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Abstract

We consider a problem of replication of random vectors by ordinary integrals in the

setting when an underlying random variable is generated by a Wiener process. The goal is

to find an optimal adapted process such that its cumulative integral at a fixed terminal time

matches this variable. The optimal process has to be minimal in an integral norm.
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1 Introduction

It is well known that random variables generated by a Wiener process can be represented via

stochastic integrals, as is stated by the classical Martingale Representation Theorem. This im-

portant result led to the theory of backward stochastic differential equations and the martingale

pricing method in Mathematical Finance.

We consider a problem of replication of random variables by ordinary integrals. The goal

is to find an optimal adapted process such that its cumulative integral at a fixed terminal time

matches this variable without error. The optimal process has to be minimal in an integral norm.

An explicit solution of this problem is found.
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2 The problem setting and the main result

Consider a standard probability space (Ω,F ,P) and standard d-dimensional Wiener process

w(t) (with w(0) = 0) which generates the filtration Ft = σ{w(r) : 0 ≤ r ≤ t} augmented by all

the P-null sets in F .

We denote by | · | the Euclidean norm for vectors and the Frobenius (i.e., Euclidean) norm

for matrices.

For p ≥ 1 and q ≥ 1, we denote by Ln×m
p,q the class of random processes v(t) adapted to Ft

with values in Rn×m such that E
(∫ T

0 |v(t)|qdt
)p/q

< +∞.

Let f be a FT -measurable random vector, f ∈ L2(Ω,FT ,P;Rn). By the Martingale Repre-

sentation Theorem, there exists a unique kf ∈ Ln×d
2,2 such that

f = Ef +

∫ T

0
kf (t)dw(t).

See, e.g., Theorem 4.2.4 in [11], p.67.

We assume that there exists θ ∈ (0, T ) such that

ess sup
t∈[θ,T ]

E|kf (t)|2 < +∞.

Let g : [0, T ) → R be a given measurable function such that there exist c > 0 and α ∈ (0.5, 1)

such that

0 < g(t) ≤ c(T − t)α, g(t)−1 ≤ c(1 + (T − t)−α), t ∈ [0, T ). (1)

An example of such a function is g(t) = 1 for t < T − τ , g(t) = (T − t)α for t ≥ T − τ , where

τ ∈ (0, T ] can be any number.

Let U be the set of all processes from Ln×1
2,1 such that

E

∫ T

0
g(t)|u(t)|2dt < +∞. (2)

By the definition of Ln×1
2,1 , it follows that, for u ∈ U ,

E

(∫ T

0
|u(t)|dt

)2

< +∞. (3)

Let Γ(t) be measurable matrix valued function in Rn×n, such that Γ(t) = g(t)G(t), where

G(t) > 0 is a symmetric positively defined matrix such that the matrices G(t) and G(t)−1 are

both bounded. Clearly, E
∫ T
0 u(t)⊤Γ(t)u(t)dt < +∞ for u ∈ U .
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Let a ∈ Rn, A ∈ Rn×n, and let b ∈ Rn×n be a non-degenerate matrix.

Consider the problem

Minimize E

∫ T

0
u(t)⊤Γ(t)u(t) dt over u ∈ U (4)

subject to

dx
dt (t) = Ax(t) + bu(t), t ∈ (0, T )

x(0) = a, x(T ) = f a.s.
(5)

Note that this problem is a modification of a stochastic control problem with terminal con-

tingent claim. These problems were studied intensively in the setting that involve backward

stochastic differential equations (BSDEs); a first problem of this type was introduced in [7]. In

this setting, a non-zero diffusion coefficient is presented in the evolution equation for the plant

process as an auxiliary control process. Our setting is different: a non-zero diffusion coefficient

is not allowed. Problem (4)-(5) is a linear quadratic control problem. However, it has a poten-

tial to be extended on control problems of a general type, similarly to the theory of controlled

backward stochastic differential equation.

Let

k̂µ(t) = R(t)−1kf (t), R(s)
∆
=

∫ T

s
Q(t)dt, Q(t) = eA(T−t)bΓ(t)−1b⊤eA

⊤(T−t).

Lemma 1 k̂µ(·) ∈ Ln×d
2,2 .

Theorem 1 Problem (4)-(5) has a unique optimal solution in U . This solution is defined as

û(t) = Γ(t)−1b⊤eA
⊤(T−t)µ̂(t), where

µ̂(t) = R(0)−1(Ef − eATa) +

∫ t

0
k̂µ(s)dw(s).

Remark 1 Restrictions (1) on the choice of Γ(t) = g(t)G(t) mean that the penalty for the large

size of u(t) vanishes as t → T . Thus, we do not exclude fast growing u(t) as t → T such that

u(t) is not square integrable. This is why we select the class U of admissible controls to be

wider than Ln×1
2,2 . In [5], a related result was obtained for a simpler case when it was required to

ensure that x(T ) = E{f |Fθ} for some θ < T . In this setting, the exact match could be achieved

only for Fθ-measurable f ; the optimal solution was found to be a square integrable process.

3 Proofs

Proof of Lemma 1. By the assumptions, we have that Q(t) = g(t)−1Q(t), where

Q(t) = eA(T−t)bG(t)−1b⊤eA
⊤(T−t)
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is a bounded matrix, g(t)−1 ≥ c−1(T − t)−α for t ∈ [0, T ). For a matrix M =M⊤ ≥ 0, set

ρ(M) = inf
x∈Rn: |x|=1

x⊤Mx.

Since b is a non-degenerate matrix, we have that ζ = infs∈[0,T ] ρ(Q(s)) > 0 and

ρ(R(t)) ≥
∫ T

t
ρ(Q(s))ds ≥ c−1

∫ T

t
(T − s)−αρ(Q(s))ds ≥ −ζ

c

(T − s)1−α

1− α

∣∣∣s=T

s=t
, (6)

where c is the constant from (1). Hence

ρ(R(t)) ≥ ζ(T − t)1−α

c(1− α)
. (7)

It follows from (7) that

|R(t)−1| ≤ C
(1− α)

(T − t)1−α
,

for some constant C > 0 that is defined by ζ, c and n. Hence∫ T

θ

∣∣R(t)−1
∣∣2 dt ≤ C2(1− α)2

∫ T

θ

1

(T − t)2−2α
dt = C2(1− α)2

(T − θ)2α−1

2α− 1
< +∞.

It follows that

E

∫ T

0
|k̂µ(t)|2dt ≤ E

∫ T

0

∣∣R(t)−1
∣∣2 |kf (t)|2dt

= E

∫ θ

0

∣∣R(t)−1
∣∣2 |kf (t)|2dt+E

∫ T

θ

∣∣R(t)−1
∣∣2 |kf (t)|2dt

≤ sup
t∈[0,θ]

∣∣R(t)−1
∣∣2E∫ θ

0
|kf (t)|2dt+

∫ T

θ

∣∣R(t)−1
∣∣2E|kf (t)|2dt

= sup
t∈[0,θ]

∣∣R(t)−1
∣∣2E∫ θ

0
|kf (t)|2dt+ ess sup

t∈[θ,T ]
E|kf (t)|2

∫ T

θ

∣∣R(t)−1
∣∣2 dt

and

E

∫ T

0
|k̂µ(t)|2dt < +∞. (8)

This completes the proof of Lemma 1. �

Remark 2 The assumption that b is non-degenerate was used to establish estimates (6)-(7).

These estimates have some similarity with the classical criterion of controllability for the linear

systems. However, these estimates are not covered immediately by the controllability approach

since the matrix γ(t)−1G(t)−1 under the integral in (6) is time variable and has a singularity

at t = T . It could be interesting to investigate if it is possible to replace the assumption that b

is non-degenerate by a less restrictive assumption that the pair (A, b) is controllable. We leave

this for future research.
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Proof of Theorem 1. The solution of the linear equation in (5) is

x(t) =

∫ t

0
eA(t−s)bu(s)ds+ eAta. (9)

By the definition of U , it follows that (3) holds for any u ∈ U . Hence x(T ) ∈ L2(Ω,FT ,P;Rn)

for any u ∈ U .

Let the function L(u, µ) : U × L2(Ω,FT ,P;Rn) → R be defined as

L(u, µ)
∆
=

1

2
E

∫ T

0
u(t)⊤Γ(t)u(t) dt+Eµ⊤(f − x(T )).

For a given µ, consider the following problem:

Minimize L(u, µ) over u ∈ U . (10)

This problem does not have constraints on terminal value x(T ). Therefore, it can be solved

by usual stochastic control methods for the forward plant equations. We solve problem (10)

using the so-called stochastic maximum principle that gives a necessary condition of optimality;

see, e.g., [1]-[4], [6]-[7], [9]-[10], [12]-[13]). For our problem (10), all versions of the stochastic

maximum principle from the cited papers are equivalent and can be formulated as the following:

if u = uµ ∈ U is optimal then

ψ(t)⊤buµ(t)−
1

2
uµ(t)

⊤Γ(t)uµ(t) ≥ ψ(t)⊤bv − 1

2
v⊤Γ(t)v for a.e. t for all v ∈ Rn a.s., (11)

where ψ(t) is a process from Ln×1
2,2 such that

dψ(t) = −A⊤ψ(t)dt+ χ(t)dw(t),

ψ(T ) = µ,

for some process χ ∈ Ln×n
2,2 . (See, e.g., Theorem 1.5 from [4], p.609). The only solution of the

backward equation for ψ is

ψ(t) = eA
⊤(T−t)µ(t), µ(t) = E{µ|Ft}. (12)

Necessary conditions of optimality (11) are satisfied for a unique up to equivalency process

u = uµ defined as

uµ(t) = Γ(t)−1b⊤ψ(t). (13)
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Let us show that uµ ∈ U for any µ. We have that

E

(∫ T

0
|uµ(t)|dt

)2

≤ C1E

(∫ T

0
|Γ(t)−1||µ(t)|dt

)2

≤ C2 sup
t∈[0,T ]

E|µ(t)|2
∫ T

0
g(t)−1dt

< +∞. (14)

In addition,

E

∫ T

0
g(t)|uµ(t)|2dt ≤ C3E

∫ T

0
g(t)|Γ(t)−1µ(t)|2dt ≤ C4E

∫ T

0
g(t)−1|µ(t)|2dt

≤ C4 sup
t∈[0,T ]

E|µ(t)|2
∫ T

0
g(t)−1dt < +∞. (15)

Here Ci > 0 are constants defined by A, b, n, and T . Hence uµ ∈ U .

Clearly, the function L(u, µ) is strictly concave in u, and this minimization problem has a

unique solution. Therefore, this u = uµ is the unique solution of (10).

Further, we consider the following problem:

Maximize L(uµ, µ) over µ ∈ L2(Ω,FT ,P;Rn). (16)

For u = uµ, equation (9) gives

x(T ) =

∫ T

0
eA(T−t)buµ(t)dt+ eATa.

Hence

L(uµ, µ) =
1

2
E

∫ T

0
uµ(t)

⊤Γ(t)uµ(t) dt−Eµ⊤
∫ T

0
eA(T−t)buµ(t)dt−Eµ⊤eATa+Eµ⊤f.

We have that

Eµ⊤
∫ T

0
eA(T−t)buµ(t)dt = Eµ⊤

∫ T

0
eA(T−t)bΓ(t)−1b⊤ψ(t)dt

= Eµ⊤
∫ T

0
eA(T−t)bΓ(t)−1b⊤eA

⊤(T−t)µ(t)dt = Eµ⊤
∫ T

0
Q(t)µ(t)dt

= E

∫ T

0
µ⊤Q(t)µ(t)dt = E

∫ T

0
E{µ⊤Q(t)µ(t)|Ft}dt = E

∫ T

0
µ(t)⊤Q(t)µ(t)dt.

The fifth equality here holds by Fubini’s Theorem. Further, we have that

E

∫ T

0
uµ(t)

⊤Γ(t)uµ(t) dt = E

∫ T

0
(Γ(t)−1b⊤ψ(t))⊤Γ(t)Γ(t)−1b⊤ψ(t) dt

= E

∫ T

0
ψ(t)⊤bΓ(t)−1b⊤ψ(t) dt = E

∫ T

0
(eA

⊤(T−t)µ(t))⊤bΓ(t)−1b⊤eA
⊤(T−t)µ(t) dt

= E

∫ T

0
µ(t)⊤eA(T−t)bΓ(t)−1b⊤eA

⊤(T−t)µ(t) dt = E

∫ T

0
µ(t)⊤Q(t)µ(t) dt.
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It follows that

L(uµ, µ) = Eµ⊤(f − eATa)− 1

2
E

∫ T

0
µ(t)⊤Q(t)µ(t) dt.

By the Martingale Representation Theorem, there exists kµ ∈ Ln×d
2,2 such that

µ = µ̄+

∫ T

0
kµ(t)dw(t), (17)

where µ̄
∆
= Eµ. It follows that

E

∫ T

0
µ(t)⊤Q(t)µ(t) dt = E

∫ T

0

(
µ̄+

∫ t

0
kµ(s)dw(s)

)⊤
Q(t)

(
µ̄+

∫ t

0
kµ(s)dw(s)

)
dt

=

∫ T

0
µ̄⊤Q(t)µ̄ dt+E

∫ T

0

(∫ t

0
kµ(s)dw(s)

)⊤
Q(t)

(∫ t

0
kµ(s)dw(s)

)
dt

= µ̄⊤
(∫ T

0
Q(t) dt

)
µ̄+

∫ T

0
E

(∫ t

0
kµ(s)dw(s)

)⊤
Q(t)

(∫ t

0
kµ(s)dw(s)

)
dt

= µ̄⊤R(0)µ̄+

∫ T

0
dtE

∫ t

0
kµ(s)

⊤Q(t)kµ(s) ds = µ̄⊤R(0)µ̄+E

∫ T

0
ds

∫ T

s
kµ(s)

⊤Q(t)kµ(s) dt

= µ̄⊤R(0)µ̄+E

∫ T

0
kµ(s)

⊤R(s)kµ(s) ds.

We have used Fubini’s Theorem again to change the order of integration. Similarly,

Eµ⊤f = µ̄⊤f̄ +E

∫ T

0
kµ(t)

⊤kf (t) dt,

and Eµ⊤eATa = µ̄⊤eATa. It follows that

L(uµ, µ)

= µ̄⊤(f̄ − eATa)− 1

2
µ̄⊤R(0)µ̄ − 1

2
E

∫ T

0
kµ(τ)

⊤R(τ)kµ(τ) dτ +E

∫ T

0
kµ(t)

⊤kf (t) dt.

Clearly, the maximum of this quadratic form is achieved for

µ̄ = R(0)−1(f̄ − eATa), k̂µ(t) = R(t)−1kf (t). (18)

This means that the optimal solution µ̂ of problem (16) is

µ̂ = R(0)−1(f̄ − eATa) +

∫ T

0
k̂µ(t)dw(t).

Let û(t) and µ̂(t) be defined by (12)-(13) for µ = µ̂, i.e., û = uµ̂. By Lemma 1 and (8), it

follows that supt∈[0,T ]E|µ̂(t)|2 < +∞.
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We found that supµ infu L(u, µ) is achieved for (û, µ̂). We have that L(u, µ) is strictly convex

in u ∈ U and affine in µ ∈ L2(Ω,F ,P,Rn). In addition, L(u, µ) is continuous in u ∈ Ln×1
2,2 given

µ ∈ L2(Ω,F ,P,Rn), and L(u, µ) is continuous in µ ∈ L2(Ω,F ,P,Rn) given u ∈ U . By

Proposition 2.3 from [8], Chapter VI, p. 175, it follows that

inf
u∈U

sup
µ
L(u, µ) = sup

µ
inf
u∈U

L(u, µ). (19)

Therefore, (û, µ̂) is the unique saddle point for (19).

Let Uf be the set of all u(·) ∈ U such that (5) holds. It is easy to see that

inf
u∈Uf

1

2
E

∫ T

0
u(t)⊤Γ(t)u(t) dt = inf

u∈U
sup
µ
L(u, µ),

and any solution (u, µ) of (19) is such that u ∈ Uf . It follows that û ∈ Uf and it is the optimal

solution for problem (4)-(5). Then the proof of Theorem 1 follows. �

Remark 3 If α = 1 then estimates (14)-(15) are not satisfied and uµ /∈ U . This is why α = 1

is excluded.

Remark 4 The fact that the function û ensures replication of f was obtained as a consequence

of duality analysis for the Lagrangian. The replicating property can be also verified directly.

Assume for simplicity that A = 0 and b = I, where I is the unit matrix, then

x(T ) = a+

∫ T

0
û(t)dt = a+

∫ T

0
Γ(t)−1µ̂(t)dt

= a+

∫ T

0
Γ(t)−1[R(0)−1(Ef − a) +

∫ t

0
R(s)−1kf (s)dw(s)]dt

= a+
(∫ T

0
Γ(t)−1dt

)
R(0)−1(Ef − a) +

∫ T

0

(∫ T

s
Γ(t)−1dt

)
R(s)−1kf (s)dw(s)

= a+R(0)R(0)−1(Ef − a) +

∫ T

0
R(s)R(s)−1kf (s)dw(s) = Ef +

∫ T

0
kf (s)dw(s) = f.

4 Example of calculation of û

Consider a model where f = F (η(T )), where η(t) satisfies the Ito equation

dη(t) = h(η(t), t)dt+ β(η(t), t)dw(t).

Here h(y, t) : Rn ×R → Rn, β(y, t) : Rn ×R → Rn×n are measurable bounded functions such

that the derivative ∂β(y, t)/∂y is bounded, B(y, t) = 1
2β(y, t)β(y, t)

⊤ ≥ δI > 0 for all y, t, where

δ > 0, I is the unit matrix.
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Theorem 1 can be applied as the following.

Assume first that h(y, t) ≡ 0. In this case, Theorem 1 ensures that x(T ) = f and that

E
∫ T
0 u(t)⊤Γ(t)u(t)dt is minimal for û(t) = Γ(t)−1b⊤eA

⊤(T−t)µ̂(t), where

µ̂(t) = R(0)−1(H(η(0), 0)− eATx(0)) +

∫ t

0
R(s)−1∂H

∂y
(η(s), s)dη(s). (20)

Here H is the solution of the Cauchy problem for the parabolic equation

∂H

∂t
(y, t) +

n∑
i,j=1

Bij(y, t)
∂2H

∂yi∂yj
(y, t) = 0, t < T,

H(y, T ) = F (y). (21)

In (21), Bij , yi are the components of the matrix B and the vector y. We assume that F (x)

is a regular enough function to ensure that (21) has a regular enough solution such that û ∈

U ; for this, it suffices to ensure that ∂H/∂y is bounded. It can be noted that H(y, t) =

E {F (η(T ))|η(t) = y}.

Assume now that h(·) ̸= 0. We still have that x(T ) = f for u(t) defined by (20)-(21); in

this case, H(y, t) = EQ {F (η(T ))|η(t) = y}, where EQ is the expectation under a probability

measure Q such that the process η(t) is a martingale under Q. By the Girsanov Theorem, this

measure exists, it is equivalent to the original measure P and it is unique under our assumptions

on h and β (see, e.g., Theorem 4.2.2 in [11], p. 66). In this case, the value E
∫ T
0 û(t)⊤Γ(t)û(t)dt

is not minimal over u ∈ Uf anymore. Instead, EQ

∫ T
0 û(t)⊤Γ(t)û(t)dt is minimal over u ∈ Uf .

This still means that the deviations of u are minimal but in a different sense. It can be also

noted that the definition of the class U for the original measure has to be adjusted for the new

measure Q, with the expectations E replaced by EQ.

This model could have applications in goal achieving problems, where the goal is to match

a controlled differentiable process at time T with a random vector f = F (η(T )) generated by

an uncontrolled observable stochastic process η(t). For instance, x(t) may represent a path

of a missile controlled by an anti-aircraft command, and the process η(t) may represent an

observed uncontrolled parameter process describing the movement of an airborne target such

that f = F (η(T )) represents the target coordinates at time T .
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