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Summary 
 
Exponential increase of seismic velocities with effective 
stress has usually been explained by presence of pores with 
a broad distribution of aspect ratios. More recently, a 
stress-related closure of soft pores with a narrow 
distribution of compliances has been suggested as an 
alternative explanation of such exponential stress 
dependency.  This theoretical interpretation has been 
verified here using laboratory measurements on dry 
sandstones. On the basis of these experimental data, linear 
dependency of elastic compressibility on soft porosity and 
exponential decay of soft porosity and elastic 
compressibility with effective stress up to 60 MPa is 
confirmed. Soft porosity, estimated from the fitting 
coefficients of elastic compressibilities, is on the same 
order of magnitude but slightly lower than obtained from 
strain measurements. The results confirm applicability of 
previously proposed stress sensitivity model and provide 
justification for using this approach to model stress 
dependency of elastic properties. 
 
Introduction 
 
Knowledge of stress dependency of elastic properties of 
rocks is important for a variety of geophysical applications 
ranging from pore pressure prediction in sedimentary rocks 
and seismic monitoring of hydrocarbon production to 
constraining material properties in the mantle. It has been 
shown by many authors that stress dependency of 
compressional and shear velocity V  in many dry porous 
rocks can be well approximated by a combination of linear 
and exponential terms (e.g., Zimmerman et al., 1991; 
Eberhart-Phillips et al., 1989): 

( ) exp( )V P A KP B PD= + − − , (1) 
where P is confining pressure, A, K, B, and D are fitting 
parameters that provide the best agreement with the 
measured data.  
 
Until recently, the exponential term in equation (1) was 
usually explained by presence of pores and cracks with 
broad (usually exponential) distribution of crack stiffnesses 
or aspect ratios (e.g., Zimmerman, 1991; Tod, 2002). 
Recently, Shapiro (2003) obtained a somewhat surprising 
result that such exponential form may be explained by 
much more simple dual distribution of porosity. More 
precisely, Shapiro (2003) showed that if total porosity φ  of 

an isotropic rock can be divided into stiff porosity part sφ  

and much more compliant part cφ , i.e. 

  s cφ φ φ= + ,   (2) 

then dry rock compressibility drC  can be written as a 

simple linear function of stiff and compliant porosities 

( ) ( )1dr drs s s c cC P C θ φ θ φ= + ∆ + ,  (3) 

where drsC  is the compressibility of the porous rock with 

all compliant porosity closed (hereafter, stiff limit), sθ  and 

c sθ θ>>  are coefficients related to compliance of stiff and 

compliant pores, respectively, 0s s sφ φ φ∆ = −  is the 

deviation of the stiff porosity from its zero-pressure value 

0sφ . Note a change in notation: sφ∆  in the present work 

corresponds to sφ  in Shapiro (2003). In many cases, 

s s c cθ φ θ φ∆ << , and equation (3) reduces to  

( ) ( )1dr drs c cC P C θ φ= + ,  (4) 

Variations of stiff and soft porosity with pressure have the 
form 

( )01s gr s drsP C Cφ φ ∆ = − −      (5) 

and  

( )0 expc c c drsC Pφ φ θ= − ,  (6) 

where grC  is the compressibility of the solid grain material 

and 0cφ  is the compliant porosity at zero pressure. Note 

that equation (5) is slightly more general than the form used 
by Shapiro (2003), as it does not require initial stiff 
porosity 0sφ  to be small. Substituting expression (6) for 

compliant porosity into equation (4) gives the variation of 
compressibility with pressure ( ) ( )dr dr drsC P C P C∆ = −  

(deviation of dry compressibility ( )drC P  from its stiff 

limit drsC ) in the form: 

( ) ( )0 expdr drs c c c drsC P C C Pθ ϕ θ∆ = − . (7) 

If this variation is small ( ( )dr drsC P C∆ << ), then equation 

(3) together with the corresponding equation for the shear 
compliance yields equations similar in form to (1) for the 
bulk and shear moduli and for compressional and shear 
velocities of the dry rock (Shapiro, 2003). The moduli and 
velocities of saturated rocks (at low frequencies) can be 
obtained using Gassmann equations; in this case pressure P 
has the meaning of effective pressure.  

2010SEG Houston 2009 International Exposition and Annual Meeting

Main Menu



Experimental verification of the physical nature of velocity-stress relationship for isotropic porous rocks 

While the stress sensitivity approach of Shapiro (2003) 
provides an appealingly simple interpretation of equation 
(1), it is not yet widely accepted, partly due to the lack of 
the experimental verifications of this interpretation. In this 
paper we overcome this difficulty by using simultaneous 
measurements of ultrasonic velocity and porosity in a high 
pressure cell. Porosity variations are estimated from 
measurements of axial strain. The results of our analysis for 
the sandstone samples used in the experiments are 
consistent with the physical interpretation of Shapiro 
(2003).  
 
Workflow 
 
Our workflow consists of three main parts: laboratory 
measurements, computation of the key parameters, and 
analysis. 
 
Experiment 
The experimental program involves the following steps 
1. Measure compressional pV  and shear sV  velocities 

for a dry sample as a function of confining hydrostatic 
pressure P.  

2. Simultaneously measure axial strain axε  as a function 

of pressure. 
3.  Measure initial porosity at zero pressure 0φ  and/or 

initial density 0ρ . 

 
Calculations of key parameters 
Once these data are measured, compressibilities and stiff 
and soft porosities are obtained as follows. 
4. For each pressure, the dry bulk modulus drK  is 

obtained using the standard equation 

( )2 2
04 3dr p pK V V ρ = −   and compressibility as 

1
dr drC K −= . Note that since variation of velocities with 

pressure is always much larger than that of density, 
calculation of the bulk modulus using initial density 

0ρ  at 0P =  is sufficiently accurate. 

5. Then, we compute variation of porosity with pressure. 
Since experiments are performed with hydrostatic 
pressure, we assume thataxε  represents the strain in all 

three directions. Then, the volumetric strain (relative 
variation of the sample volume v with pressure) is 

0 0( ) / 3 axv v vε ε= − = , where 0v  is sample volume at 

zero pressure. At the same time, the relative change of 
total volume grv  of solid grains with pressure is 

( )0 0( ) / / 1gr gr gr gr grv v v C Pε φ= − = − − , where 0grv  is 

total volume of solid grains at zero pressure and grC  

is the compressibility of the solid grain material, 
which is assumed known from mineralogical analysis. 

Since pore volume at any pressure is the total volume 
minus grain volume, grv v vφ = − , using Zimmerman et 

al. (1986), we get: 

( )
( )

0

0

1 / 1
1 1

1
gr grgr

C P vvv

v v v
φ φ

φ
ε

 − − = = − = −
+

.       (8) 

For small deformations, this gives 

( )( ) ( )0 0 01 1 1 1gr grC P C Pφ ε φ φ φ ε= − − − − = + − + .      (9) 

Note that for 0P > , total volumetric strain, ε , is 
negative, and is larger in absolute value than the grain 
deformation grC P ; therefore, using (9), porosity will 

decrease with increasing pressure, as it should.  
6. Now we have to define the parameters which we 

called stiff and soft porosities. Since stiffness of pores 
is a relative measure, there is some freedom inherent 
in this distinction. One way to define stiff porosity is 
to assume that within the pressure range of 
measurements, say from 0 to 100 MPa, the stiff 
porosity changes linearly with pressure. Indeed, if 
measured compressibilities and velocities can be 
described by a simple exponential relationship of the 
type given by equation (4), then at large pressures the 
compressibility drC  approaches a constant value drsC . 

Constant (pressure independent) compressibility 
corresponds to a linear variation of the strain with 
pressure. Indeed, in a pressure interval where dry 
compressibility is approximately constant, dr drsC C≈ , 

volumetric strain drC Pε = −  and equation (8) gives a 

linear relationship between porosity and pressure and 
indicate equation (5). This linear porosity trend is 
expected in the upper part of our pressure range, 
where all soft pores can be assumed closed. We can 
thus call this part of the porosity the stiff porosity. 
Assuming, following Shapiro (2003), that stiff and 
soft porosity variations are independent of one 
another, we can extrapolate this stiff porosity trend to 
lower pressures. In practice, we will estimate stiff 
porosity by fitting a linear trend to the porosity-
pressure dependency in the uppermost part of the 
measurement pressure range (Walsh, 1965; Mavko 
and Jizba, 1991). 

7. Once stiff porosity is defined, the compliant (soft) 
porosity is defined by equation (2) as the difference 
between total and stiff porosity. We will also obtain 
soft porosity from a non-linear fitting of 
experimentally measured ( )drC P∆  as a ratio of 

the coefficient before the exponential to the 
exponent as predicted by equation (7). 
Hereafter, we refer to the former and later soft 
porosity as measured and predicted, respectively. 
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In this study we use non-linear Levenberg-Marquardt 
algorithm for approximation of all exponential 
dependencies. 
 
Testing the theoretical predictions 
With equations (2) and (5) used effectively as definitions, 
we will test experimentally the following elements of 
Shapiro’s (2003) stress sensitivity theory:  
8. Test the adequacy of the linear relationship (4) 

between the dry compliance and soft porosity. 
9. Test the adequacy of the exponential approximation, 

equation (6), for the soft porosity. 
10. Compare the exponent φλ  in the soft porosity fit, 

equation (6), with the exponent Cλ  in the drC∆  fit , 

equation (7). 
11. Compare the measured against predicted soft porosity. 
 
Data 
 
We used reservoir sandstone core samples from the 
Northwest Shelf of Australia between depths of 1700-2000 
m to validate the stress dependency model. Cores for 
testing were cut with diameters of 38 mm and length of 76 
mm. Lithologies were homogeneous over the length of the 
cores. The porosity ranged from 7-24% with an average 
clay content of 4%. The sandstones were tested dry and oil 
saturated under ambient conditions in a triaxial cell to a 
maximum differential pressure of 60 MPa.  More details of 
the sandstones and experimental method can be found in 
Siggins and Dewhurst (2003). 
 
We calculate elastic compressibilities using longitudinal 
and shear velocities in the dry samples. As an example, 
Figure 1a shows the stress dependency of dry elastic 
compressibility for one of the samples (sample12/04 from 
Siggins and Dewhurst (2003)) for loading (red circles) and 
unloading (blue squares) processes. The experimentally 
measured compressibilities exponentially decrease with 
effective pressure; exponential fits for loading and 
unloading are shown by solid red and dashed blue lines, 
respectively. 
  
Porosity variations are obtained from the variations of the 
length of the cylindrical samples. Total, stiff and compliant 
porosity are shown in Figure 1b for the same sample for 
loading (in red) and unloading (in blue). As outlined above, 
stiff porosity (dashed lines) is obtained by linearly 
extrapolation of the high-stress trend determined from two 
points at 50 and 60 MPa. Compliant porosity (diamonds) is 
estimated by subtracting stiff porosity from the total 
porosity and is reasonably approximated by an exponential 
fit (dotted lines). The linear plus exponential fits for total 
porosity are shown as solid lines. 
 

 
 
Figure 1:  Experimental measurements and fitting of stress 
dependency of (a) elastic compressibility and (b) stiff, soft 
and total porosity in a dry sandstone. Experimental points 
and fitting curves for loading and unloading are shown in 
red and blue, respectively.   
 
Results 
 
First, in Figures 2 and 3 we illustrate tests of the stress 
sensitivity theory for one sample (sample 12/04), and then 
show test results on all samples (Figure 4). The test of 
linearity of the relationship between compressibility and 
soft porosity (equation (4)) is demonstrated in Figure 2, 
which shows pressure variation of compressibility 

( )drC P∆  as a function of compliant porosity and its linear 

fits for loading and unloading limbs. The square of the 
Pearson product moment correlation coefficients are 0.98 
and 0.97, respectively, indicating a good correlation 
between ( )drC P∆  and ( )c Pϕ . 

 
Measured stress dependencies of variations of elastic 
compressibility drC∆  and compliant porosity cϕ  with 

2012SEG Houston 2009 International Exposition and Annual Meeting

Main Menu



Experimental verification of the physical nature of velocity-stress relationship for isotropic porous rocks 

stress for the same sample 12/04 are presented in 
logarithmic scale in Figure 3. Straight solid and dotted lines 
show linear fits of the compressibility variations and 
compliant porosity, respectively. The linear fits are nearly 
parallel for compressibility deviation ( )drC P∆  and soft 

porosity ( )c Pϕ . This confirms that compressibility 

variation and soft porosity are well approximated by the 
same exponentials. 
 
Comparison of compressibility variation exponent Cλ  vs. 

soft porosity exponent φλ  for all the samples is shown in 

Figure 4a. Exponents can be fitted with trends of 

φλλ 07.1=C
 and 

φλλ 96.0=C
 for loading and unloading, 

respectively. 
 
Predicted soft porosities shown in Figure 4b in comparison 
with measured ones are of the same order of magnitude but 
somewhat lower. The predicted vs. measured soft porosity 
trends are 

mpr θθ 74.0= and 
mpr θθ 84.0= for loading and 

unloading, respectively, indicating a better prediction of the 
soft porosity from the measured compressibility data at 
unloading. 
 
Conclusions 
 
Theoretical interpretation of exponential stress dependency 
of elastic properties of rocks based on a dual porosity 
concept has been verified using laboratory measurements 
on dry sandstones. On the basis of the experimental data, 
the following postulates of the theoretical model are 
confirmed: (1) linear dependency of elastic compressibility 
on soft porosity and (2) exponential decay of soft porosity 
and elastic compressibility with effective stress up to 60 
MPa. Magnitude of the variation of stiff porosity with 
stress is shown to be comparable with compliant porosity. 
However, this variation has a negligible effect on rock 
compressibility up to 60 MPa. Soft porosity estimated from 
the fitting coefficients of elastic compressibilities is on the 
same order of magnitude but slightly lower than obtained 
from strain measurements. These results confirm 
applicability of Shapiro’s (2003) stress sensitivity model  
and hence provide justification for using this approach to 
model the effect of stress on properties of not only for 
isotropic, but also anisotropic rocks. 
 

 
 
Figure 2. Elastic compressibilities vs. soft porosity and 
linear trends for loading and uploading processes. Colours 
and markers have the same meaning as in Figure 1. 

 

 
 
Figure 3. Measured stress dependencies of decimal 
logarithms of variations of elastic compressibility 

drC∆  

and compliant porosity ( )Pcφ  with stress. Straight solid 

and dotted lines show exponential fitting of the 
compressibility variations and compliant porosity, 
respectively.  

 

 
 
Figure 4. Comparison of (a) compressibility vs. soft 
porosity exponents, (b) predicted and measured soft 
porosities and (c) dynamic and static stress sensitivity 
coefficients obtained for all the sandstone samples.  
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