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Abstract 

The objectives of this work were to examine the 

applicability of the Dark-Object Subtraction (DOS) 

atmospheric correction method and water-based index 

techniques to map wetlands in Dhaka megacity using 

Landsat 8 data. With the use of both raw data and DOS-

corrected imagery, the analysis revealed that DOS-

corrected images performed better in discriminating 

wetland areas. Furthermore, the Modified Normalised 

Water Index (MNDWI) was the most superior technique 

whilst the Normalised Difference Water Index (NDWI) 

was the least suitable in identifying the spatial locations of 

wetlands in a rapidly urbanising environment such as 

Dhaka. 
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Introduction 

     Wetlands comprise roughly 6–9 percent of the Earth’s surface (Zedler and Kercher, 2005). The role of wetlands 
in maintaining environmental quality is well recognised (Ozesmi and Bauer, 2002), and includes the storage of 
global terrestrial carbon (Mitsch and Gosselink, 2007). In addition, their influence on many aspects of ecology, 
economy and human welfare has been well documented (Klemas, 2011; Ma et al. 2007). Furthermore, wetlands act 
as an oasis in an urban area which is important in the reduction of surrounding surface air temperature (Sun and 
Chen, 2012). Changes in the distribution of wetlands either by natural factors or anthropogenic activities could 
significantly affect the ecosystem services (Barducci et al. 2009) mentioned above. Although they are an important 
environmental resource, they are heavily abused due to a lack of understanding (Smardon, 2009), particularly in 
developing countries. Accurate mapping and precise area statistics are therefore of paramount importance in the 
prevention and management of wetlands and related ecosystem services (Klemas, 2011).  
Satellite remote sensing data have extensively been used to delineate wetlands across the world with a wide range 
of techniques, including a per-pixel classifier (e.g. supervised classification), semi-automated (e.g. image 
segmentation) method and spectral water index (e.g. normalised difference water index) (Mwita et al. 2013; Sun et 
al. 2012; Song et al. 2012; Jiang et al. 2012; Lu et al. 2011; Zhou et al. 2010; Islam et al. 2008; Shanmugam et al. 
2006; Lira, 2006; Ouma and Tateishi, 2006). Among these techniques, water-based indices including single-band 
density slicing (Knight et al. 2009; Frazier and Page, 2000) techniques and band ratios  comprising of two reflective 
bands, are found to perform better in discriminating water features such as wetlands from non-water features (Sun 
et al. 2012; Xu, 2006). However, deciding the optimal threshold value in isolating wetlands from the surrounding 
urban and land features remains an inordinate challenge (Zhang et al. 2009). In addition to single-band and band 
ratio techniques, new automated water-based indices such as the Automated Water Extraction Index (AWEI) has 
been developed and tested with several sensors in different areas however its applicability to distinguishing wetland 
areas within a rapidly urbanizing environments has only undergone minor testing. 
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Various methods have been developed to correct atmospheric influence on remote sensing data. Whilst absolute 
atmospheric correction methods require in-situ information, image base techniques known as relative scattering 
correction, on the other hand, are handy and relatively easier to subdue scattering problem in an image. A study by 
Song et al. (2000) suggests that atmospheric correction of remote sensing data is always not necessary and depends 
on the nature of the work. However, some researchers strongly favour reducing the effects of atmospheric scattering 
caused by light scattering (Weng, 2012), particularly in the visible region of the electromagnetic spectrum for all 
studies involving remotely sensed imagery.  
The Dark Object Subtraction (DOS) method is an image-based technique to cancel out the haze component caused 
by additive scattering from remote sensing data (Chavez Jr, 1988). This method is found to be data dependent and 
well accepted by the geospatial community to correct light scattering in remote sensing data (Song et al. 2000). 
However, the DOS method has been developed for early generation Landsat sensors (e.g. TM) and may not work 
effectively for the new generation data such as Landsat 8 which started delivering data from early 2013. It may be 
noted that band composition according to electromagnetic energy of Landsat 8 differs from its predecessor Landsat 
sensors (e.g. TM/ETM+), hence little is known about the effectiveness of DOS method with respect to the 
scattering correction of the new Landsat 8 sensor. Since this new generation Landsat is expected to deliver data 
consistently over the next several years, research on the application of the DOS method in analysing Landsat 8 data 
deserves further examination.  
Dhaka megacity, the capital of the people’s republic of Bangladesh, has evolved into a rapidly urbanizing mega city  
as it attempts to accommodate large numbers of people migrating from rural areas since the independence of the 
country in 1971 (Dewan and Corner, 2014). With a total population of more than 14 million people according to 
2011 population and housing census, the city is facing severe environmental degradation, including the rapid 
decline in natural wetlands due to unplanned urban expansion and related socioeconomic development (Dewan and 
Yamaguchi, 2009). Studies for example, show that the rapid conversion of wetlands to urban areas aggravated 
flooding during the monsoon seanson(Dewan et al. 2012), thus increasing vulnerability of urban dwellers to severe 
floods. Although a number of studies on the mapping of wetlands in Dhaka have been conducted (Islam, 2009; 
Sultana et al. 2009), they all are based on a smaller study area. Moreover, none of the studies considered advanced 
techniques to accurately map wetlands in the megacity. Hence, this paper is expected to contribute significantly to 
the existing knowledge-base on the spatial locations of wetlands in the Dhaka Metropolitan Development Plan 
(DMDP) area which is a recently developed planning unit by the policy makers, enforcing local organisations to 
preserve remaining wetland ecosystems.  
Considering the above facts, the objectives of the work are: (i) to understand the effect of DOS correction technique 
on Landsat 8 in estimating wetlands; and (ii) to analyse the suitability of water-based index in assessing the spatial 
locations of wetlands in a rapidly urbanising megacity.    
  

 

 

 

 

 

 

 

 

 

 

 

Data and Image Pre-Processing 

     The imagery was sourced from the USGS Earth Explorer web service, with two images having a path-row of 
137-43 and 137-44 required as the study area is split between them. The two images were mosaicked with the 
resultant image clipped to the study area. As this study examines the impact of the DOS algorithm (Chavez Jr., 
1988) on Landsat 8 imagery, a copy of the raw imagery was made and underwent DOS correction. Song et al 
(2001) describes how the DOS algorithm assumes the existence of ‘dark objects’, which are pixels having zero to 
very small reflectance numbers, within a Landsat scene. Therefore the minimum DN (digital number) value in the 

Figure 1 Location map of the DMDP area (source: Google Earth) 
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histogram is considered to be the effect of atmospheric scattering and is subtracted from all pixels within the scene, 
thus creating ‘dark objects’ with a DN value of zero. Elexclis ENVI software was used for performing the DOS 
correction as it is an automated process which produces a corrected multispectral image. The two corrected images 
were then mosaicked and  co-registered to the raw image was returning a RMSE of < 0.5 pixels which ensured that 
pixels from both images were positioned almost perfectly on top of each other. 

Methodology 

The preceding data preparation produced two images, the ‘raw’ image and DOS corrected image. Four indices 
were studied and compared in their ability to accurately classify wetland areas using this imagery. Once calculated, 
each index underwent dynamic threshold segmentation (Zhang and Wylie, 2009) in order to find the optimal 
water/non-water threshold value. This was then applied to produce a binary image with water areas having a value 
of one and all non-water areas a value of zero. A brief outline of each index applied in this study is given below:  
The Normalized Difference Water Index (NDWI) was calculated using the formula proposed by McFeeters (1996): 

NDWI =
Green Band − NIR Band

Green Band + NIR Band
 

Where, Green Band (0.52 – 0.60 µm) represents band 3 and the NIR Band (0.76 – 0.90 µm) represents band 5 for 
the OLI (Operational Land Imager) of Landsat 8.  
The Modified Normalised Difference Water Index (MNDWI) was calculated using the formula proposed by Xu 
(2006): 

MNDWI =  
Green Band − MIR Band

Green Band + MIR Band
 

Where, Green Band (0.52 – 0.60 µm) represents band 3 and the MIR Band (1.55 – 1.75 µm) represents band 6 for 
the OLI (Operational Land Imager) of Landsat 8. 
The Collective Indices classification was performed using a modified version of the formula developed by Lu et al. 
(2011). Firstly, the MNDWI was used in place of the NDWI as it performs better in extracting wetland areas in an 
urban dominated environment which was shown during the MNDWI’s development by Xu (2006). Secondly, the 
formula was reversed by subtracting the NDVI from the MNDWI. This was done because on the first use of the 
index it gave low negative values to wetland areas and moderate – high positive values to urban and vegetation 
dominated areas. However, by reversing the formula it was found that the values were reversed. The modified 
formula is: 

Collective Indices = MNDWI − NDVI 
Where, NDVI is calculated using the formula first developed by Tucker (1979): 

NDVI =
NIR Band − Red Band

NIR Band + Red Band
 

Where, the NIR Band (0.76 – 0.90 µm) represents band 5 and the Red Band (0.63 – 0.69 µm) represents band 4 for 
the OLI (Operational Land Imager) of Landsat 8. 
The Automated Water Extraction Index (AWEI) was calculated using a modified version of the non-shadow 
formula developed by Feyisa et al. (2014). The original formula had band designations based on Landsat 7 which 
were updated to the band designations of Landsat 8. The modified formula is: 

AWEInsh = 4 × ( BAND 3 − BAND 6 ) − ( 0.25 × BAND 5 + 2.75 × BAND 7 ) 
Where, Band 3 (Green Band) is 0.53 – 0.59 µm, Band 5 (NIR Band) is 0.85 – 0.88 µm, Band 6 (SWIR1 Band) is 
1.57 – 1.65 µm and Band 7 (SWIR2 Band) is 2.11 – 2.29 µm. The non-shadow formula was selected over the 
shadow formula as the study area is gently sloping to the south-east with no mountainous areas that would produce 
large shadows. When calculated using the raw Landsat 8 imagery, the indexes DN values ranged between -58555.5 
and 60796.5, and was therefore normalized which reduced the range of DN values to between 0 and 53.3, making 
the thresholding process more manageable. The DOS AWEI was not required to be normalized which is most likely 
due to the DOS image consisting of reflectance values. 
The overall accuracy, producers’ accuracy, users’ accuracy and kappa were calculated for each index based on the 
binary map produced using the optimal threshold. As there was no wetland based ground truth data available from 
the study area, the data was built in the form of 700 random points generated by ArcMap and classifying them as 
either water or non-water based on the raw imagery using the band combination 7,5,3 (Red, Green, Blue). This 
combination represented water as blue – black, urban and agricultural areas as pink and vegetation areas as shades 
of green. In instances, where the points lay within Dhaka’s urban centre, historical Geoeye imagery of 2010 was 
also used as a reference. The 1989 SPOT imagery was also used sparingly when points lay in wetland areas to the 
north of the study area as these areas have changed significantly throughout the last 24 years. In total 200 points 
were classified as water and 500 as non-water. Finally, the total wetland area was calculated by multiplying the 
number of pixels with the value of one from the binary map by 90 m2, as each pixel is 30m x 30m.  
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Results and Discussion  

The MNDWI was the best performing index with raw/DOS overall accuracies of 97.28/98% and kappa values 
greater than 0.9 (Table 1). It was able to effectively distinguish wetland areas within the urban centre and also in the 
marshy areas to the north-east in Dhaka megacity. The optimal thresholds were 0.055 for the raw image and 0.15 
for the DOS image indicating that the index was correctly giving wetland area pixels positive values.  

 

Table 1 Accuracy assessment on the indices. OA refers to overall accuracy, PA refers to producers’ 

accuracy and UA refers to users’ accuracy 

  
OA PA-Wetland 

PA-
Other 

UA-
Wetland 

UA-
Other 

Kappa 

RAW 

NDWI 92.7% 98.4% 71.8% 92.8% 92.2% 0.76 

MNDWI 97.3% 98.2% 94.0% 98.4% 93.3% 0.92 

COLLECTIVE 96.6% 98.4% 89.9% 97.3% 93.7% 0.90 

AWEI 94.9% 96.9% 87.3% 96.6% 88.4% 0.85 

DOS 

NDWI 92.9% 98.2% 73.3% 93.1% 91.7% 0.77 

MNDWI 98.0% 98.9% 94.7% 98.6% 96.0% 0.94 

COLLECTIVE 97.9% 98.7% 94.7% 98.6% 95.3% 0.94 

AWEI 96.9% 98.6% 90.7% 97.5% 94.4% 0.91 

 

The Collective Indices method was the second best performer with raw/DOS overall accuracies of 96.57/97.86% 
and kappa values greater than 0.89. It was able to correctly extract majority of the marshy wetland areas however 
misclassified some pixels within the urban area meaning that it may be overestimating the total wetland area. The 
optimal thresholds were -0.055 for the raw image and -0.1 for the DOS corrected image. 

The AWEI was the third best performing index with raw/DOS overall accuracies of 94.85/96.86% and kappa values 
greater than 0.84. It struggled to accurately extract marshy wetland areas and misclassified several urban areas as 
wetlands. This is because while the index gives high positive values to clear water, it appears to give marshy 
wetland and urban areas the same DN values which made it difficult to decide an optimal threshold value. The 
optimal thresholds were 36.6 for the raw image and -0.725 for the dos corrected image.  

The NDWI was the worst performing index with raw/dos accuracies of 92.7/92.86% and kappa values greater than 
0.7. While it effectively extracted clear water, it performed poorly in separating marshy areas of urban areas with 
large sections of the southern part of Dhaka misclassified. The optimal thresholds were -0.035 for the raw image 
and -0.075 for the dos indicating that the index is giving some wetland pixels negative values leading to 
misclassification.  
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hird best performing index with raw/DOS overall accuracies of 94.85/96.86% and kappa values greater than 0.84. It 
struggled to accurately extract marshy wetland areas and misclassified several urban areas as wetlands. This is 
because while the index gives high positive values to clear water, it appears to give marshy wetland and urban areas 
the same DN (digital number) values which made it difficult to decide an optimal threshold value. The optimal 
thresholds were 36.6 for the raw image and -0.725 for the dos corrected image.  

 

 

 

Figure 2 Spatial locations of wetlands using different band ratio techniques; (a) The NDWI produced from the raw 

imagery (b) Classified NDWI using the optimal threshold (c) The NDWI produced from the DOS imagery (d) 

Classified DOS NDWI using the optimal threshold (e) The MNDWI produced from the raw imagery (f) Classified 

MNDWI using the optimal threshold (g) The MNDWI produced from the DOS imagery (h) Classified DOS 

MNDWI using the optimal threshold (i) The Collective Indices method produced from the raw imagery (j) Classified 

Collective Indices method using the optimal threshold (k) The Collective Indices method produced from the DOS 

imagery (l)  Classified DOS Collective Indices method using the optimal threshold (m) The AWEI produced from 

the raw imagery (n) Classified AWEI using the optimal threshold (o) The AWEI produced from the DOS imagery 

(p) Classified DOS Collective Indices using the optimal threshold 
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Area Results and Comparison Between Raw and DOS Corrected Imagery 

The indices produced from the DOS images outperformed the indices run on the raw images in every single 
accuracy statistic (Figure 3) with the greatest difference being in the overall accuracies and kappa coefficients. The 
difference in the measured overall accuracy’s ranged from a minor 0.16% increase seen in the NDWI, up to a 
significant 1.3% increase seen in the Collective Index. Despite the accuracy differences, there was only a small 
amount of variation in the area calculated between the raw and dos indices (Figure 4). On average, there was only a 
1.54% difference in the wetland area calculated.  
 

 

 

 

  

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As shown in Figure 2, the DOS-corrected image was consistently sharper in the contrast between wetland and non-
wetland areas except for the AWEI. This suggests that maybe a pixel variance based thresholding method such as 
the Otsu method might be more applicable when classifying wetland areas on DOS-corrected imagery. While the 
raw imagery had 11 bands, the corrected DOS image produced from ENVI returned only 7, with the Panchromatic, 
Cirrus, TIRS 1 and TIRS 2 bands missing, however all the major bands required for classifications were included. 
This makes current atmospheric correction methods still applicable in wetland extraction from remotely sensed 
images such as from Landsat 8.  

 
 
 
 
 

Figure 4 Mean values for area statistics produced from the 

raw (green) and DOS-corrected (blue) image. OA refers to 

overall accuracy, PA refers to producers’ accuracy and UA 

refers to users’ accuracy 

Figure 3 Calculated wetland area in hectares 

for each index produced from the raw (green) 

and DOS-corrected (blue) images. The mean 

calculated area is shown for the raw (red 

dashed) and DOS (orange dashed) imagery 
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Conclusions 

This study assesses the applicability of the widely-used dark-object subtraction method and water-based index 
techniques in assessing the locations of wetlands in the DMDP area of Bangladesh using new Landsat 8 
multispectral data. The study reveals that atmospheric scattering effects should be removed prior to analysis in 
order to extract land cover information efficiently from Landsat 8 data. As far as water-based index approaches are 
concerned, the modified normalised difference water index (MNDWI) was found to be the suitable index to 
accurately determine the spatial locations of wetlands within the DMDP area, followed by the collective indices 
method. Note that the normalised difference water index (NDWI) was found to be the least suitable method in 
discriminating wetlands from non-water features which may have stemmed from the noisy characteristics of the 
urban dominated environment. A multitemporal work is currently underway to study the effectiveness of these 
methods between early and new generation Landsat sensors which is expected to advance the current knowledge-
base.  
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