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Abstract

We study boundary value problems for backward parabolic heat equations with

Cauchy condition at the initial time, i.e., at the ”wrong” end of the time interval. We

found that existence, uniqueness, and regularity of solutions can be still achieved for

the problem with boundary inputs.
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Parabolic equations such as heat equations have fundamental significance for natural sci-

ences, and various boundary value problems for them were widely studied including inverse

and ill-posed problems (see, e.g., examples in Tikhonov and Arsenin (1977), Glasko (1984),

Prilepko et al (1984), Beck (1985)). For ill-posed problems, solvability and regularity es-

timates for the solutions are not guaranteed for typical inputs. A classical example is the

backward heat equation

∂u

∂t
+

∂2u

∂x2
= 0, t ∈ [0, T ] (0.1)

with the Cauchy condition at initial time t = 0. This problem is ill-posed, and the cor-

responding problem with the Cauchy condition at time t = T is well-posed. For the
∗Journal of Physics A: Mathematical and Theoretical, 43 085201 (9pp). doi: 10.1088/1751-

8113/43/8/085201
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parabolic equations, it is commonly recognized that the type of the boundary value condi-

tions and the sign of the second order coefficient usually defines if a problem is well-posed

or ill-posed.

Apparently there are boundary value problems that do not fit the framework given

by the classical theory of parabolic equations and by the mentioned above examples. In

Dokuchaev (2007), an example was given of a boundary value problem that appears to be

ill-posed but allows solvability, uniqueness of the solutions, and regularity estimates, for

an explicitly given set of inputs which is dense in a L2-space of all possible inputs. This

result was obtained in frequency domain for linear parabolic equations on (0, +∞) with

the second order Cauchy condition at x = 0 and with zero initial condition at t = 0.

In the present paper, we give another example of a problem that looks similar to clas-

sical ill-posed problems but allows solvability and regularity estimates for the solutions.

Using the approach similar to the one from Dokuchaev (2007), we investigate a boundary

value problem in the interval [0, +∞) for linear parabolic equations similar to the backward

heat equation (0.1), with Cauchy condition at initial time t = 0 and with mixed boundary

condition at the boundary point x = 0. This parabolic equation is known to be solvable

with Cauchy condition at terminal time but not at initial time. For these problems, we

established existence, uniqueness, and regularity of solutions for the problem with bound-

ary inputs. More precisely, we found that the boundary inputs from W 1
2 (R) vanishing for

t ≤ 0 ensure solvability and regularity estimates for the solutions in a weighted Sobolev

space; the weight is defined by the sign of the first order coefficient. As far as we know,

this fact about backward heat equations was left unnoticed in the existing literature.

1 The problem setting

Let us consider the following boundary value problem:

a
∂u

∂t
(x, t) +

∂2u

∂x2
(x, t) + b

∂u

∂x
(x, t) + cu(x, t) = 0, x > 0, t > 0,

u(x, 0) ≡ 0, x > 0,

k0u(0, t) + k1
∂u

∂x
(0, t) ≡ g(t), t > 0. (1.1)

Here a, b, c, k0, k1 ∈ R are constants.
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If b = 0 then the parabolic equation may describe the heat propagation or diffusion

along a semi-infinite rod with Robin type boundary condition at the end point, with the

diffusion coefficient a−1. The equation with b 6= 0 describes a diffusion process with drift.

We assume that

a > 0, k2
0 + k2

1 > 0. (1.2)

The assumption that a > 0 and the presence of the initial condition at t = 0 makes

problem (1.1) similar to the ill-posed backward heat equation.

Let Γ denote the set of all functions g : R → R such that g(t) = 0 for t ≤ 0 and

‖g‖W 1
2 (R) < +∞, where

‖g‖W 1
2 (R)

∆= ‖g‖L2(R) +
∥∥∥∥
∂g

∂t

∥∥∥∥
L2(R)

.

We mean that the corresponding derivative exists in L2(R).

Remark 1 Note that the conditions on g are requires that g(0+) = 0 and that g is is

absolutely continuous on R, since dg(t)/dt ∈ L2(R).

For q ∈ R, introduce a weight function r(x) = r(x, q) ∆= e−qx.

Let R+ ∆= [0,+∞), and let L2(R+, r) be the space of functions v = v(x) : R+ → R

with finite norm

‖v‖L2(R+,r)
∆=

(∫ ∞

0
r(x)|v(x)|2dx

)1/2

.

Let D
∆= R+ ×R, i.e., D is the domain of {(x, t)} for equation (1.1). Let L2(D, r) be

the space of functions v = v(x, t) : D → R such that v(x, t) ≡ 0 for t < 0, with finite norm

‖v‖L2(D,r)
∆=

(∫ ∞

0
r(x)‖v(x, ·)‖2

L2(R)dx

)1/2

=
(∫ ∞

0
r(x)dx

∫

R
|v(x, t)|2dt

)1/2

.

Let W = W(q) be the space of the functions v = v(x, t) : D → R such that v(x, t) ≡ 0 for

t < 0 and with finite norm

‖v‖W ∆= ‖v‖L2(D,r) +
∥∥∥∂v

∂x

∥∥∥
L2(D,r)

+
∥∥∥∂2v

∂x2

∥∥∥
L2(D,r)

+
∥∥∥∂v

∂t

∥∥∥
L2(D,r)

.

We mean that the corresponding derivatives exist in the class L2(D, r).
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The equations presented in problem (1.1) for any u ∈ W are defined as equalities in

some L2 spaces. Let us show this. All the terms of the parabolic equation are elements

of L2(D, r), so this equation is considered as an equality in L2(D, r). Since u(·, t) is

continuous in L2(R+, r) as a function of t ∈ R, the initial condition at time t = 0 is well

defined as an equality in L2(R+, r). Further, for any y > 0, we have that u|[0,y]×R+ ∈
C([0, y], L2(R)) and ∂u

∂x

∣∣∣
[0,y]×R+

∈ C([0, y], L2(R)), i.e., u(x, ·) and ∂u
∂x(x, ·) are continuous

in L2(R) as functions of x ∈ [0, y]. Hence the functions u(0, t) and du
dx(x, t)|x=0 are well

defined as elements of L2(R), and the boundary value condition at x = 0 is well defined as

an equality in L2(R). Therefore, all equations in (1.1) are defined for u ∈ W as equalities

in the corresponding L2-spaces. Technically, it is not a classical solution.

2 The main result

Theorem 1 Let condition (1.2) holds, and let c > 0. Let q > −b, for q from the definition

of W = W(q). Then there exists a unique solution u(x, t) of problem (1.1) in the class W
with this q for any g ∈ Γ. Moreover, there exists a constant C = C(a, b, c, k0, k1, q) such

that

‖u‖W ≤ C ‖g‖W 1
2 (R) . (2.1)

Remark 2 In fact, (2.1) is the estimate for the norms in L2(D) of the functions

e−qx/2u(x, t), e−qx/2u′t(x, t), e−qx/2u′x(x, t), e−qx/2u′′xx(x, t). For b > 0, negative q > −b

are allowed, and this estimate is stronger than the one for q = 0, when L2(D, r) = L2(D).

For b ≤ 0, (2.1) holds for positive q > −b ≥ 0 only. In that case, (2.1) provide estimates

of u(·) in the corresponding weighted Sobolev space only.

Remark 3 It is essential for the proof given below that the only allowed inputs are bound-

ary inputs.

The following theorem shows that assumption that c > 0 is not really restrictive if we

are not interested in the properties of the solutions for T → +∞, as can happen if we deal

with solutions on a finite time interval.
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Theorem 2 Let c ≤ 0, and let condition (1.2) holds. Let M ∈ (−c, +∞) be such that

g(t)e−Mt ∈ Γ. Then problem (1.1) has a unique solution u such that uM ∈ W, where

uM (x, t) ∆= e−Mtu(x, t).

In Theorem 2, we mean again that the solution u is such that the equations in (1.1) are

satisfied as equalities in some L2-spaces.

Proof of Theorem 1. (A) Let us assume first that

µ
∆= b2/4− c ≤ 0. (2.2)

Let C+ ∆= {z ∈ C : Re z > 0}. For v ∈ L2(R), we denote by Lv the Laplace transform

V (p) = (Lv)(p) ∆=
∫ ∞

0
e−ptv(t)dt, p ∈ C+. (2.3)

Let Hr be the Hardy space of holomorphic functions h(p) on C+ with finite norm

‖h‖Hr = supν>0 ‖h(ν + iω)‖Lr(R), r ≥ 1 (see, e.g., Duren (1970)).

For functions V : R+ × C̄+ → C, where C̄+ = {z : Re z ≥ 0}, we introduce norms

‖V ‖LH
22

∆=
(∫

R+

r(x)‖V (x, ·)‖2
H2dx

)1/2

,

‖V ‖H ∆= ‖V ‖LH
22

+
∥∥∥∂V

∂x

∥∥∥
LH

22

+
∥∥∥∂2V

∂x2

∥∥∥
LH

22

+
∥∥∥pV (·, p)

∥∥∥
LH

22

.

As usual, the statement ‖V ‖H < +∞ means that the corresponding derivatives of V exist

in the corresponding classes.

Let us assume first that there exists a solution u ∈ W of (1.1). Set g0(t)
∆= u(0, t),

g1(t)
∆= du

dx(x, t)|x=0. As was discussed above, the functions gk are well defined as elements

of L2(R).

Let G
∆= Lg, Gk

∆= Lgk and U
∆= Lu. Since g ∈ Γ, we have that G ∈ H2. Since u ∈ W,

we have that the functions Gk are well defined and Gk ∈ H2.

The assumption that u is a solution and u ∈ W implies that

apU(x, p) +
∂2U

∂x2
(x, p) + b

∂U

∂x
(x, p) + cU(x, p) = 0, x > 0,

k0U(0, p) + k1
∂U

∂x
(0, p) ≡ G(p), p ∈ C+, (2.4)

and

U(x, ·), ∂U

∂x
(x, ·), ∂2U

∂x2
(x, ·) ∈ H2 for a.e. x > 0, ‖U‖H < +∞. (2.5)
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Let λk = λk(p) be the roots of the equation λ2 + bλ + c + ap = 0 defined for p ∈ C+,

i.e., λ1(p) ∆= −b/2−√µ− ap and λ2(p) ∆= −b/2 +
√

µ− ap, where µ = b2/4− c < 0. Here

we select the branch of the square root such that Arg
√

µ− ap ∈ (−π/2, π/2], i.e., that

Re
√

µ− ap ≥ 0, where Arg z denote the principal value of the argument of z such that

Arg z ∈ (−π, π]. Under these assumptions, we have that Re (µ− ap) < 0 for p ∈ C+, the

function
√

µ− ap is holomorphic in C+, and

Reλ1(p) ≤ − b

2
, Imλ1(p) 6= 0 if p ∈ C+ or p = iω, ω ∈ R, (2.6)

∃δ > 0, ν > 0, ω∗ > 0 : 2Reλ2(ν + iω)− q > δ if ω ∈ R, |ω| ≥ ω∗. (2.7)

In addition, we have that the functions λk(p) and exλk(p) are holomorphic in C+ for

any x > 0, and

(λ1(p)− λ2(p))−1 ∈ H∞, λk(p)(λ1(p)− λ2(p))−1 ∈ H∞, k = 1, 2,

(k0 + k1λ1(p))−1 ∈ H∞, λ1(p)(k0 + k1λ1(p))−1 ∈ H∞. (2.8)

The last two statements in (2.8) follow from the fact that k0 + k1λ1(p) 6= 0 for p ∈ C+ or

p = iω, ω ∈ R; this fact follows from the second inequality in (2.6).

Let

N
∆=

∥∥∥∥
1

λ1 − λ2

∥∥∥∥
H∞

+
∑

k=1,2

∥∥∥∥
λk

λ1 − λ2

∥∥∥∥
H∞

+
∥∥∥∥

1
k0 + k1λ1

∥∥∥∥
H∞

+
∥∥∥∥

λ1

k0 + k1λ1

∥∥∥∥
H∞

.

For x > 0 and p ∈ C+, set

U(x, p) ∆=
1

λ1(p)− λ2(p)

(
(G1(p) − λ2(p)G0(p))eλ1(p)x

− (G1(p) − λ1(p)G0(p))eλ2(p)x

)
. (2.9)

It can be verified directly that, for every given p ∈ C+, this U(·, p) is the unique solution

of the Cauchy problem

apU(x, p) +
∂2U

∂x2
(x, p) + b

∂U

∂x
(x, p) + cU(x, p) = 0, x > 0,

U(0, p) = G0(p),
∂U

∂x
(0, p) = G1(p). (2.10)

Equation (2.9) for U can be rewritten as U(x, p) = U1(x, p) + U2(x, p), where

U1(x, p) = eλ1(p)xJ1(p), J1(p) =
1

λ1(p)− λ2(p)
(G1(p)− λ2(p)G0(p)),

U2(x, p) = eλ2(p)xJ2(p), J2(p) =
1

λ1(p)− λ2(p)
(G1(p)− λ1(p)G0(p)).
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Let us show that

‖U1‖LH
22

< +∞. (2.11)

By (2.7), |exλ1(p))| ≤ e−xb/2, p ∈ C+. It follows that

‖exλ1J1‖H2 ≤ sup
p∈C+

|exλ1(p))|‖J1‖H2 ≤ e−xb/2‖J1‖H2 ≤ Ne−xb/2
∑

k=0,1

‖Gk‖H2 .

Then (2.11) holds. The assumption that u ∈ W implies that (2.5) holds. This and (2.11)

imply that

‖U2‖LH
22

< +∞. (2.12)

By (2.7) again,

‖U2‖2
LH

22
≥

∫

R+

dx r(x)
∫

R
|U2(x, ν + iω)|2dω =

∫

R+

dx e−qx

∫

R
|eλ2(ν+iω)xJ2(ν + iω)|2dω

=
∫

R+

dx e−qx

∫

R
e2Re λ2(ν+iω)x|J2(ν + iω)|2dω ≥

∫

R+

dx eδx

∫

ω: |ω|≥ω∗
|J2(ν + iω)|2dω.

By (2.12), it follows that J2(p) is vanishing on {p = ν + iω : |ω| ≥ ω∗}. Since J2 ∈ H2, it

follows that J2(p) ≡ 0. Therefore, we have obtained that, if u ∈ W is a solution of (1.1),

then

G1(p) = λ1G0(p), J1(p) = G0(p), J2(p) ≡ 0.

Remind that k0G0(p) + k1G1(p) = G(p). It follows that k0G0(p) + k1λ1G0(p) = G(p).

Therefore, we have proved that if u ∈ W is a solution of (1.1), then U(x, p) = U1(x, p),

and

G0(p) = (k0 + k1λ1(p))−1G(p),

U(x, p) = eλ1(p)xG0(p). (2.13)

In particular, we have proved the uniqueness of solution in the class W.

Let us establish existence of a solution in the class W.

Let the operator F−1 : H2 → L2(R) be defined such that v = F−1V is

v(t) = lim
M→∞

1
2π

∫ M

−M
eiωtV (iω)dω,

where the limit is in L2(R). By Paley-Wiener Theorem, this operator F−1 is continuous

(see, e.g., Yosida (1995), p.163). In addition, v(t) vanishes for t < 0, and if V (iω) =
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V (−iω) then v is real. In fact, this operator represents the inverse Fourier transform of

the trace of V on iR.

Let us show that u(x, ·) ∆= F−1U(x, ·) is a solution of (1.1) if U is defined by (2.13).

First, let us estimate ‖U‖H.

Repeat that, by (2.7), |exλ1(p))| ≤ e−xb/2 for p ∈ C+. It follows that

‖pmexλ1(p)G0(p)‖H2 ≤ e−xb/2‖pmG0(p)‖H2

≤ e−xb/2‖(k0 + k1λ1(p))−1‖H∞‖pmG‖H2 ≤ Ne−xb/2‖pmG‖H2 , m = 0, 1.

It follows from the above estimate that

‖pmU‖LH
22
≤ NC1 ‖pmG‖H2 , m = 0, 1. (2.14)

Further, we have that

∂U

∂x
(x, p) = G0(p)λ1e

λ1x =
λ1

k0 + k1λ1
G(p)λ1e

λ1x. (2.15)

We obtain again that
∥∥∥∥
∂U

∂x

∥∥∥∥
2

LH
22

=
∫

R+

r(x)
∥∥∥∥
∂U

∂x
(x, p)

∥∥∥∥
2

H2

dx ≤ NC2

∫

R+

r(x)
∥∥∥eλ1(p)xG(p)

∥∥∥
2

H2
dx

≤ NC2

∫

R+

r(x)e−bx ‖G(p)‖2
H2 dx ≤ C3‖G‖H2 . (2.16)

By (2.4), ∂2U/∂x2 can be expressed as a linear combination of U , pU , and ∂U/∂x. By

(2.14)-(2.16),

∫

R+

r(x)
∥∥∥∥
∂2U

∂x2
(x, p)

∥∥∥∥
2

H2

dx

≤ C4




∫

R+

r(x)
∥∥∥∥
∂U

∂x
(x, p)

∥∥∥∥
2

H2

dx +
∑

m=0,1

∫

R+

r(x) ‖pmU(x, p)‖2
H2 dx


 .

It follows that
∫

R+

r(x)
∥∥∥∥
∂2U

∂x2
(x, p)

∥∥∥∥
2

H2

dx ≤ C5(‖G‖2
H2 + ‖pG(p)‖2

H2). (2.17)

Here Ck are constants that depend on a, b, c, k0, k1, q. By (2.14)-(2.17), it follows that

estimate (2.5) holds for U defined by (2.13).
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By (2.14), it follows that u(x, ·) = F−1U(x, ·) and ∂u
∂t (x, ·) = F−1(pU(x, ·) are well

defined in L2(D, r) and are vanishing for t < 0. It follows that u(·) is continuous in

L2(R+) as a function of t, and that u(·, 0) = 0 in L2(R+). In addition, we have that

U(x, iω) = U(x,−iω) for ω ∈ R (for instance, Gk(iω) = Gk(−iω), exλk(iω) = exλk(−iω),

etc). It follows that u(x, ·) = F−1U(x, ·) is real. By (2.5), estimate (2.1) holds. Therefore,

u is the solution of (1.1) in W. The uniqueness was already established above. This

completes the proof of Theorem 1 for the case when (2.2) holds.

(B) Let us prove Theorem 1 for the case when (2.2) does not hold. Note that if

v ∈ W and u(x, t) ∆= v(εx, t), then u ∈ W for any ε > 0, and ‖u‖W ≤ C‖v‖W , where

C = C(ε) > 0 is a constant. For ε ∈ (0, 2
√

c/b), consider the problem

a
∂v

∂t
(x, t) + ε2 ∂2v

∂x2
(x, t) + εb

∂v

∂x
(x, t) + cv(x, t) = 0, x > 0, t > 0,

v(x, 0) ≡ 0, x > 0,

k0v(0, t) + k1
∂v

∂x
(0, t) ≡ g(t), t > 0. (2.18)

Clearly, the analog of (2.2) is the condition ε2b2/4 < c, and it is satisfied. By the part

(A) of the proof, it follows that problem (2.18) has unique solution v ∈ W, where W is

defined for q = qε > −εb, and an analog of estimate (2.1) holds. By (2.18), it follows that

the function u(x, t) ∆= v(εx, t) is the unique solution of (1.1), and (2.1) holds for the space

W defined for q = ε−1qε, i.e., for q > −b. It can be obtained by the change of variables

such as
∫

R+

e−qεx‖v(x, ·)‖2
L2(R)dx =

∫

R+

e−qεx‖u(εx, ·)‖2
L2(R)dx

= ε−1

∫

R+

e−qεy/ε‖u(y, ·)‖2
L2(R)dy < +∞.

This completes the proof of Theorem 1. ¤
Proof of Theorem 2. Rewrite the parabolic equation with c replaced by c + M and

g(t) replaced by g(t)e−Mt. By Theorem 1, solution uM ∈ M of the new equation exists.

Clearly, u(x, t) = eMtuM (x, t) is the solution of of the original problem. ¤

Remark 4 A similar result can be obtained for the classical well-posed problem with a < 0.

In that case, the conditions can be less restrictive, for example, with b ≤ 0 and q = 0. In

contrast, we require that q > −b for our case with a > 0.
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3 Some applications

Exact compensation of a boundary input by an initial value input

Let T > 0 be given. Let us consider the following well-posed boundary value problem on

R+ × [0, T ]:

a
∂v

∂t
(x, t) =

∂2v

∂x2
(x, t) + b

∂v

∂x
(x, t) + cv(x, t), x > 0, t ∈ [0, T ],

v(x, 0) ≡ v∗(x),

k0v(0, t) + k1
∂v

∂x
(0, t) ≡ g(t), t > 0. (3.1)

Here a > 0, b > 0, c, k0, k1 ∈ R are constants such that (1.2) holds.

Theorem 3 For any g ∈ Γ, there exists v∗ ∈ L2(R+) such that v(x, T ) ≡ 0, where v ∈ W
is the solution of problem (3.1).

Proof. The time change t → T − t transforms problem (3.1) into the equation with initial

time at time t = 0 in (1.1). It suffices to take the solution u ∈ W for q = 0 of problem

(1.1) and take v∗(x) = u(x, T ), v(x, t) = u(x, T − t). ¤
Theorem 3 gives a solution for the following inverse problem: find the distribution of

the initial temperature along the rod such that the temperature at a given time T is a

given constant even if there is a variable in time loss/gain of heat at the endpoint.

Restoration of the past distributions for diffusion processes

Assume that there is a probability space. Let E denote the expectation of a random

variable.

Let w(t) be a scalar Wiener process (i.e., it a pathwise continuous Gaussian process

with independent increments such that Ew(t) = 0 and Ew(t)2 = t). Consider the following

stochastic process

y(t) = ξ + βt + σw(t). (3.2)

Here β > 0 and σ > 0 are constants, ξ is a random variable such that ξ ≥ 0, Eξ2 < +∞,

and ξ is independent from w(·). We assume also that ξ has the probability density function

ρ ∈ L2(R+). However, we assume that this ρ is unknown.
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The process y(t) describes the evoultion of a Brownian motion starting at ξ with drift

β; it is the limit continuous time model of the random walk.

Set τ
∆= min {t > 0 : y(t) = 0}.

Let function p(x, t) : R+ × [0, T ] → R be such that p(x, 0) = ρ(x),
∫

B
p(x, t)dx = EeλtI{y(t)∈B}I{τ≥t}

for any interval B ⊂ R+. Here I denote the indicator function of an event.

In fact, p(x, t) is the probability density function of the process y(t) if this process

is being killed (absorbed) at 0, and it is being killed inside (0, +∞), with the rate of

killing (−λ); the case of λ > 0 is not excluded. It is known that the evolution of p

is described by the parabolic equation being ajoint to (1.1) with the boundary value

conditions p(x, 0) ≡ ρ(x), p(0, t) ≡ 0, and with

a = 1/σ2, b = β/σ2, c = λ/σ2, k0 = 1, k1 = 0. (3.3)

It is also known that p(·, T ) ∈ L2(R+).

For g ∈ Γ, let ug = ug(x, t) be the solution of the problem (1.1), (3.3).

Let T > 0 be given, and let Ψg(x) ∆= ug(x, T ). By Theorem 2 applied with q = 0, it

follows that Ψg ∈ L2(R+).

Theorem 4 For all functions g ∈ Γ and all λ ∈ R,

Eeλτg(τ)I{τ<T} = −EeλT Ψg(y(T ))I{τ≥T} = −
∫

R+

p(x, T )Ψg(x)dx. (3.4)

Theorem 4 allows to find the distribution of the first exit times for the Brownian

motion when its initial position is random with an unknown probabilistic distribution and

when the statistics of the observations is available at the terminal time T and only for

particles that didn’t achieve the boundary. More precisely, it allows to solve effectively the

following inverse problem: find the distribution of τI{τ<T} using the terminal distribution

p(x, T ) for the case when the distribution ρ(x) = p(x, 0) of ξ = y(0) is unknown. Using

this theorem, one can find the value of the expectation at the left hand side of (3.4) for

any g ∈ Γ via the following algorithm:

(a) Find ug as the solution of (1.1), (3.3).
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(b) Find Ψg = ug(·, T ).

(c) Using known p(x, T ), calculate the integral at the right hand side of (3.4).

This approach does not require regularization being used for ill-posed problem such as in

Beck (1985) or Tikhonov and Arsenin (1977).

Proof of Theorem 4. By the definitions,

Eeλ(τ∧T )ug(y(τ ∧ T ), τ ∧ T ) = Eeλτg(τ)I{τ<T} + EeλT Ψg(y(T ))I{τ≥T}.

By Itô formula,

Eeλ(τ∧T )ug(y(τ ∧ T ), τ ∧ T ) = Eug(a, 0) = 0,

since ug(x, 0) ≡ 0. In addition,

EeλT Ψg(y(T ))I{τ≥T} =
∫

R+

p(x, T )Ψg(x)dx.

Then the result follows. ¤
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