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Abstract: Most large organizations operate a vehicle fleet for transporting
materials and personnel. When establishing such a fleet, an organization must
decide, based on forecasts of its future requirements, how many vehicles to
purchase and how many to hire. Hiring vehicles is much more expensive than
operating owned vehicles. On the other hand, purchasing vehicles incurs a large
opportunity cost. In this paper, we consider an optimization problem in which
the number of purchased vehicles is chosen to minimize the total cost of owning
and hiring vehicles. This problem is called the fleet composition problem (FCP).
Our main contribution is to prove that the FCP’s cost function is convex. We
then exploit this result to show that the FCP can be solved efficiently using the
well-known golden section method.
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1 INTRODUCTION

Consider an organization using a certain type of vehicle. This organization has
forecasted its vehicle requirements for the upcoming planning horizon (divided
into periods). It now needs to decide how many vehicles to purchase.
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Define:

n = number of periods in the planning horizon.

pt = number of vehicles required during period t ∈ {1, . . . , n}.
p = number of vehicles to be purchased (decision variable).

pmax = maximum number of vehicles that can be purchased.

cf = fixed cost per period of an owned vehicle.

cv = variable cost per period of an owned vehicle.

ch = cost per period of hiring one vehicle.

The fixed cost of an owned vehicle includes the initial cost of purchasing the
vehicle (less the salvage value) plus other costs such as insurance premiums and
registration fees. The variable cost is generally due to maintenance (servicing,
replacing tires, etc.) and is only incurred when the vehicle is used.

The cost of owning and operating a vehicle for one period must be less than
the cost of hiring a vehicle for one period—otherwise, there would be no reason
to purchase vehicles. Hence,

cf + cv < ch.

Since cf is the fixed cost per period of an owned vehicle,

Total fixed cost = ncfp.

If pt > p, then during time period t the organization needs to use all p of its
own vehicles plus pt − p hired vehicles. On the other hand, when pt ≤ p, the
organization only uses pt of its own vehicles (no vehicles are hired). Thus,

Number of owned vehicles used during period t = min(pt, p)

and
Number of vehicles hired during period t = max(pt − p, 0).

Consequently,

Total variable cost = cv

n∑

t=1

min(pt, p)

and

Total hiring cost = ch

n∑

t=1

max(pt − p, 0).

The key question that now arises is: what value of p minimizes the overall cost?
This question leads to the following optimization problem.
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Fleet Composition Problem (FCP)

Find an integer p ∈ [0, pmax] that minimizes the cost function

C(p) = ncfp
︸︷︷︸

Fixed cost

+ cv

n∑

t=1

min(pt, p)

︸ ︷︷ ︸

Variable cost

+ ch

n∑

t=1

max(pt − p, 0)

︸ ︷︷ ︸

Hiring cost

.

A rudimentary approach to solving the FCP is just to evaluate C at every
integer in [0, pmax] and then select the integer with the smallest cost. This is
obviously extremely inefficient when n and pmax are large. The purpose of this
paper is to develop a more sophisticated method for solving the FCP.

Ghiani et al. (2004) formulated the FCP and suggested solving it by differ-
entiating C and setting C′ equal to zero. This yields the following optimality
condition:

m =
ncf

ch − cv

, (1.1)

where m is the number of time periods in which pt > p. Unfortunately, equa-
tion (1.1) only holds when C is differentiable (see the next section). Further-
more, equation (1.1) only makes sense when its right-hand side is an integer.
This is often not the case. For example, if n = 52, cf = 50, cv = 40, and
ch = 100, then (1.1) gives m = 43.3333, which is impossible.

2 MAIN RESULTS

We first derive some important results. In this section, we assume that the
FCP’s cost function C is defined for all real numbers.

For each p ∈ R, define the following sets:

R(p) , { t : pt > p },

S(p) , { t : pt < p },
T (p) , { t : pt = p }.

Clearly, R(p), S(p), and T (p) partition {1, . . . , n}.
Now, let f : R → R be any function. Recall that the left derivative of f is

defined by

D−f(x) , lim
ǫ→0−

f(x + ǫ) − f(x)

ǫ
,

provided this limit exists. Similarly, the right derivative of f is defined by

D+f(x) , lim
ǫ→0+

f(x + ǫ) − f(x)

ǫ
.

In our first result, we show that C has a left derivative at every point.

Theorem 2.1 For each p ∈ R,

D−C(p) = ncf + (cv − ch)|R(p)| + (cv − ch)|T (p)|.
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Proof. Let p ∈ R be arbitrary but fixed. Furthermore, define

ǫ′ ,

{

max{ pt − p : t ∈ S(p) }, if S(p) 6= ∅,
−∞, if S(p) = ∅.

Since pt < p for each t ∈ S(p), we have ǫ′ < 0.
Now, let ǫ ∈ (ǫ′, 0). Then

C(p+ ǫ) = ncfp+ncfǫ+ cv

n∑

t=1

min(pt, p+ ǫ)+ ch

n∑

t=1

max(pt − p− ǫ, 0). (2.1)

If t ∈ R(p) ∪ T (p), then pt ≥ p > p + ǫ. Therefore,

min(pt, p + ǫ) = p + ǫ, t ∈ R(p) ∪ T (p), (2.2)

and
max(pt − p − ǫ, 0) = pt − p − ǫ, t ∈ R(p) ∪ T (p). (2.3)

On the other hand, if t ∈ S(p) then

p + ǫ > p + ǫ′ ≥ p + pt − p = pt.

Hence,
min(pt, p + ǫ) = pt, t ∈ S(p), (2.4)

and
max(pt − p − ǫ, 0) = 0, t ∈ S(p). (2.5)

By equations (2.2) and (2.4),

n∑

t=1

min(pt, p + ǫ) =
∑

t∈R(p)∪T (p)

min(pt, p + ǫ) +
∑

t∈S(p)

min(pt, p + ǫ)

=
∑

t∈R(p)∪T (p)

(p + ǫ) +
∑

t∈S(p)

pt

= ǫ|R(p)| + ǫ|T (p)| +
∑

t∈R(p)∪T (p)

p +
∑

t∈S(p)

pt

= ǫ|R(p)| + ǫ|T (p)| +
n∑

t=1

min(pt, p). (2.6)

Now, by equations (2.3) and (2.5),

n∑

t=1

max(pt − p − ǫ, 0) =
∑

t∈R(p)∪T (p)

(pt − p − ǫ)

= −ǫ|R(p)| − ǫ|T (p)| +
∑

t∈R(p)∪T (p)

(pt − p)

= −ǫ|R(p)| − ǫ|T (p)| +
n∑

t=1

max(pt − p, 0). (2.7)
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Substituting equations (2.6) and (2.7) into equation (2.1) yields

C(p + ǫ) = ncfp + ncfǫ + ǫ(cv − ch)|R(p)| + ǫ(cv − ch)|T (p)|

+ cv

n∑

t=1

min(pt, p) + ch

n∑

t=1

max(pt − p, 0).

Thus,

C(p + ǫ) = C(p) + ncfǫ + ǫ(cv − ch)|R(p)| + ǫ(cv − ch)|T (p)|,

which immediately implies

C(p + ǫ) − C(p) = ncfǫ + ǫ(cv − ch)|R(p)| + ǫ(cv − ch)|T (p)|.

Dividing both sides by ǫ (recall that ǫ < 0) gives

C(p + ǫ) − C(p)

ǫ
= ncf + (cv − ch)|R(p)| + (cv − ch)|T (p)|.

This equation holds for all ǫ ∈ (ǫ′, 0). Taking the limit as ǫ → 0− gives

D−C(p) = lim
ǫ→0−

C(p + ǫ) − C(p)

ǫ
= ncf + (cv − ch)|R(p)| + (cv − ch)|T (p)|,

which completes the proof. �

We now determine the right derivative of C.

Theorem 2.2 For each p ∈ R,

D+C(p) = ncf + (cv − ch)|R(p)|.

Proof. Let p ∈ R be arbitrary but fixed. Furthermore, define

ǫ′ ,

{

min{ pt − p : t ∈ R(p) }, if R(p) 6= ∅,
+∞, if R(p) = ∅.

Since pt > p for each t ∈ R(p), we have ǫ′ > 0.
Let ǫ ∈ (0, ǫ′). Then

C(p+ ǫ) = ncfp+ncfǫ+ cv

n∑

t=1

min(pt, p+ ǫ)+ ch

n∑

t=1

max(pt − p− ǫ, 0). (2.8)

If t ∈ R(p), then
p + ǫ < p + ǫ′ ≤ p + pt − p = pt.

Therefore,
min(pt, p + ǫ) = p + ǫ, t ∈ R(p), (2.9)
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and
max(pt − p − ǫ, 0) = pt − p − ǫ, t ∈ R(p). (2.10)

On the other hand, if t ∈ S(p) ∪ T (p) then pt ≤ p < p + ǫ. Thus,

min(pt, p + ǫ) = pt, t ∈ S(p) ∪ T (p), (2.11)

and
max(pt − p − ǫ, 0) = 0, t ∈ S(p) ∪ T (p). (2.12)

By equations (2.9) and (2.11),

n∑

t=1

min(pt, p + ǫ) =
∑

t∈R(p)

(p + ǫ) +
∑

t∈S(p)∪T (p)

pt

= ǫ|R(p)| +
∑

t∈R(p)

p +
∑

t∈S(p)∪T (p)

pt

= ǫ|R(p)| +
n∑

t=1

min(pt, p). (2.13)

By equations (2.10) and (2.12), we have

n∑

t=1

max(pt − p − ǫ, 0) =
∑

t∈R(p)

(pt − p − ǫ)

= −ǫ|R(p)| +
∑

t∈R(p)

(pt − p)

= −ǫ|R(p)| +
n∑

t=1

max(pt − p, 0). (2.14)

Substituting equations (2.13) and (2.14) into equation (2.8) gives

C(p + ǫ) = ncfp + ncf ǫ + ǫ(cv − ch)|R(p)|

+ cv

n∑

t=1

min(pt, p) + ch

n∑

t=1

max(pt − p, 0).

Therefore,
C(p + ǫ) − C(p) = ncf ǫ + ǫ(cv − ch)|R(p)|.

Dividing both sides by ǫ gives

C(p + ǫ) − C(p)

ǫ
= ncf + (cv − ch)|R(p)|.

Hence,

D+C(p) = lim
ǫ→0+

C(p + ǫ) − C(p)

ǫ
= ncf + (cv − ch)|R(p)|.
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This completes the proof. �

Ghiani et al. (2004) claim that the derivative of C is

C′(p) = ncf + (cv − ch)|R(p)|. (2.15)

However, by Theorems 2.1 and 2.2,

D+C(p) − D−C(p) = −(cv − ch)|T (p)|. (2.16)

Thus, since cv − ch < 0 (recall that cf + cv < ch), the left and right derivatives
of C differ when T (p) 6= ∅. This means that C is not differentiable at p = pt,
t = 1, . . . , n. Equation (2.15) is obviously invalid at these points.

The following result is proved in Chapter 5 of Royden (1988).

Lemma 2.1 Let f : R → R be a continuous function whose right derivative

D+f exists at every point. If D+f is non-decreasing, then f is convex.

We can use Lemma 2.1 to show that C is a convex function. First, let p1 < p2.
Then obviously

R(p2) ⊂ R(p1).

Thus,
|R(p2)| ≤ |R(p1)|.

Since cv − ch < 0,

(cv − ch)|R(p2)| ≥ (cv − ch)|R(p1)|

and consequently

D+C(p1) = ncf + (cv − ch)|R(p1)| ≤ ncf + (cv − ch)|R(p2)| = D+C(p2).

This shows that D+C is non-decreasing. Note also that C is a continuous
function. Thus, it follows immediately from Lemma 2.1 that C is convex. In
the next section, we will exploit this result to devise an efficient computational
method for solving the FCP.

3 APPLYING THE GOLDEN SECTION METHOD

To solve the FCP directly, we need to evaluate C at every integer in [0, pmax].
This is obviously extremely inefficient. In this section, we will develop a superior
method for solving the FCP.

We first need to introduce the FCP’s continuous relaxation, which is obtained
by dropping the integer constraints on p.

Continuous Relaxation of the FCP

Find a real number p ∈ [0, pmax] that minimizes the cost function

C(p) = ncfp + cv

n∑

t=1

min(pt, p) + ch

n∑

t=1

max(pt − p, 0).



8

We now show that, since C is convex, a solution of the original FCP can be
easily obtained from a solution of its continuous relaxation.

Theorem 3.1 Let p∗ be an optimal solution of the FCP’s continuous relax-

ation. Then either ⌊p∗⌋ or ⌈p∗⌉ is an optimal solution of the original FCP.

Proof. Obviously, both ⌊p∗⌋ and ⌈p∗⌉ are feasible for the FCP. Suppose that
neither ⌊p∗⌋ nor ⌈p∗⌉ is optimal. Then there exists an integer p′ ∈ [0, pmax]
such that

C(p′) < min
{
C(⌊p∗⌋), C(⌈p∗⌉)

}
. (3.1)

Now, suppose that p′ = p∗. Then p∗ is an integer and hence

p′ = p∗ = ⌊p∗⌋ = ⌈p∗⌉.

But this clearly contradicts (3.1), so p′ = p∗ is impossible. Hence, p′ 6= p∗.
Consider the line between p′ and p∗:

λp∗ + (1 − λ)p′, λ ∈ [0, 1].

This line must contain either ⌊p∗⌋ or ⌈p∗⌉; we assume without loss of generality
that it contains ⌊p∗⌋. Then there exists a λ′ ∈ (0, 1] such that

⌊p∗⌋ = λ′p∗ + (1 − λ′)p′.

Thus, since C is convex,

C(⌊p∗⌋) = C(λ′p∗ + (1 − λ′)p′) ≤ λ′C(p∗) + (1 − λ′)C(p′).

It is clear that C(p∗) ≤ C(p′). Therefore,

C(⌊p∗⌋) ≤ λ′C(p∗) + (1 − λ′)C(p′) ≤ C(p′).

But this contradicts (3.1). Thus, either ⌊p∗⌋ or ⌈p∗⌉ is optimal. �

Since the FCP’s continuous relaxation is just a one-dimensional convex op-
timization problem, it can be solved efficiently using the well-known golden
section method (see Bazaraa et al. (2006) and Luenberger & Ye (2008)). We
can then obtain a solution of the original FCP using Theorem 3.1. Solving
the FCP in this way is much more efficient than evaluating C at every integer
in [0, pmax].

The golden section method works by computing C at various test points and
using this information to continually reduce the interval of uncertainty. Ini-
tially, the only information we have is that the optimal solution lies somewhere
in [0, pmax]. Thus, the initial interval of uncertainty is

I0 = [α0, β0] = [0, pmax].

We define initial test points p1
1 and p1

2 as follows:

p1
1 = pmax − rpmax
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and
p1
2 = rpmax,

where

r =

√
5 − 1

2
= 0.618.

Now, given the (k − 1)th interval of uncertainty Ik−1 = [αk−1, βk−1] and the
test points pk

1 and pk
2 , we determine the new interval of uncertainty Ik according

to the following rules. If C(pk
1) < C(pk

2), then because C is convex, the optimal
solution must lie in [αk−1, p

k
2 ]. Hence, the new interval of uncertainty is

Ik = [αk−1, p
k
2 ].

On the other hand, if C(pk
1) ≥ C(pk

2), then the optimal solution must lie in the
interval [pk

1 , βk−1]. Hence, the new interval of uncertainty is

Ik = [pk
1 , βk−1].

The two test points pk+1
1 and pk+1

2 for this new interval of uncertainty are:

pk+1
1 =

{

pk
2 − r|Ik|, if Ik = [αk−1, p

k
2 ],

pk
2 , if Ik = [pk

1 , βk−1],

and

pk+1
2 =

{

pk
1 , if Ik = [αk−1, p

k
2 ],

pk
1 + r|Ik|, if Ik = [pk

1 , βk−1].

Note that one of the new test points coincides with a test point from the
previous interval of uncertainty. Choosing the test points in this way ensures
that

|Ik| = r|Ik−1| < |Ik−1|.
Consequently, the length of the kth interval of uncertainty is

|Ik| = βk − αk = rkpmax.

How many iterations of the golden section method are needed to solve the
FCP’s continuous relaxation? The next result answers this question.

Theorem 3.2 Let N be an integer such that

N > − ln pmax

ln r
. (3.2)

Furthermore, let IN = [αN , βN ] denote the N th interval of uncertainty when

the golden section method is applied to the FCP’s continuous relaxation. Then

either ⌊αN⌋, ⌊αN⌋ + 1, or ⌊αN⌋ + 2 is a solution of the original FCP.

Proof. From (3.2), we obtain

rN <
1

pmax
.
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Thus,
βN − αN = rNpmax < 1. (3.3)

Now, let p∗ denote the solution of the FCP’s continuous relaxation. Then

⌊αN⌋ ≤ αN ≤ p∗ ≤ βN ≤ ⌈βN⌉.
Thus,

⌊αN⌋ ≤ ⌊p∗⌋ ≤ ⌈p∗⌉ ≤ ⌈βN⌉. (3.4)

It follows from inequality (3.3) that βN < ⌈αN⌉ + 1. Thus,

⌈βN⌉ ≤ ⌈αN⌉ + 1 ≤ ⌊αN⌋ + 1 + 1 = ⌊αN⌋ + 2. (3.5)

Combining (3.4) and (3.5) gives

⌊αN⌋ ≤ ⌊p∗⌋ ≤ ⌈p∗⌉ ≤ ⌊αN⌋ + 2. (3.6)

But by Theorem 3.1, either ⌊p∗⌋ or ⌈p∗⌉ is a solution of the original FCP. Thus,
inequality (3.6) implies that either ⌊αN⌋, ⌊αN⌋ + 1, or ⌊αN⌋ + 2 is a solution
of the FCP. �

In Theorem 3.2, we can choose

N =

⌈

− ln pmax

ln r

⌉

.

Then solving the FCP using the golden section method entails at most
⌈

− ln pmax

ln r

⌉

+ 4

cost function evaluations (N + 1 evaluations for the golden section method, 3
more evaluations to decide which of ⌊αN⌋, ⌊αN⌋+1, and ⌊αN⌋+2 is optimal).
This is far less than the pmax + 1 cost function evaluations needed to solve the
FCP directly. For example, consider a FCP with pmax = 10, 000. Then

⌈

− ln pmax

ln r

⌉

+ 4 = 24 ≪ 10, 001 = pmax + 1.

Thus, the golden section method is very efficient for large-scale FCP’s.
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