
©2009 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists,
or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

Signifying Ontology Complexity for Knowledge Sharing

P. Wongthongtham and B. Zadjabbari
DEBII, Curtin University, Australia

p.wongthongtham@cbs.curtin.edu.au; behrang.jabbari@gmail.com

Abstract

Ontologies are used in widespread application

areas particularly to provide a shared semantically
domain knowledge in a declarative formalism for
intelligent reasoning. Even ontology enables
knowledge sharing however complexity of knowledge
being conceptualized in the ontology is critical to the
success of knowledge sharing efforts. Other factor like
trust in the source of knowledge can also affect
knowledge transfer. In this paper we propose metrics
to measure the complexity of ontology for knowledge
sharing. We have chosen Software Engineering
Ontology as our case study.

1. Introduction

Ontologies are used in widespread application areas
e.g. semantic web, medical informatics, e-commerce,
etc. Mainly ontologies are used to provide a shared
semantically domain knowledge in a declarative
formalism for intelligent reasoning. Even though
ontology enables knowledge sharing, there are some
other factors affect in effective knowledge transfer.
We found two main factors related to knowledge
sharing efforts i.e. trust and knowledge context. Two
specific types of trust in the knowledge sharing process
are benevolence-based trust and competence-based
trust [1]. Besides, complexity of knowledge is critical
to the success of knowledge sharing efforts.
Assumingly the knowledge is conceptualized in
declarative formalism i.e. Ontology having quality
data, stability, and completeness. When the ontology is
less complex we may not need a high value of
competence-based trust. In contrast, if the ontology is
rather complication, a high value of competence-based
trust is required. Yet some knowledge is difficult to
codify in ontology which is out of concern in this
paper.

In this paper, we propose metrics to measure the
complexity of ontology for knowledge sharing. We
choose Software Engineering Ontology (SE Ontology)

[2] as our case study. The rest of this paper is
organized as follows. We describe relationship
between ontology complexity and knowledge sharing
in section 2. In section 3, we present related works
about ontology complexity analysis. Our ontology
complexity metrics are proposed in section 4.
Complexity analysis of the SE Ontology is given in
section 5. We conclude our work and outlook for
future works in section 6.

2. Ontology complexity and Knowledge
sharing

In this section we describe relationship between
ontology complexity and knowledge sharing. Ontology
complexity is related to the complexity of
conceptualization of the domain of interest. It is
measured to reflect how easy any ontology is to
understand. Definition of ontology complexity is
clarified in features that characterize complexity of
ontology i.e. (i) usability and usefulness and (ii)
maintainability.

For example, a more complicated ontology may
indicate a more specified knowledge. However, it may
be difficult to comprehend by user or software agent
and would require a high value of competence-based
trust. Usability and usefulness of the knowledge may
be then decreasing which implies a major impact on
knowledge sharing. Additionally complicated ontology
may be hard to maintain.

Thus, the key factors for effective knowledge
sharing are trust including benevolence based and
competency based trust [1] and complexity of ontology
including (i) usability and usefulness and (ii)
maintainability.

3. Related works

There are existing metrics for analyzing ontology
quality. Only few of them focus on complexity of
ontology.

Copyright © 2009 ICITST-2009 Technical Co-Sponsored by IEEE UK/RI Communications Chapter 537

Burton-Jones et al. [3] measure elements of quality
i.e. syntactic quality, semantic quality, pragmatic
quality, and social quality using a number of attributes.
Dazhou et al. [4] present complexity measurement for
ontology based on UML. However UML cannot
entirely represent semantic richness like ontology does.
UML is not a suitable modeling language to represent
an ontology, thus, the method cannot measure the
structure complexity of ontology objectively. Chris
Mungall [5] researched the increased complexity of
Gene Ontology which is similar to Dalu et al. method
[6]. Anthony et al. [7] also proposed a metric suite to
measure the increased complexity of tourism
ontologies throughout ontology evolution. However,
the metrics in [5], [6], and [7] are evaluating ontology
in ontology evolution. Idris [8] proposed conceptual
coherence and conceptual complexity metrics based on
graph theory. Orme et al. [9] examined coupling
between ontologies. Nevertheless, in [5], [6], [7], [8],
and [9], complexity is analyzed by the concept
structure and does not consider the number of
restrictions.

4. Ontology complexity

There is no unified metric so far to reflect
complexity of ontotology. In this section we present
our metrics: Total Number of Datatype Properties
(TNoDP), Average Datatype Properties per Class
(ADP/C), Total Number of Object Properties
(TNoOP), Average Object Properties per Class
(AOP/C), Total Number of Constraints (TNoC),
Average Constraints per Object Property (AC/OP),
Total Number of Hierarchical Paths (TNoHP), and
Average Hierarchical Paths per Class (AHP/C). The
metrics give impression of how well and how fine
concepts are being defined. High value of metrics
shows concepts being well presented within an
ontology. We assume that the ontology being
evaluated the complexity is written in Web Ontology
Language (OWL).

4.1. Total number of datatype properties

Metric of Total Number of Datatype Properties
(TNoDP) as shown in formula (1) presents how well
concepts are being defined. TNoDP is the sum of the
number of datatype properties (dp) in an ontology. In
OWL, the datatype property is indicated as
owl:dataTypeProperty.

TNoDP =

n

i
idp

1

……….. (1)

n: number of datatype properties
dp: datatype property

4.2. Average datatype properties per class

Metric of Average Datatype Properties per Class
(ADP/C) as shown in formula (2) indicates an overall
of how well individual concepts are being defined in
the ontology. ADP/C is the total number of datatype
properties divided by the sum of the number of classes.

ADP/C =

m

j
j

n

i
i cdp

11

/ ………. (2)

n: number of datatype properties
dp: datatype property
m: number of classes
c: class

4.3. Total number of object properties

Metric of Total Number of Object Properties

(TNoOP) as shown in formula (3) shows how well
spread of concepts within the ontology. TNoOP is the
sum of the number of object properties of each class in
an ontology. In OWL, the object property is indicated
as owl:objectProperty.

TNoOP =

n

i
iop

1

………. (3)

n: number of object properties
op: object property

4.4. Average object properties per class

Metric of Average Object Properties per Class

(AOP/C) as shown in formula (4) specifies an overall
of how well spread of individual concepts within the
ontology. AOP/C is the total number of object
properties of each class divided by the sum of the
number of classes.

AOP/C =

m

j
j

n

i
i cop

11

/ ………. (4)

n: number of object properties
op: object property
m: number of classes
c: class

4.5. Total number of constraints

Metric of Total Number of Constraints (TNoC) as

shown in formula (5) illustrates how well relations
being restricted in between classes. TNoC is the sum

Copyright © 2009 ICITST-2009 Technical Co-Sponsored by IEEE UK/RI Communications Chapter 538

of the number of constraints in an ontology. In OWL,
constraints are indicated as owl:allValuesFrom,
owl:someValueFrom, owl:hasValue, owl:cardinality,
owl:minCardinality, and owl:maxCardinality.

TNoC =

n

i
iconst

1

………. (5)

n: number of constraints
const: constraint

4.6. Average constraints per object property

Metric of Average Constraints per Object Property

(AC/OP) as shown in formula (6) demonstrates an
overall of how well individual relations being
restricted in between classes. AC/OP is the total
number of constraints divided by the sum of the
number of object properties.

AC/OP =

m

j
j

n

i
i opconst

11

/ ………. (6)

n: number of constraints
const: constraint
m: number of object properties
op: object property

4.7. Total number of hierarchical paths

Metric of Total Number of Hierarchical Paths

(TNoHP) as shown in formula (7) proves how fine
concepts being presented. Hierarchical paths is also
known as inheritance of concepts reflecting hierarchy
of concepts (relations ‘is-a’, ‘part-of’, and ‘compose-
of’). TNoHP is the sum of the number of path of each
concept starting from the root node to the leaf node. In
OWL, the hierarchical path is represented as
owl:subClassOf.

TNoHP =

n

i
ip

1
………. (7)

n: number of hierarchical paths
p: hierarchical path

4.8. Average hierarchical paths per class

Metric of Average Hierarchical Paths per Class

(AHP/C) as shown in formula (8) presents an overall
of how fine individual concept being presented.
AHP/C is the total number of path of each concept
divided by the sum of the number of classes.

AHP/C =

m

j
j

n

i
i cp

11
/ ………. (8)

n: number of hierarchical paths

p: hierarchical path
m: number of classes
c: class

5. Software Engineering Ontology
complexity

In this section, we present the complexity metrics
for the existing SE Ontology as an example. Figure 1
shows an ontology model of UML activity diagrams.

In the ontology model shown in Figure 1, there are
12 classes i.e. Swimlane, Activity, Activity Transition,
Normal Transition, Branch Transition, Special
Transition, Stop Transition, Start Transition,
Concurrent Transition, Fork Transition, and Join
Transition. Class Swimlane has 1 datatype property
and no object property. Class Activity has 1 datatype
property and 2 object properties. Class Object has no
datatype property and 2 object properties. Class
Activity Transition has no datatype property and 1
object property. Class Normal Transition has no
datatype property and 2 object properties. Class
Branch Transition has 3 datatype properties and 4
object properties. Class Special Transition has no
datatype property and 2 object properties. Class Start
has no datatype properties and 2 inherited object
properties, same as class Stop. Class Concurrent
Transition has no datatype property and 2 object
properties. Class Fork Transition has no datatype
property and 2 inherited object properties, same as
class Join Transition. Thus total number of datatype
properties is 5 and average datatype properties per
class is 0.42 (5/12). Total number of object properties
is 22 and average object properties per class is 1.83
(22/12).

There are total 8 constraints (2 constraints in Class
Start i.e. in object properties Related_Special_Activity
and Relating_ Special_Activity, 2 constraints in Class
Stop i.e. in object properties Related_Special_Activity
and Relating_ Special_Activity, 2 constraints in Class
Fork Transition i.e. in object properties
Related_Concurrent_Activity and Relating_
Concurrent_Activity, 2 constraints in Class Join
Transition i.e. in object properties
Related_Concurrent_Activity and Relating_
Concurrent _Activity). Thus, the average of constraints
per object property is 0.36 (8/22).

From the ontology model shown in Figure 1, we
show total number of hierarchical paths in Figure 2.
The total number of hierarchical paths is 12 (8+2+2)
thus average paths per class is 1 (12/12).

Copyright © 2009 ICITST-2009 Technical Co-Sponsored by IEEE UK/RI Communications Chapter 539

Figure 1. Ontology model of UML activity diagram [10]

Figure 2. Hierarchical paths in Ontology model of UML activity diagram

6. Conclusion and future works

Effectiveness of knowledge sharing is very
important. The complexity of knowledge being
conceptualized in an ontology affects knowledge
sharing efforts. We have proposed metrics in this paper
to measure complexity of the ontology. In our future
works we will apply fuzzy logic based model to
compute a complexity value. The complexity value can
be ranged between 0 and 1 which 0 means the
ontology was not very complicated while 1 means the
ontology was very complicated. Fuzzy inference
systems can effectively handle the situations which
cannot be characterized by a simple and well defined
deterministic mathematical model. We will utilize

some rules and a number of membership functions to
derive the result.

7. References

[1] Levin, D.Z., et al., Trust and knowledge sharing: A
critical combination. 2007, IBM Institute for
knowledge-based organizations.

[2] Wongthongtham, P., et al., Development of a
Software Engineering Ontology for Multi-site Software
Development. IEEE Transactions on Knowledge and
Data Engineering, 2008.

Copyright © 2009 ICITST-2009 Technical Co-Sponsored by IEEE UK/RI Communications Chapter 540

[3] Andrew, B.-J., et al., A semiotic metrics suite for
assessing the quality of ontologies. Data Knowl. Eng.,
2005. 55(1): p. 84-102.

[4] Dazhou, K., et al. A complexity measure for
ontology based on UML. in Distributed Computing
Systems, 2004. FTDCS 2004. Proceedings. 10th IEEE
International Workshop on Future Trends of. 2004.

[5] Mungall, C., Increased complexity in the GO.
2005, BDGP / GO Consortium.

[6] Zhang, D., C. Ye, and Z. Yang. An evaluation
method for ontology complexity analysis in ontology
evolution. in Managing Knowledge in a World of
Networks, 15th International Conference, EKAW 2006.
2006. Podebrady, Czech Republic.

[7] Anthony, M.O., Y. Haining, and H.E. Letha,
Indicating ontology data quality, stability, and
completeness throughout ontology evolution: Research
Articles. J. Softw. Maint. Evol., 2007. 19(1): p. 49-75.

[8] His, I., Analyzing the Conceptual Coherence of
Computing Applications through Ontological
Excavation. 2004.

[9] Anthony, M.O., Y. Haining, and H.E. Letha,
Coupling Metrics for Ontology-Based Systems. IEEE
Softw., 2006. 23(2): p. 102-108.

[10] Wongthongtham, P., A methodology for multi-site
distributed software development, in School of
Information Systems. 2006, Curtin University of
Technology: Perth.

Copyright © 2009 ICITST-2009 Technical Co-Sponsored by IEEE UK/RI Communications Chapter 541

