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Abstract

Traditional methods of object recognition are reliant on
shape and so are very difficult to apply in cluttered, wide-
angle and low-detail views such as surveillance scenes. To
address this, a method of indirect object recognition is pro-
posed, where human activity is used to infer both the loca-
tion and identity of objects. No shape analysis is necessary.
The concept is dubbed ‘interaction signatures’, since the
premise is that a human will interact with objects in ways
characteristic of the function of that object — for example,
a person sits in a chair and drinks from a cup. The human-
centred approach means that recognition is possible in low-
detail views and is largely invariant to the shape of objects
within the same functional class. This paper implements a
Bayesian network for classifying region patches with object
labels, building upon our previous work in automatically
segmenting and recognising a human’s interactions with the
objects. Experiments show that interaction signatures can
successfully find and label objects in low-detail views and
are equally effective at recognising test objects that differ
markedly in appearance from the training objects.

1 Introduction
Object recognition has been the focus of considerable

research interest over the past few decades due to its fun-
damental applicability in computer vision. However, it has
not been widely used in applications such as smart homes or
surveillance despite significant benefits that object informa-
tion context would provide to analysing human behaviour.
Researchers who have made use of object context for human
action recognition have been forced to manually pre-define
the locations of objects [12]. This is because the wide-angle
views in monitored scenes such as a smart home are partic-
ularly challenging for traditional shape-based object recog-
nition, which relies on high-detail views of objects in order
to extract distinctive features for object shape analysis. Un-
fortunately, wide-angle indoor views typically contain mul-
tiple objects cluttered together where objects are low in de-
tail, can be partially occluded and only a few objects are

relevant to the application. Moreover, close-up views that
are more suitable for object recognition are generally inap-
propriate for surveillance systems since the latter require a
maximal field of view.

Rather than attempt to directly analyse the shape of ob-
jects under low-detail conditions, this paper proposes to in-
directly find and label objects based on the manner in which
a human interacts with the objects. No object shape anal-
ysis methods are employed in labelling objects. The ap-
proach is based on the premise that a human will manipu-
late functionally-similar objects (which should be labelled
equivalently) in a similar manner, and the human’s posture
will also imply the location of the manipulated object. For
example, a person sits in a chair and drinks from a cup. In
this way, the human’s actions are a contextual ‘signature’
implying both the class and location of objects, hence this
approach to object recognition is referred to as the paradigm
of interaction signatures.

The significance of the approach is threefold. (1) Inter-
action signatures are able to find and label objects in scenes
where objects are too low in detail but humans are not.
(2) Object classification is largely invariant to the shape and
orientation of objects since objects of the same functional
class will be interacted with similarly and so are equally
recognisable regardless of their appearance. (3) The ac-
tions of the human in the scene guide the system towards
the location of relevant objects within the clutter. This paper
demonstrates that interaction signatures can successfully la-
bel objects without any shape-based analysis. However, in-
teraction signatures should not be viewed as a panacea re-
placement for shape-based recognition methods. Rather, in-
teraction signatures have strengths and weaknesses that are
independent of and complementary to shape-based recogni-
tion, thus the two approaches could potentially be integrated
to improve the robustness of both.

This paper evaluates the utility of interaction signatures
in a household-type environment due to the fact that oc-
cupants tend to interact frequently and repeatedly with ap-
pliances and other household objects, thus maximising the
amount of human-object interaction evidence. No shape
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analysis is used. This paper builds upon our previous
work in fast human pose modelling, activity segmentation
and semantically-descriptive action labelling using miss-
ing observation data in HMMs [9]. To facilitate labelling,
this paper decomposes the scene into region patches and
a Bayesian framework is developed to learn and apply in-
teraction signatures to the task of labelling the regions in
the scene with semantically-descriptive object labels. The
activity of printing a document is analysed to find and la-
bel six object classes — Floor, Chair, Keyboard, Printer,
spare Paper and None for irrelevant objects. Per-frame re-
gion labels are combined over time in a process of evidence
accumulation to form a labelled map of the objects in the
scene. Shape-invariance of labelling is demonstrated by re-
placing the training objects with two sets of alternative ob-
jects whose shape and colour differs from the training ob-
jects. The lab is also completely refurbished, testing the sys-
tem on an unfamiliar scene. Results show that even signifi-
cant changes in the appearance of an object (such as draping
a large sweater over the back of a chair) have no effect on
recognition accuracy.

This paper is organised as follows: Section 2 briefly de-
scribes similar work in computer vision literature, followed
by an overview of the process of labelling via interaction
signatures in Section 3. Section 4 describes the experiments
and results for object labelling. Finally, Section 5 outlines
the conclusions and potential future work.

2 Related Work
There is a very large body of literature on the topic of

shape-based object recognition — the reader is referred to
surveys such as [1, 8]. Traditional shape-based recognition
has largely been constrained to relatively close-up views in
order to provide enough detail for distinctive feature extrac-
tion, a requirement that is unsuitable for surveillance appli-
cations which require wide-angle scenes.

As an alternative, several researchers have explored us-
ing human actions to reason about the elements in a scene.
Some applications are finding pathways by learning the tra-
jectories and routes that people take through an outdoors
scene [6, 11]. Koile et al [5] learn heavily-used areas
(dubbed Activity Zones) in indoor scenes for triggering
appropriate responses by a smart environment, but the ar-
eas must still be manually labelled with meaningful names.
Similarly, Grimson et al [3] use human motion to produce a
depth map of the scene, but could not label the scene.

In another approach, Moore et al [7] use the hand mo-
tions of a human to refine an initial shape-based classifi-
cation of an object, demonstrating the benefits of combin-
ing action evidence with shape analysis. However, in order
to perform shape-based recognition they are constrained to
close-up, top-down and uniplanar views, such as a desk or a
kitchen bench. Furthermore, objects are detected by assum-

ing that they are introduced into the scene and segmented
by background subtraction, or labelled a priori in the case
of immobile objects (eg: keyboards or chairs).

To handle object recognition in wide-angle views driven
primarily by human actions, we have proposed the con-
cept of interaction signatures. Our previous work [10] is
based on coarse measurements of human motion (bound-
ing box features) and so can only detect gross interactions
with large objects such as chairs or floors. Additionally,
image information is not considered, hence objects were la-
belled heuristically by assuming an object will exist near a
certain portion of the human’s body (eg: a chair will ex-
ist somewhere within the fitted ellipse of the person’s sil-
houette). This paper eliminates the need for such heuristic
labelling by developing a Bayesian classifier that labels im-
age regions based on pose estimation and action recognition
sub-systems developed in [9].

3 Interaction Signatures for Labelling
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Figure 1. Hierarchy of processing necessary for labelling
a scene using the interaction signatures paradigm. This pa-
per addresses the top two layers — processing for lower
layers is described in [9].

Figure 1 shows an overview of the process used to gener-
ate object labels from interaction signatures. Indoor human
activity is captured at a resolution of 320×240 pixels and 25
frames per second from four ceiling-mounted cameras (one
in each corner of the room) Video is processed to extract
a real-time stick-figure skeleton of a person’s silhouette to
model the human’s pose in 3D, as described in [9]. Figure
2 shows examples of the pose skeleton. Motion features are
extracted from the pose skeleton and used for action recog-
nition via Hidden Markov Models (HMMs). Recognition is
robust to occlusions since the skeleton is allowed to mark
occluded limbs as missing observation data in the HMM.
Missing data in the HMM is also used to facilitate auto-
matic segmentation of an activity (eg: printing a document
in this paper) into its constituent actions [9].

Using the segmented actions, object labels are assigned
to regions in a scene via the interaction signatures approach.
For every single video frame where human activity is oc-
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curring, each region is classified with an object label (or
None) according to the (inter)action that the person is con-
ducting, the posture of their skeleton and the location of
the region relative to the person. To constrain processing,
only regions that are ‘within reach’ of the person (ie: fall
within the bounding box of the person’s silhouette) are po-
tential candidates for interaction. Regions are classified via
a Bayesian network that is trained on the action being per-
formed, the relative position of each region to the skeleton
and the ground-truth of the object label for each region (Fig-
ure 4). Each frame may involve simultaneous interaction
with more than one object (eg: when typing at a computer,
the chair, floor and keyboard are all involved). Furthermore,
each object may be split into several regions which are si-
multaneously and independently classified. Per-frame clas-

Figure 2. Examples of pose skeletonisation from silhou-
ette, with the position of objects inferred from the skeleton.
Scene outlines are manually added as an aid for the reader.

sifications are fed into a system of evidence accumulation.
This maintains a set of weights relating to each possible ob-
ject label for each region in the image, providing a relatively
stable map of object labels in the scene that adapts as more
interaction evidence is observed, thus being robust to per-
frame errors in classification.

3.1 Higher-Level Activity as a Context for
Lower-Level Action Recognition

Since labelling via interaction signatures depends on ac-
tion recognition, the semantic descriptiveness of object la-
bels is controlled by the semantic descriptiveness of action
labels. However, interactions with different objects can in-
volve visually identical motions, such as picking up a cup
or picking up paper. Hence it is necessary to provide a con-
text that can allow action recognition to distinguish between
such visually-similar but semantically-distinct actions. Un-
fortunately, object context cannot be employed since this
paper is concerned with the inverse problem of finding ob-
jects from actions. The alternative is to use the higher-level
activity and temporal sequence of actions within this ac-
tivity as a context for the lower-level actions taking place
within the activity. For example, knowing that a person is
conducting the activity ‘print a document’ restricts the ex-
pected set of actions and implies an ordering to the actions
(eg: must pick up spare paper before loading the paper and

getting the printout). A system for performing such context-
enhanced action recognition is described in [9].

Note that it is not envisioned that activity context alone
will suffice for all situations — to make a more robust ac-
tion recognition system, all useful contexts should be con-
sidered (eg: shape-based object recognition, indoor vs out-
door scenes, time of day, type of room, etc). However,
for the purposes of this research, activity and temporal se-
quence context provide sufficient information to distinguish
between many visually-similar actions.

3.2 Bayes Classification of Regions
Regions are classified as belonging to a particular object

(or not) by combining evidence of the relative position of
the region with respect to the pose skeleton together with
the action being performed. This combination is essentially
what the term ‘interaction signature’ represents.

Keyboard

Chair

Printer

Floor

Paper

Figure 3. Example region segmentation (important ob-
jects are circled). Note that segmentation is quite rough,
with the printer and chair broken up into several regions.

The scene image is decomposed into homogeneously-
coloured region patches using a simple seeded region
grower thresholded on colour [4]. Seeds are randomly
chosen and recursively grown into the similarly-coloured
neighbourhood. Resultant regions that are too small (less
than 15 pixels) are discarded. Although the region segmen-
tation is quite rough (Figure 3), interaction signatures are
able to handle this level of noise. Regions are extracted
from the background image rather than the video frame
since any person moving in the scene will not show up
in the background and so will not occlude object regions.
Note that it is preferable that the regions are slightly over-
segmented (ie: objects are split into multiple regions) since
an interaction signature will be applicable to all constituent
regions of an object but cannot label only part of a region.

Classification occurs for every frame for every region
within ‘reach’ of the human (ie: overlapping the bounding
box). Each camera view is processed independently for ob-
ject labelling, avoiding the complication of having to fuse
regions across near-orthogonal views into 3D. Note that the
pose skeleton is generated in 3D for view-independent ac-
tion recognition before being projected onto each 2D view
for object labelling. The amount of data to be classified is
quite large — for four views capturing at 25fps and typically
involving 30 regions per frame, around 3,000 classifications

Proceedings of the Tenth IEEE International Conference on Computer Vision (ICCV’05) 

1550-5499/05 $20.00 © 2005 IEEE 

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on October 6, 2009 at 03:40 from IEEE Xplore.  Restrictions apply. 



must be made per second of video. A Bayes classifier is
employed since it can compactly represent the training data
and continues the statistical approach of [9].
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Figure 4. Bayesian classifier for per-frame labelling.

Figure 4 shows the Bayes network used to classify re-
gions. Each node relating to an ‘Arm’ or ‘Leg’ actually
represents two independent, identically-distributed (i.i.d.)
nodes — one for each of the two arms (or legs). Nodes
can be interpreted as fulfilling specific roles for interac-
tion signature labelling. The leftmost group of five nodes
(relating to angles) encodes the relative position of the re-
gion with respect to the skeleton. The expected position
of a given region can be inferred via triangulation of the
angles, hence the dependencies between the nodes. Dis-
tances to the region (seven lower-right nodes) also assist in
defining the location of the region — for example, a Key-
board should exist near the person’s hands. The ArmsVis-
ible? node exists to constrain when it is appropriate to at-
tempt to label certain objects since the pose skeleton may
mark limbs as missing. For example, it is difficult to label
a Keyboard when the arms are not detected. Constraints are
also placed on the size and compactness of regions via the
RegionArea, AvgDist and DistStdev nodes. Finally, the Ac-
tion node defines the human’s current action, a context that
implies which object labels are valid for the current interac-
tion.

Since all length and area features are in terms of 2D pix-
els, pixel measurements are scaled according to how far
away the region is from the camera (in 3D). The only 3D
measurement available is the human’s position, so it is as-
sumed that regions are approximately at the same location
as the human for the purposes of scaling.

When defining the ground-truth for the training data, an
object’s regions must be labelled as that object only when
the person is actually interacting with the object. For exam-
ple, a patch of floor that is physically located on the other
side of the room cannot be labelled as Floor since the per-
son cannot be interacting with that region, even if the per-
son’s silhouette overlaps with that region due to the per-
spective projection onto the camera’s 2D view. Only floor
regions that are at the person’s feet should be classified as
Floor. Similarly, the keyboard, printer and paper cannot be
labelled when the person’s arms are not detected.

In addition to the object labels, None is used as an anti-
label to classify regions that do not match an interaction sig-

nature. None is itself an ‘interaction’ that is learned along
with the other object labels and allows the selection of the
most-likely label at every frame as the classification, rather
than having to define a minimum threshold for accepting
an object label. None also allows the system to recover
from errors in labelling by decaying incorrect object labels
to None.

3.3 Evidence Accumulation
Classifications by the Bayesian network are on a per-

frame basis, and so are sensitive to per-frame variations in
the pose skeleton. Also, as soon as a particular interaction
signature ceases, it is no longer possible to continue to la-
bel the objects that were involved in the signature. Hence
a form of evidence accumulation is employed that builds a
map of the object labels within the scene based on the per-
frame classifications. The approach used is to maintain a
list of weights for each region, one weight for every pos-
sible object label. Whenever a classification occurs on a
region, the weight W of the classified label L is increased
and all other labels’ weights are decreased according to the
following learning and decay functions:

WL(t+1) =
WL(t)

1 − �L

if WL(t) < 0.5 (1a)

WL(t+1) =
(

WL(t) · (1 − �L)
)

+ �L if WL(t) � 0.5 (1b)

All other labels for that region are decayed via:

WL(t+1) = WL(t) · (1 − δL) (1c)

where �L and δL are the
learning and decay rates
respectively from Table
1. Note that the learning
function is split into two
parts (below 0.5 and above
0.5 — Equations (1a) and
(1b)). Figure 5 (right)
depicts the weight learning
and subsequent decay for
one object label.

Figure 5. Idealised
weight learning/decay
function.

Label: None Floor Chair Keyboard Printer Paper
Learning Rate (�) 0.005 0.02 0.03 0.06 0.1 0.25
Decay Rate (δ) 0.003 0.01 0.01 0.01 0.01 0.01

Table 1. Learning and decay rates for evidence accum.

The learning and decay rates in Table 1 were heuristi-
cally chosen by observing the duration of each action and
how well each interaction signature was detected by the sys-
tem (weaker signatures are not always recognised for every
frame of the interaction). Interactions that have a very short
duration (eg: getting paper) have a higher learning rate than
longer, more prominent actions (eg: walking) to compen-
sate for the difference in the amount of evidence available
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Figure 6. Floor plans of the five room configurations used. Coloured objects are targets of interest. Grey objects are not targets
for labelling — greyscale intensity indicates their height. See Figure 3 for an example of the SE view for Config 1.

for each interaction signature. The rates for None are very
low since it is the ‘default’ label and preference should be
given to other, true, object labels.

The function enforces both a slow start to learning so that
isolated misclassifications do not create much weight, and a
fast decay so that label conflicts are resolved quickly.

4 Experiments and Analysis

Evaluation focuses on demonstrating the robustness to
low detail and shape-invariance of interaction signature la-
belling. Objects are arranged in five configurations of rela-
tive positions and orientations (see Figure 6). Four cameras
monitor the scene, one in each corner, hence at least half of
the views for each object are from across the room and low
in detail. One activity is modelled for the purposes of find-
ing and labelling manipulated objects within the scene. It
involves printing out a document, finding that the printer is
out of paper, obtaining some spare paper to load the printer
and finally retrieving the printout and returning to the com-
puter. Several interaction signatures are defined within this
activity, including the acts of typing, sitting, getting paper
and retrieving the printout. From these signatures, five ob-
jects are labelled — Floor, Chair, Keyboard, Printer and
spare Paper (with None making a sixth label). Note that
objects such as tables or the computer’s monitor are not la-
belled since there is no direct interaction with these objects
and so the interaction signature would be too weak to use
given the available features. Additional features would be
necessary to recognise these subtle interaction signatures,
such as estimating the direction of the person’s gaze to find
the computer monitor.

For this research, 50 sequences of the printing activity
were captured, with each sequence lasting 1-2 minutes. Ev-
ery 10 sequences, the locations of the relevant objects in the
scene were changed, resulting in five different topograph-
ical configurations for object positions. This was done to
prevent the system from learning the relative positions of
objects and thus artificially assisting labelling. Similarly,
the Bayes classifier is trained with data from all views to
ensure that the scene’s appearance from a particular view
is not a factor in classification. During five-fold cross-

validation testing, object labelling is performed indepen-
dently on each view using the trained classifier. No fusion
of information across views takes place due to the difficulty
in reliably matching regions between very wide baseline
views.

4.1 Region Labelling Evaluation
Figures 7, 8 and 9 show examples of region labelling.

Since region segmentation is not perfect, regions are subjec-
tively judged to be part of an object if they mostly fit within
the object. Note that when an object is fractured into mul-
tiple regions, each region can still be labelled correctly. For
example, although there are several segments to the chair
object in each view, the majority of them are still labelled
as Chair (easiest to see in SW and SE views of Figure 7).

NW NE

SW SE

Figure 7. Final labels for each camera view of a sequence.
Objects such as floors and chairs are split into multiple re-
gions (outlined in black). Light outlines for walls and other
obstacles are manually defined as an aid for the reader.

Regions that are directly adjacent to an object tend to
be the main source of errors in mislabelling regions with
the object’s label. This is particularly an issue for Printer
and Paper since their associated interaction signatures have
the person reaching towards the object rather than physi-
cally touching it (as is the case for the other objects). Hence
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Figure 8. Final labelling with corresponding region segmentations from two sequences (zoomed to objects). Note that labelling
can deal with objects that are fractured into multiple regions and embedded within clutter, such as the chairs and printers.

estimating the position of the Printer and Paper objects is
highly sensitive to inaccuracies in the pose skeleton. In
some cases, this can mean that the object is completely
missed. The problem can also affect Chair labelling —
in the NE view of Figure 7, the system believes that the
chair’s back extends much higher than is truly the case be-
cause it labels a region that is actually a couple of metres
behind the chair. These errors are caused by clutter, both
apparent clutter (due to noisy region segmentation and 2D
perspective projection) and true clutter (due to the physical
contents of the scene). Higher levels of clutter tend to de-
grade labelling precision since regions in close proximity to
the object of interest are mislabelled as part of that object.
Apparent clutter could be reduced by better region segmen-
tation. However, physical clutter cannot be mitigated, hence
it is important to note that although precision is degraded by
clutter, labelling is still feasible.

Labelling accuracy also tends to become more error-
prone for objects that are located further away because ob-
ject detail decreases with distance. Moreover, a distant ob-
ject will have several ‘gaps’ in its region coverage due to the
minimum size constraint on regions. Distance also means
that errors in the pose skeleton become more significant and
adversely affect the accuracy of labelling. Problems with
distance could be minimised by using higher resolutions,
better region segmentation and more accurate pose estima-
tion, but distance will always negatively affect labelling.

Finally, one of the limitations of labelling is the narrow
definition of ‘interaction’ — only regions overlapping with
the bounding box of the person are potential candidates for
interaction signatures. Thus the printer in the NW view of
Figure 7 is only partially labelled since the lower region of
the printer rarely intersects with the person’s bounding box
and so has insufficient evidence for a label.

4.2 Error Robustness of Evidence Accumulation
Table 2a shows the confusion matrix for per-frame re-

gion classifications, summed over all views and all se-
quences. Regions that are never interacted with (ie: never

Chair/Keyboard Printer Paper
Regions Labels Regions Labels Regions Labels

a

b

c

d

Figure 9. More final labels (zoomed to objects)

overlap the bounding box) are omitted to avoid artificially
inflating the accuracy of the None label. Table 2b shows the
confusion matrix for final region labelling of regions where
a region is classified with the highest-weighted object la-
bel for that region as derived from evidence accumulation,
thresholded so that extremely weak labels (less than 0.05)
are instead labelled as None.

In general, the precision of final region labelling is bet-
ter than that of the per-frame classifications. The most im-
proved object classes are Printer and Paper, whose preci-
sions nearly double from a very low 27.3% and 28.4% to
a more reasonable 48.1% and 47.5% respectively. This is
because final region labels are generated from the weighted
combination of all the per-frame classifications. In some
ways, evidence accumulation could be viewed as an ‘en-
semble of classifications’ as opposed to ensembles of clas-
sifiers, such as bagging and boosting [2]. The difference
is that boosting uses multiple classifiers to classify a single
instance, whereas evidence accumulation uses a single clas-
sifier to classify multiple instances separated temporally but
all relating to the same physical object.

On superficial inspection, the precision results seem
merely adequate. However, since cameras are orthogonally-
located, at least half of the cameras will view an object from
across the room (up to seven metres distant). The distance
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Per-Frame Classifications Final Region Classifications
None Floor Chair Keybrd Printer Paper Recall None Floor Chair Keybrd Printer Paper Recall

None 4,467,866 24,480 232,823 46,180 57,264 8,281 92.4% 14,713 24 362 88 567 148 92.5%
Floor 29,929 283,120 821 0 2 0 90.2% 185 373 2 0 8 0 65.7%
Chair 55,256 0 722,785 2,623 0 0 92.6% 75 0 1,029 0 0 0 93.2%
Keyboard 8,580 0 0 118,001 0 0 93.2% 38 0 0 198 0 0 83.9%
Printer 9,320 0 0 0 21,314 0 69.6% 101 0 0 0 544 0 84.3%
Paper 1,449 0 0 0 264 3,295 65.8% 52 0 0 0 11 134 68.0%
Precision 97.7% 92.0% 75.6% 70.7% 27.0% 28.5% 97.0% 94.0% 73.9% 69.2% 48.1% 47.5%

(a) (b)
Table 2. Confusion matrices for (a) per-frame classifications and (b) final region labelling after evidence accumulation.

also tends to produce more apparent clutter since objects
further away from the camera are more difficult to separate
and exist closer together due to the perspective projection
onto the 2D view. Hence over half of the classifications are
performed under conditions of low object detail and relative
clutter. In light of this, the precision results and examples
of labelling show that interaction signatures are relatively
robust to clutter and low detail, although these conditions
do of course degrade the accuracy of labelling.

4.3 Invariance to Object Shape and Colour
Experiments were also conducted to show that interac-

tion signatures are relatively invariant to the exact shape or
colour of the objects being labelled. Each training object for
Chair, Keyboard, Printer and Paper was substituted with
two sets of alternative objects and 12 new printer sequences
were captured using these alternatives. These alternative
objects were then labelled using the interaction signature
classifier trained from the original objects. Note that the al-
ternatives all had a different shape and colour to the original
objects. To emphasize the shape-independence of the sys-
tem, one of the alternative chairs also had a large sweater
draped over the back. This covered most of the chair and
would make it virtually impossible to recognise the chair
by using shape and colour.

Printer

Chair

Paper

Keyboard

Dishwasher

Fridge
Table

Microwave

Tables

Cupboards

N

CamSE

Table

CamNW

CamSW

CamNE

Figure 10. New room layout, with SE view segmentation.

Coincidentally, the lab itself had been completely refur-
bished between the time of the training data and the new
sequences. This provided the opportunity to test the sys-
tem on an unfamiliar scene — see Figure 10 for a view of
the new room and an example of region segmentation for
the new layout. The new scene tends to have more clutter
around the walls but less clutter in the centre of the scene.

Table 3 shows the results of labelling with the alterna-

tive objects, and Figure 11 shows some examples of final
region labelling. In general, results are comparable to the
results produced from the original (training) objects. How-
ever, Paper (and to some extent, Printer) is significantly
less accurate due to its unfortunate positioning near an area
with high clutter (especially in the SE view). The amount of
clutter ‘blurs’ the area that the interaction signature labels,
causing precision to fall.

Final Region Classifications
None Floor Chair Keybrd Printer Paper Recall

None 3705 0 109 27 185 123 89.3%
Floor 74 78 0 0 0 0 51.3%
Chair 62 0 398 0 0 0 86.5%
Keybrd 6 0 0 69 0 0 92.0%
Printer 21 0 0 0 123 0 85.4%
Paper 53 0 0 0 0 58 52.3%
Precisn 94.5% 100.0% 78.5% 71.9% 40.0% 32.0%

Table 3. Confusion matrix for final region labelling of
objects that are dissimilar in shape and colour to the training
database objects.

Note that the sweater draped over the chair in Figure 11
(NE view) is only partially labelled. This is because the
bounding box of the person never intersects the unlabelled
half of the sweater whilst the person was sitting, thus no ev-
idence exists to label that half. This effect is a consequence
of restricting region labelling to the bounding box area, as
discussed at the end of Section 4.1.

NW NE

SW SE

Figure 11. Final labels for a sequence with objects whose
shape and colour is dissimilar to the training objects.
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Chair/Keyboard Printer Paper
Regions Labels Regions Labels Regions Labels
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b

c

d

e

Figure 12. Region segmentations and final labels for sev-
eral sequences with alternative objects (zoomed to objects).
Note that the chairs in 12c–12e are covered by a sweater.

5 Conclusions
This paper has presented the concept of human-object

interaction signatures to indirectly recognise objects by us-
ing the actions of humans to label an object’s regions in
wide-angle, real-world scenes. Per-frame classifications of
image regions are used as evidence to generate a map of
the scene showing where objects are and what regions are
likely to be part of each object. Although labelling is by
no means perfect, it is robust enough to produce a reason-
able map of object labels despite the noisy real-world data
it must deal with — sub-optimal segmentation of the image
into regions, the fracturing of objects into multiple regions
and an incomplete and often inaccurate pose skeleton. Im-
portantly, the appearance-independent nature of interaction
signatures means that the system is able to recognise objects
when their shape and/or colour differs from the training ob-
jects. Even a sweater draped over the back of a chair does
not affect the accuracy of labelling the chair.

Errors tend to occur in mislabelling regions that surround
an object as being part of the object itself. This is due to sev-
eral factors, including clutter, inaccuracy of the pose skele-
ton and the fact that regions are labelled independently of
one another. The latter issue arises because constraints ex-
ist at the region level. This could be solved by adding addi-
tional constraints on the inter-region size and compactness
for an object. Clutter is perhaps the most difficult problem
to address since it is often a physical property of the scene,
so better region segmentation algorithms will not be able to
fully alleviate this issue.

Several extensions to this research are possible, includ-
ing the integration of interaction signatures with traditional
shape-based object recognition, the use of better underly-
ing algorithms (for image segmentation, pose estimation

and action recognition) and the fusion of regions into 3D
via stereo matching to eliminate apparently adjacent regions
that are in fact physically separated. Reducing the depen-
dence of object labelling on accurate action classification
is particularly crucial. Currently, if the action is misclassi-
fied the subsequent object labelling will also be incorrect,
although evidence accumulation is able to minimise the ef-
fect of occasional errors in labelling. A more practical so-
lution is to use many contexts in addition to action (such
as an initial pass with shape-based object recognition [7]),
improving robustness to errors in any single context.
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