance.
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