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Abstract In this contribution we extend ‘Kalman-filter’ the- 1 Introduction
ory by introducing a new BLUE-BLUP recursion of the par-

titioned measurement- and dynamic model. Instead of workry, getermine best estimators or best predictors, the mini-

ing with known state-vector means, we relax the model a”%um mean squared error (MMSE) criterion is often used.
assume these means to be unknown. The recursive-BLUP [itorent MMSE-predictors exist however. They depend on
derived from first prmmples, in which a prominent role is \a ¢jass of functions for which the MMSE-principle is ap-
played by the model's misclosures. As a consequence of thgieq Examples of different MMSE-predictors are the con-
mean state-vector relaxing assumption, the recursion dogfional mean as best predictor (BP), the best linear predic
away with the usual need of having to specify the initialy, (g| py  the best integer equivariant predictor (BIER), o
State-vector variance matrix. the best linear unbiased predictor (BLUP), see e.g., (Gold-
Next to the recursive-BLUP, we introduce, for the sameperger, 1962; Anderson and Moore, 1979; Stark and Woods,
model, the recursive-BLUE. This extension is another con1986; Sanso, 1986; Simon, 2006; Teunissen, 2007). Although
sequence of assuming the state-vector means unknown. fife same principle is applied, these MMSE-predictors all
the standard Kalman-filter set-up with known state-vectohave different performances.
means, such difference between estimation and prediction In the literature, the Kalman-filter is derived as either a
does not occur. It is shown how the two intertwined recur—BP BLP ’ Kal 1960- Gelb. 1974- Kailath
sions can be combined into one general BLUE-BLUP recur- ora ,seeeg,, (Kalman, » 260, » Ralam,

sion, the outputs of which produce for every epoch, in par—1981; Candy, 1986; Brammer and Siffling, 1989; Jazwin-

allel, the BLUP for the random state-vector and the BLUESk" 1_991; Gibbs, 2011). Both these predu_:tors, BP and BLP,
require that the mean of the to-be-predicted random vec-
for the mean of the state-vector.

tor is known. This is why in the derivation of the Kalman-
filter one usually assumes the mean of the random initial
state-vector to be known, see for instance the contribstion
) ) by Sorenson (1966, p. 222), Maybeck (1979, p. 204), An-
Squared Error (MM.SE) Misclosures Kalman Filter- derson and Moore (1979, p. 15), Stark and Woods (1986, p.
BLUE-BLUP recursion 393), Bar-Shalom and Li (1993, p. 209), Kailath et al (2000,
p. 311), Simon (2006, p. 125), Grewal and Andrews (2008,
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Kalman-filter is still derived and presented within the BLP- ‘Kalman-filter’ theory further by introducing, next to the
context. BLUP-recursion, the BLUE-recursion of the means of the
We believe that the BLP-derivation of the Kalman-filter random state-vectors. It is shown how the two recursions
is not appropriate in case the mean of the random statére intertwined and how their difference is driven by the
vector is unknown, a situation that applies to many, perhapgresence of system noise. Finally, we show how the two re-
even most, engineering applications. Not the BLP-prirgipl cursions can be combined into one general BLUE-BLUP re-
but the BLUP-principle should be applied in case the meagursion. It outputs for every epoch, in parallel, the BLUP fo
state-vectors are unknown. In this contribution we deriveghe random state-vector and the BLUE for the mean of this
and present the recursive-BLUP from first principles andstate-vector.
show how such an approach does away with the need to as- We make use of the following notation: We use the un-
sume the mean and variance matrix of the initial state-vectaderscore to denote a random vector. Thissrandom, while
to be known. xis not.E(.) andD(.) denote the expectation and dispersion
Next to the recursive-BLUP, we also present, for theoperator, whileC(.,.) denotes the covariance operator. The
same model, the recursive best linear unbiased estimatatggnorm of a vector is denoted gsf|. Thus||.| 2=T()
To appreciate the difference with the recursive-BLUP, it is
important to make a sharp distinction between prediction
and estimation. We speak of prediction if observables ar@ Estimation and Prediction in Linear Models
used to guess the outcome of a random vector and we speak
of estimation if the observables are used to guess the valifel Estimation and prediction
of an unknown nonrandom vector.
Our development of the BLUE-BLUP recursion is an ex-
tention of standard ‘Kalman-filter’ theory. This extensien
a consequence of our relaxing assumptions that the meags- Ax+ e Q)
of the random state-vectors are unknown. Since these means ) )
are assumed unknown, the problem of estimation can be a#{£th mean and dispersion
dressed as well. In the standgrd .Kalman—filter set-up v_vittE(g) =0, D(y)=D(e) = Qy
known state-vector means, this difference between estima-
tion and prediction does not occur since one is then only lefvherey € R™is the random vector of observables ar@R"
with BLP instead of with BLUP of the state-vectors. is the nonrandom vector of unknown parameters. The known
This contribution is organized as follows. In Section 2Matrix A, of ordermx n, is assumed to be of full column
we briefly review the necessary ingredients of predictiah an "ank and the variance matr@y is assumed to be positive
estimation for linear models. Essential in our presentatio definite. _ _ _
is the role given to the misclosures of the linear model. We ~The aims are t@stimatea linear function ofx, or, to
treat prediction and estimation on an equal footing and shoWredictthe outcome of a random vector having a mean that
how predictors and estimators are driven by the way mis!S a_llnear function ok. The to-be-estimated linear function
closures are mapped. We also show how the BLUE and th'g 9'Ven as

As our point of departure, we take the following linear model
of observation equations

BLUP can be decomposed into misclosures and any LUE o5 _ AX )

LUP. This decomposition forms the basis for our develop- _ _

ment of the BLUE-BLUP recursion in later sections. with known k x n matrix A;. The to-be-predicted random
In Section 3, we present the general BLUE-BLUP meas@rHrg given as

update equations for a time-series of vectorial obsergable, _ Ax+e, with E(e)=0 3)

Through a one-to-one mapping it is shown how the sequen-
tial prediction errors of the misclosures form the basiseft This random vector is assumed to be stochastically related
predicted residuals. No assumptions are here yet made &@y. Their joint variance matrix is assumed given as
the structure of the variance-covariance matrices.

In Section 4, we develop the BLUP-recursion for the par-( [Y] )= [QW QYZ] (4)
titioned measurement- and dynamic model that forms the |z Qzy Qzz
basis of f[he standard Kalman-filter. Instead of the standargor our further development, the following canonical form
assumption of known mean state-vectors, we assume tfbe?
means of the random state-vectors to be unknown. Through
this relaxation the initialization issue gets resolvedevey Lemma 1 (Linear modelin canonical forni)efine the trans-
it is shown that the variance matrix of the initial state4eec formed vector of observables g ,u|T = Ty, with trans-
is not needed anymore. In Section 5, we extend standafdrmation matrix T= [A*T,B|, least-squares inverseA=

the linear model (1) is very helpful.



(ATQ,'A)ATQ,' and where B is a basis matrix of the 2.2 MMSE estimation/prediction and misclosures

null space of A, i.e. AB = 0. Then
To determine best estimators/predictors, the minimum mean
X[y _|In X[,_|Q=x O squared error (MMSE) criterion is used. In case no restric-
E(| 7)) = x, D(|7])= ® : :
u 0 u 0 Quu tions are placed on the class of predictors, the best podict
of zin the MMSE-sense is given by the conditional mean,
Proof The mean and dispersion of (5) follow from an ap-

plication of the mean- and variance propagation lawEyo BP=E(zy) ()
That the linear model (5) stands in a one-to-one relation wit (see e.g., Anderson and Moore, 1979; Maybeck, 1979; Te-
the original linear model formulation (1) follows from the unissen et al, 2005). The BP is unbiased, but generally non-
invertibility of T = [A*T B]T < T~1 = [A,BT], with least-  linear, with exemptions, for instance in the Gaussian case.
squares inversB* = (BTQyyB) BT Qyy. O Incasey andzare jointly Gaussian, the BP becomes linear

and identical to the best linear predictor,
With the above canonical form, the design matrix has the

simple form[ln,0]T, while the dispersion has become block BLP =2+ QaQ (YY) (8)
diagonal. Asx"andu stand in one-to-one correspondencewherey andz denote the mean gfandz, respectively (see
with y, while X has the unity-matrix as design matrix and e.g., Bar-Shalom and Li, 1993; Kailath et al, 2000; Teu-
itself is uncorrelated with the zero-mean veatoone may  nissen, 2008). Although the BLP is linear, it still requires
expect thatx contains the full information for the determi- knowledge of the meansandz These means are however
nation ofx. And indeedx= Ay € R" is recognized as the unknown, sincex is assumed unknown in case of the linear
BLUE of x, whileu =BTy € R™ " is recognized as the vec- model (1). Instead of working within the unconstrainedslas
tor of misclosuregTeunissen, 2000). The dimension of the of linear functions, we therefore work in the more restuicte
vector of misclosures is equal to the redundaneym—n,  class as specified by the representation (6). To determéne th

i.e. the vector of misclosures only exists in the presenceest estimator/predictor within this class, use is madaef t
of redundancyr(> 0). Note that the vector of misclosures following lemma.

is not unique, since for any invertible matrix the vector
v = Luis again a vector of misclosures, i.e. b&andBL"
are basis matrices of the null spacerdt

T_he advantage pf thg decompositips T_*1[>_“<T, gT]T. IS £=&-QuQlu (9)
that it enables finding simple representations of estinsator
and predictors. The following lemma gives such represenhas smallest mean squared norm within the class of random

) . . ' ) _ kxr
tation for linear unbiased estimators/predictorgaind z, vectorsg; = £+Ju, Je R, i.e.
respectively. El[2]|? < E||g,]|?, VI € R®T (10)

Lemma 2 (Linear unbiased estimation/predictioR)inear  pryof Sinces — & — Q:Q;lu is uncorrelated withu, we
function Fy+ fo, satisfying the conditio&(Fy+ fo) = ézx have the ‘sur_n-offsquares’ d;zcomposition -

for all x, is called a linear unbiased estimator (LUE) £

Az, or alinear unbiased predictor (LUP) ofzz+e,. Any  E||e+ Ju|? = E||e — QeuQulu+ (I+ QeuQyd)ul[?

such LUE or LUP can be represented as = E[|8|] + E||(3+ QeuQgd)ul 2

Lemma 3 (Minimum mean squared norrhet £ € R and
u € R" be given random vectors, wit(u) = 0. Then

LUE/LUP = A+ Ju, for someJ € R* (6)  from which (10) follows. O

Proof With E(y) = Ax, the unbiasedness conditi&@iFy+  This lemma shows that the mean squared norm of a random
fo) = Az, VX € RN, is fulfilled by settingfp = 0 andFA =A,  vectorcannotbe made smaller by adding uncorrelated linear
Given the matrix equatioRA = A, the general solution for functions of zero mean random vectors. We now use this

F is given by the sum of a particular solution and the homodemma to determine the best estimator and the best predictor
geneous solution. A particular solution is given AByA™,  within the class of LUEs and LUPs, respectively.

while the homogeneous solution is provided bg", for
some matrix) € R®*". ThereforeF = A,A* 4+ JB'. Eq. (6)
follows then by substituting the result int E = Fy.

Theorem 1 (BLUE/BLUP) For any LUE ofz, with estima-
tion error £ ;g = z— LUE, and any LUP of zwith pre-
diction error g, ,p = z— LUP, the BLUE and BLUP can be

The above representation shows that LUEs and LUPs difféfomputed as

only through their linear functions of the misclosure vecto BLUE LUE ¢
u. Hence, it is through the choice of matrixthat specific l ] = l +QauQulu , g= [—LUE] (11)
LUEs and LUPs can be identified. BLUP LUP ELup




Proof Consider a certain fixedUP. Since theBLUPis a  Example 1(Least-squares as LUE) The least-squares esti-
LUP, it follows from Lemma 2 that thBLU P can be written  mator LSE = (ATWA)~*ATWyis a LUE ofx. Hence, ac-
asBLUP = LUP + Ju for someJ. Hence, their prediction cording to (13) the BLUE ok can be expressed in the LSE
errors,egLup = Zz— BLUP andg yp = z— LUP, are related as

asgg yp = £Lup —JU. According to Lemma 3 (cf. 9)] must _ _1

be chosen a3 = Qg ,p.uQpt for E||gg up||? to be minimal. BLUE=LSE=QuseuQuY (14)
This proves the BLUP-part of (11). The proof of the BLUE- Which is identical to the. SEwith W = Q!

part goes likewise. = Example 2(Conditional adjustment) Consider the model of

This result clearly shows the important role that is played?ondition equations
by the vector of misclosuras both in best estimatingand BTEQ’) =0 (15)

in best predicting. In section 5 we present the recursive _ . L . .
counterpart of the above BLUE-BLUP expression. It is the implicit formulation of the parametric model of ob-
servation equations(y) = Ax. Sincey is a LUE ofE(y), the

The relations between the error covariance matrices arg| UE of E(y) can be written according to the BLUE-LUE
readily obtained from (11) through an application of the f rmula (13) asy= ;1. Substitution ofu — BT
(co)variance propagation law. They are summarized in the. Y=Y~ QuQuut u=5Yy

gives
following corollary.

=y QyB(B'Q,B) BTy (16)
wh|ch is the BLUE ofE(y) expressed in the design matBx
of the conditional model.

Corollary 1 (Error covariance matrice§jhe error covari-
ance matrices of estimation and prediction satisfy:

C(egLue-€aLup) = C(&Lue, ELup) — QeueuQud Queue Example 3(Tienstra’s phased adjustment) Consider the par-

C(eLuE-EaLup) = C(EaLuE:ELup) = C(ELuE.EpLup) (12)  titioned model of condition equations

C(&pLuE,Y) = C(ggLup,u) =0 [B[Til]l E(y) = lo] (17)
This result shows that the misclosures are uncorrelatéd wit| Bl 0

[u[I 1 u']™. Then the BLUE ofE(y) based on the first set

of condmonsB[Tifl] (y), denoted ag[iil], is a LUE of E(y)
2.3 From LUE to BLUE for the complete set of conditions. Hence, we have

. =9 N —1
As a direct consequence of the above theorem we have t% A Qy[ifl]u[i]QU[i]U[i]gH (18)
following simple relationship between the BLUE and a“YSmcey[ . is uncorrelated witl; _y, it follows upon choos-
LUE. mg the respresentation of the vector of misclosuras;as:

TG T

Corollary 2 (BLUE-LUE formula)The BLUE and its vari- [uf i-1p (B Y 1]) |' that
ance matrix are related to that of any arbitrary LUE as ym Qy B.(B le i Bi)~ 1BT§,[ X (19)
BLUE = LUE — Quue.uQulu (13) Thisis T|enstras formulafor adjustment in phases (Tienst
QBLUEBLUE = QLUE LUE — QLuE.uQyiQuLuE 1956).
Proof Sincez is nonrandom, it follows fron€ e =Z— 2 4 From LUP to BLUP

LUE thatC(g yg,u) = —C(LUE,u). Substitution into (11)
proves the first equation of (13). The second equation folsjmilar to the BLUE-LUE relation, we have the following
lows from an application of the variance propagation law,counterpart for prediction.

thereby making use of the fact that the misclosures are not I ‘ laiTh
correlated with the estimation erreg, ¢ (cf. 12) and thus ~ C0rollary 3 (BLUP-LUP formulajThe BLUP, its error-variance

also not with the BLUE itself¢(BLUE, u) — 0. 0 matnx and its variance matrix are related to that of any ar-
bitrary LUP as

This simple BLUE-LUE relation will be very useful in our gLyp = LUP+ QzLupuQulu

later derivations of the recursive BLUE and the recursive ’ -
QsBLU PEBLUP — Q€|_U PELUP — Q€LUP UQuulQU ELUP (20)

BLUP. Here three examples are given to see the BLUE-LUE
relation at work. QeLureLup = QuurLup — QLuPUQuy Qu.Lup + QzuQuy Quz



Proof The first equation follows from (11), while the second This shows, sinc®y, = QxnB, that the BLUP ofk becomes
and third follow from an application of the variance propa-identical to the BLUE ok if C(x,n) =0, i.e. whenx andn
gation law, thereby making use of the zero-covariance propare uncorrelated. The error variance matrix reduces then to

12).
erty ( ) o QsBLUPEBLUP = QX*)A(,Xf)A( = QX)A( - QXX (25)

Note thatQgg, peg yp @NAQLURBLUP are two different vari- sinceC(%,x) = C(ATy,x) = C(x+A™n,x) = Qu. The fact

ance matrices. The first is the variance matrix of the predlc,[-hat BLUP=BLUE in this case, does not mean that the two

tion errorépLyp =2 BLUP, thus describing the _MMSE' have the same quality. The BLUP should be judged as a pre-
qual!ty of the prgdlctor. The second domast descrlbe.the dictor through its error variance matrix (25), whereas the
quality of prediction, but instead the precision of the jiced BLUE should be judged as an estimator through its vari-

tor, i.e. the mean squared difference between the predict%rme matrixQzz. We come back to the BLUE-BLUP relation
andz, instead of between the predictor andn case of es- o

. ' S . when we consider their recursive forms in the next sections.
timation, this difference is absent as we h&¥g, ,zep e =

QsLuEsLUE (cf 13). Example 6(BLUP and BLP compared) UsifBLUE = A%
From the abov_e corollary we can also directly obtain th@nszuQJulg = szB(BT nyB)*lBTX = szQ}jyl(y_ y), we

BLUP-BLUE relation. may write the first equation of (21) as

Corollary4 (I3_LUP-3LUE formula)Thg BLUP, its error- BLUP= AR+ szngl(X_y) (26)

variance matrix and its variance matrix are related to that ) ) ) )

of the BLUE as This expression makes an easy comparison with the BLP in

(8) possible. It shows that the BLUP can be obtained from
BLUP = BLUE+Q.Qplu the BLP expression by replacing the mearsdy by their

(21) BLUEs. The price to pay for such replacement lies in the
larger mean squared errors. The prediction error variance
matrices of the BLP and the BLUP are namely given as

QgBLU PEBLUP — QZ*BLU E,z—BLUE — QZUQJ{}QUZ
QsLupBLUP = QBLUEBLUE + QuQuiQuz

Proof SinceC(BLUE,u) = 0 and the BLUE, like any other - B 1
LUE, is a LUP, (21) follows immediately from (20). O Clep goip) = Quz QaQy Qpz (27)

C(ggLup €aLup) = C(EBLP; ERLP) T Az\nyozAI‘y
Here three examples are given to see the above BLUP-redation
at work. with Azy = A, — QzQ,'A. Another consequence of estimat-

ing the unknown means in case of the BLUP, is that
Example 4(The BLUPs ofy ande) The BLUP ofy = Ax+e¢

is the BLUE ofAx plus the BLUP ofe. The BLUP ofeis  C(€sLup,Y) # 0, butC(gg  yp,u) =0 (28)

&= QyuQu . Substitution ou = BTy gives while C(g_BLP y) = 0.

A T “1RTy vy ¢ -

€=QyB(B'QyB) Bly=y-§ (22) For a quick reference, a summary of the estimation-preticti
If we add the BLUE ofE(y) = Ax which isy = A%, we get ~ relationsis given in Table 1.

the BLUP ofy asy = AX+& Hence the BLUP of is y itself.

This is thereproducing propertyof best prediction, i.e. the

best prediction of an observable is the observable itself. 3 BLUE and BLUP Measurement Update Equations

Example 5(Equality of BLUP and BLUE) We now con- We now generalize _the single observational vegmo a
sidery = Ax+ nin whichx andn are random vectors having time series of vectorial observablgs, ...y, of which the
mean<E(x) = x andE(n) = 0, respectively. The meangis ~ Means are assumed to be linearly related to the mean of

assumed unknown. To bring the observation equations intbh€ index refers to the time instant the data are collected.

the standard form of (1), we write The data are collected with the purpose of predicting
_ and estimating = E(z). To show how estimation and pre-
y=Ax+eg,withe=A(X—X)+n (23)  diction are affected by the inclusion of a new observation

Note that the misclosure vector does not depend,dsut ~ VEctory;, we present the BLUE and BLUP measurement
only on the measurement noise veaipice.u— B'y— B'n. upda.\te equations. No assumptions are yet made on the dis-
Letx— Aty be the BLUE ofx. Then according to (21), the persion of the observables. From now on we denote a BLUE
T with the =symbol and a BLUP with theSymbol. To show

on which set of observables estimation and prediction are

BLUP = R+ quQJulQ (24) based, we use tThe];lotatir[]”l} and;“wfl] when based on

_ T
QsBLUPgBLUP = QX*)A(,Xf)'i - QXUQJL}QUX X[ifl] - [XO [ 7Xifl

BLUP of x and its error-variance matrix are given as



Table 1 Estimation and prediction compared for linear models.

X=Aty, u= BTX Estimation Prediction
Class representation LUE = A,X+Ju for someJ LUP = A,X+Hu for someH
Best member BLUE = A% BLUP = AR+ QuQylu
BLUE-LUE (BLUP-LUP) formula | BLUE = LUEfQLUE,uQJulg BLUP= LUP+QZ,LUPUQJL}Q
BLUE (BLUP) variance matrix QsLUEBLUE = QLUE LUE — QUELQuIQuLUE QseLupBLup = QuupLup — QuPuQudQuLur + QzuQui Quz
Error variance matrix Qeaiueeave = QUE,LUE — Quue uQud QuLue Qeaiureue = Q-Lupz—LUP — Q- LuPuQul Quz-Lup
Error covariance matrices C(ggLue,Y) = 0,C(gpLye, BLUE) = C(gg yg,BLUP) | C(gg yp,U) =0,C(€gyp,BLUE) =C(€g yg,BLUP)
3.1 Uncorrelated misclosures and the statistics of the with Ljgy = I. Then

block-triangular decomposition .

(@) v; = U — U ;_q is the sequential predictor error of; u
In the results up to now, we have emphasized the role playetb) vj; = Ljju;;, with Ly unit lower (blocKtriangular
by the vector of misclosures bothin estimation and in pre- () Qv = blockdiad Quyy,. - - -, Quv,)
diction. We also pointed out that the vector of misclosures ] ]
is not unique. Any one-to-one transformationugsroduces  o°f (&) The BLUP ofu, based on the previous misclo-
again a vector of misclosures. Despite this nonuniquenesSt® VECtot_qjis Uiy = Quu;_ 1]QU. gy Yi-1- Henee,
the BLUE and BLUP are unique, i.e. they are invariant for¥; = U — Uy;_y is the correspondmg pred|ct|on errgh)

any regular transformation of the vector of misclosuregs Th The transformation matrix ;) of (31) is lower triangular

is illustrated by the identity with 1's on the diagonal.c) We haveC(v;, u;_qj) = C(u; —
Giji—1,Uji—1) = 0, since the BLUP prediction error is uncor-

QuQuiu = QuQuiv (29) related with its misclosure vector. Substitutionigf ;; =
L[| 11] i-1] givesC(v;,Vv;_1) = 0. Hence, the variance ma-

which holds for anw = Lu with invertibleL. trix of v is block d|agonal O

The freedom we have in choosing the vector of mis- As the above result shows, the random veatgiis=0, 1, .

closures rr}natljlesi:tdpossmlie to choose a vector of ”r‘]'sﬂ are uncorrelated misclosures and at the same time sequentia
sures with (block)diagonal variance matrix, e.g. suc _t rediction errors of their correlated counterparts.
they become uncorrelated from epoch to epoch. This is at-

tractive as it generally simplifies computations. In c&e
is (block)diagonal, the multi-epoch inversion can be aghie 3.2 Measurement update equations

through an epoch-by-epoch inversion of lower dimensioned . - _
matrices, We are now in a position to use the misclosure vegipe=

[\_/[Tiil],\_/iT]T and the blockdiagonal structure of its variance
t K .
1 1 matrix, Qy.v., = blockdiadQy, v v ), to formulate
V= Qv Vi 30 UMD [i-1Vi—1)> ~eViVi .
Qe v ngZV‘ Qupv,Y) (30) 41 e BLUE and BLUP measurement update equations.
Lemma5 (BLUE-BLUP measurement-updat&iven the
new observation vector ythe BLUEZ; _,; and BLUPZ;
ofzand z respectively, are updated as

Although there are different ways of making a variance ma-
trix (block)diagonal, it is the triangular decompositidrat
is particularly suited for the sequential treatment of theam

surement update equations. The following lemma prowdeim = Z‘ Qz|| M Qv|v, Vi 32)
the statistical proporties of the transformed misclosthias 2 Qz 2 —-Q o Q;l sz
correspond to the triangular decomposition of the original A e (T R
misclosures’ variance matrix. and
Z\[] Z +QZ Z|. 1) V|Qv,v| Vi (33)
Lemma 4 (Uncorrelated misclosurernsider the parti-  Pyyz = Py gz 0 — Qz3 v.QJi&ini,zfz,[i,l]
tioned misclosure vectori= [Uj_y, U']", i =12, proof Since the BLUEZj; y is a LUE where it is based on
with Ug = Ug, and define y = [_I,l] VT, i=12...as y;)» we can apply the BLUE-LUE formula of Corollary 1,
and obtain

[\—/[il]‘| = Li-y 0 [g[il]] (31) 4 = Z\ — Q) 1]V|]Qv (34)
-1
~Quuiy Qg y Y Qa2 sz - QZHi Qv 0 Q2
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With C@\[ifl] ;Vji—1) = 0 and the blockdiagonality &y

1 Lo . .
Qyiu;_y Qu[i—l]u[i—l]g[ifl]' Substitution inta; = u; — Uy 1 gives,

the above equation simplifies to Eq. (32). The proof for theyith U=y, _yi\[ifl] andg‘ - :yi\[ifl] +Qyuyyy QJ[il,l]u[i,l]Q[ifl}v

predictor goes likewise. a0

the stated result. a

As the lemma shows, the contribution to the difference beThe above result (37) shows that the innovation vegtds

tween two succeeding estimators resp. prediclgmsaﬁd
Z_y or_ZHi andZj;_,), is provided by;. Sincey; is uncor-
related withy;_y; = Lj_qjU;_q, it cannot be predicted by
the previous information, and therefore, it contains tndy
information. The terminnovationfor v, was first indepen-

dently introduced, in case of stationary time series, byeBod
and Shannon (1950) and Zadeh and Ragazzini (1950), al
later further used for known-mean, non-stationary time se

ries by Kailath (1968).

3.3 Partitioned linear model and predicted residuals

n

not only the sequential prediction error gf(cf. lemma 4),
but also, in case the basis matrix is chosen as (36), tha¢of th
observation vectoy,. The innovation vectoy; will therefore
from now on be referred to as tipeedicted residuabf Y-

Note, sinceriuH] =0if C(Xi,yj) =0, i # |, that the
e&timator and predictor coincidgr[iil} = Z\[ifl}’ if the ob-
servables are uncorrelated. In that case, we luaveyv, =
Y = Aji-y-

Example 7(Recursive least-squares estimation) If we as-
sume uncorrelated observation vecl!olra';e. C(Xi Y, )=0,i#
j, and takeA; = 1, then (32) reduces, with =y, — AiXji_y

Note that the results of the above two lemmas 4 and 5 dandQg, v = —Qg; %, ,A', to the well-known recursive
not depend on the linear model structure of the observablelgast squares solution

We now introduce this structure by means of the partitione(}(

€li-1]
&

linear model
Aji-1

Yiq | _
Y, A

with mean and dispersion

“()-fa)

&

X+ (35)

Yiq
Y

)= Qy[iflly[i—l] Qy[i—l])’i
Qyiy[i—l] Qyi)’i

=Ry + Qg A Qi (% — ARy (38)

2]

4 Recursive BLUP and the Kalman filter

We now consider as partitioned model the measurement-
and dynamic model that forms the basis of the well-known
recursive Kalman-filter. However, instead of the standard
assumption that the means of the random state-vectors are
known, we assume them to be unknown. Since the model

We make use of this structure to get a further interpretatiogan be brought into the linear model form, the BLUE and

of the innovation vectoy,.

Lemma 6 (Estimation and prediction residualst the trans-
pose of the basis matrix;Bof the null space ofﬁ: [A[Tiil],AiT]
be chosen as

T

Bf, = B[i*f 0 (36)
—AA_y |

with Aj ) = (A[Ti—llQ%l—llyﬁ—u A1) ALy ny[il—lly[i—u '

Then

@) u=y, Y-y (37)

(b) vi =y, _Sli\[ifl]

BLUP results of the previous sections directly apply. The re
cursive BLUP is shown to follow the Kalman-filter updates,
albeit with an initialization that is different from that tife
known-mean, standard Kalman-filter.

4.1 Model assumptions

First we state the assumptions concerning the measurement-
and dynamic model.

The measurement mod@he link between the random vec-
tor of observabley, and the random state-vectgris as-
sumed given as

with BLUEZHH] = Ai%ji_q and BLUP)—v/i\[ifl] :YH[H] + Y, = AiX +_Di7 i=0,1,...t, (39)
Qyiu[Fl] QJ[ilfl]U[i,l]g[ifl]' tOgether with

. . E(xg) = Xo (unknown), E(n;) =0, (40)
Proof (a) With (36), it follows fromu;; = B[Ti]l’m = [Q[TH]’ ur )
thaty =y, — AAT ,yj . Hence, withy, | = A%y an |
andx(;_y = A 3Yj-1 the result follows(b) SinceC(X‘[ifl],g“i%()&rﬂi) =0, C(m,n)) =R, i=01,...t (41)

0, we haveC (u;, Uj_q)) = C(y, — Ai%ji_1) Ui—1) = C(¥;, U —1))
and thuQy v, , = Qyu;_,- We may therefore writg;; ;=

with & j being the Kronecker delta. Thus the zero-mean mea-
surement noisg; is assumed to be uncorrelated in time and



Table 2 Linear model formulation for estimation and prediction.

Linear model ‘ Linear model form of (39) and (42)
y A e y= M‘ vl ‘...‘X‘T]T‘ A=A (A1) ... (AR
Model egs. Al e e=[[Ao(Xo—%0) + Dol [Au{ @10(% —30) + Ay} +u]T, . [A{ Brolo —30) + 51y i} +n]T]T
< z & z=%, A= Bro, &= ProlXo—X0) + 311 Prig;

AoQux,Af +Ro
AL®10QuAS AL(P10Qxx Pl o+ SI)A] + R

. . e 0 ee= : . .
Mean, Dispersion  E(| € [)=|"|.0(|¥|)= Qee Qee _ . - __— -
e 0 z Qeze Qezez AP 0QuxAr AP oQux®Plo+ PaSA] - AP oQux Plo+ iy PLISPHA +R
Qee = [Q-OQXOXOAE' (P0Quox PLo+ PaSDAL - (B0Qux Pl + 511 S ‘DJ.)AxT]

Qee, = P10Q%0 Plo+ Tig PiS P

BLUE of 7 2=AR= A (ATQ,A)TATQ, ly recursive BLUE of :  %;_1, % (cf. 60, 61, 62)
BLUP of z 7= AR+ QzQu(y— AR) recursive BLUP of :  %,_1, % (cf. 50, 51, 52)
to be uncorrelated with the initial state-veckgr of X5. In our case, however, the two coincide. As shown in

example 5, the predictor and estimator, and their (erroi) va

The dynamic modelThe linear dynamic model, describing ance matrices, are simply related as

the time-evolution of the random state-vectpris given as  Xoj0 = X0 and Pojo = Qojo — Qxx (45)
X =@ 1% 1+, i =12,...t (42)  whenx, andng are assumed uncorrelated. In the next lemma
h these expressions are further worked ouWgnRy andQyyy, .
wit
Lemma 7 (BLUE-BLUP initialization)Let the linear model
E(di) =0, C(xo.di) =0, (43)  attime t=0be given as y= AoXg+ g, with unknown mean
C(din) =0, C(dy.d)) =S8, 0, j =12t (44) state-vectoE(xy) = Xo, zero-mean noise vect&(n,) =0

and variance matrix Qy, = AoQx,x,A} +Ro. Then the BLUE
where® ;_; denotes the transition matrix and the randomof X is equal to the BLUP ofxand given as
vectord; is the system noise. The system noikds thu§ Ro0=%00= (AgRale)*lAgRalyo (46)
also assumed to have a zero mean, to be uncorrelated in time _ .
and to be uncorrelated with the initial state-vector and thavith (error)variance matrices
measurement noise. _
] — AT 1 -1

The above model equations are formulated on an epoch(—go‘O ( TR(leO)ilJr Qoo

by-epoch basis (cf. 39 and 42). To establish the link withPolo = (AoRy"Ao)

the linear model formulation as used in the previous secpyoof The equality of the BLUE and BLUP in (46) is due
tions, one can obtain the corresponding multi-epoch lineaf, the zero correlation between state-vector and measure-
model of (39) and (42) by defining the observation vectotyent noise vector. Thﬂgl, instead ofQ; % , may be used
asy=[y", y!, ,....,yT]". This is shown in Table 2. Hence - i yoxo
Y=Wo Yoo % » as weight matrix in the least-squares formula of (46) fol-
we can now directly apply the BLUE-BLUP results of the |o\ws from the matrix identity(AEQ;%, Ao)’lAgQﬁ, y =
0Y0 0Y0Z0

previous sections for predicting the random state-vextor (AgRgle)*lAgRaly for Queye = A0Qupe AL + Ro. Appli-
Yo oYo — .

and estimating its .unknown meﬁm) =X Frf)m NOWON  cation of the (co)variance propagation law to (46) gives the
we denote the variance matrix of the BLUgg"with Q. (error)variance matrices of (47). -

whereas therror variance matrix of the BLUR is de-
noted byR . Similar notation is employed fa@;;_1 and  As the above result shows, the BLUP xfis independent
Rjt-1- We start with the initialization, i.e. the cate= 0,  of its variance matriXQyyx,. This variance matrix is there-
where we assume that the data vegtpcontains the com-  fore not needed for the initialization. It is not needed for
plete information content to determine the unknown meaomputingxye, nor for its error variance matriRyo. This
Xo, i.€.Ag is of full column rank. is a marked difference with the standard formulation of the
Kalman-filter where the mean of the state-vector is assumed
known. In that case prediction is based on the BLP and the
4.2 Initialization initialization takes the form

(47)

<BLP _ BLP _ BLP <BLPy _

Fort = 0, we have the linear modg) = AgX, + Ny, which X =EX), Fop = C(% %0 »X0 ~ %50 ) = Quno(48)
may also be written ag, = AoXo + &, With & = Ag(Xo—  Hence, in that case the known mean is taken as the initial
Xo) + Ny. In general the BLUE ok differs from the BLUP  prediction of the random state-vector. As a consequenee, th



variance matrixQy,x, is then needed as it equals the errorProof Theinitializationwas already provenin (46) and (47).
variance matrix. To find thetime-updatewe determine the BLUP at, =
Although Qyyx, is not needed for the BLUP, the above @t 1%_1 +d; asX 1 = Ptt-1%_1jp_1) + dyjr_1» With

lemma shows that it is needed for the BLUE. Not so mUChthtil] =0, sinced, is zero mean and uncorrelated with the

for computing the BLUE, but for describing its quality by previous predicted residuals. This proves the first eqoatio
means of its variance matr@oo. of (51). The second expression follows by applying the vari-
ance propagation law # — % 1 = Pe-1(% 1% 1jp_1))+
d; and using the relatiof(x,_; — X _1|;—1,d;) = 0. To de-
termine themeasurement-updatere apply (33), noting that
for z= x, we need the covariance matfXx, — X1 \)-

4.3 Recursive BLUP

Recursion of the BLUR; is possible since the predictors y L N
of the zero-mean measurement- and system noise are idenfiith % ? Alx, X ) + 0y, this givesC(x — X1, ) =
cally zero i 5 =0 andd,; 5 =0. Thisis a consequence Ri—yA - Substitution into (33) proves (52). =
of having measurement noise and system noise that are both o
uncorrelated with the observables and state-vectors of thENiS result shows that apart from the initialization, tfrest
previous epochs. They are thus also uncorrelated with tHglre of the recursive BLUP is identical to that of the Kalman
predicted residuals of these epochs. filter. Although the twp expressions of the mmahzaucﬁpo
Sincegvt”t,l] —0, the predictov_q‘“[t,l] can be computed M&Y sugg(_ast otherW|_se, |tv|s |mportant_to note tF@ is
directly from>_<},1‘ -y thus providing the time-update. Sim- not the varlance.matnx OXO‘Q, but rgther itserror variance
ilarly, sinceri;;_; = 0, the predicted rESidu—ql:Xt_ythfl] matrix. TThe variance mgtnx o, |s_namevly.notRo, but
can be computed directly frogn andy; ;. thus providing, AoQuxoPg + Ro. The variance matrix okqp is therefore

in combination with (33), the measurement updatg gf ;. equal to the sumyx, + Fop and notequal t®yo.
] . As already pointed out earlier, the BLUP-initialization
Lemma 8 (Predicted residualdjor the measurement- and a5 ot require the variance mai@i,, of the initial state-

dynamic model (39) and (42), the predicted residual Vectoectory . In fact, as the theorem now shows, this variance
and its variance matrix are given as matrix is not needed at all. Hend@y,x, can takeanyvalue
Vi =Yy —AX (e.g. 0 ore) without it having any effect on the result and
v =N T A (49) : . i
T quality of the recursive BLUP. This is in marked contrast to
Quy = Rt"'AtPt\[t—l]A[

the standard Kalman-filter.
Proof As the BLUP of a linear function is the linear func-
tion of the BLUP, the BLUP of), = A +n; is 3_7”“71] =
A1 + Byg_q, With Byp_q = 0, sinceny is zero mean 5 The BLUE-BLUP recursion
and uncorrelated with the previous predicted residualls: Su
stitution ofy; ;= AXyt—1) INtOY% =Y, — ¥, 4 Provesthe  Next to the prediction, we now present the recursive BLUE
first equation of (49). The second equation follows from arsolution. This extension of the ‘Kalman-filter’ theory is a
application of the variance propagation lamo= A(x, —  consequence of our relaxing assumptions that the means of
Xt—1)) + Ny O therandom state-vectors are unknown. In the standard Kalma
filter set-up with known state-vector means, this diffeeenc
between estimation and prediction does not occur since one
is then only left with BLP instead of with BLUP of the state-
Theorem 2 (a) (Recursive BLUPY he three steps of the re- vectors.
cursive state-vector prediction are given as

Initialization: %0 = (AJRy M A0) *ATRy Y, (50)
Poo = (AJRy " A0) ™t

Time update: %1 = Ptt-1% 11,

The steps for the recursion gf, tan now be summarized as
follows.

5.1 Time evolution of the error covariances

In order to develop the recursion for the BLU;"q;, we
(51) first determine the time evolution of the BLUE-BLUP error

Rit-y = Pte-1R_qp—q ‘DtT,tflJrs covariance matrices
Measurement update: Gy = Clx — Ri1>% _&\[t]) and (53)
X1 = X1 + Kewg, (52) G-y = CO& — K1), % — Xqe—17)

P = Ry — K KT . .
i = Rye-n — KeQuuk The following lemma shows how these error covariance ma-
with gain matrix K = Ry Al Qy.- trices can be computed recursively.
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yameatrlx :+: . ; XI [[] (BLUE)

. Le[[r—1]
v
Y, —>@_—'> Measurement update
-‘:r|[1— 1] (Gain matrix| v
—>(+ » X;|(1] (BLUP)
K, O Time update alll
X1

Design matrix [‘ [ W 0] 4_

, -1 c Y(_

Fig. 1 Block diagram of the recursive BLUE-BLUP method with me&soent- and time-update.

Lemma 9 (BLUE-BLUP error covarianceThe time evo- Theorem 2 (b) (Recursive BLUE)he three steps of the re-
lution of the error covariance matricesg and Gyz_1) is  cursive mean state-vector estimation are given as
given as:

Initialization: 0 = (AJRy "A0) *ATRG Y, (60)
initialization:  Coio = Pypo (54) Qoo = Qo + Pojo
time update: Gy = Pt—1C_ 11y Pry_1 (55)  Time update: %y_1 = Pt 1% 111, (61)

_ T
measurement update: @ = Cyjr_1 (1 — KiA)T (56) Q1) = Pe-1Q a1 P

Proof For theinitialization (t = 0) we haveCqo = C(xo — Measurement update:

Zoj0:%0 — %0j0) = Qojo — Qupxo = Pojor SinCexgo = Xgp0 and %) = %1 + Gt (62)
C(Xﬂo,go) ;t%go,xo) This proves (534) For théme-update Quig = Quit—y — GtQuw Gf
we have, Withg;;_q =% — andgy, . : .
that =4 K-y ANGEy 1) = X~ Xy, with gain matrix G = Cyjjr_ 1A’ Quis -
(2 . Proof Theinitializationwas already provenin (46) and (47).
G-y = (gt\[tfl]ﬂ’éﬂ[t*l]) 5 Since the BLUE of a linear function is the linear function
= C(Ptr1& g1, Pri-1& -y + &) (57)  of the BLUE, also thaime-update61) directly follows.To
= B 1G g ol 4 determine theneasurement-updateve apply (32), noting

. that forz= E(x ), we need the covariance matr&(x —
which proves (55). To prove Ehmeasure[nent—updatwe Rjr_1:Vt)- With v = A (% — Xp_1)) + 1y, this givesC(x —
make use of Cgrollary _1' S'n_c@\[tfl} andgy;_y are both Kit—1:\) = C[Ht,l]AtT. Substitution into (32) proves (62).
uncorrelated withy; for i < t, it follows from Corollary 1, 0
with & = % — &y andéyy = X — X, that _ _ _ _

Compare this BLUE-recursion with the BLUP-recursion of
C(&y i ét\[ }) — Theorem 2 (a). Both look very similar. They have the same
. < (58)  structure and they even have the same initializatigy €
C(&y -1 &y-1) — CEyp-ny Vo) Quii C(Ey -1, )T . ; - o
lit=1]>=¢[[t-1] all vive A=t 1) %o/0) and the same time-update ¢~ 1 = P¢ 1% 151 Ver-
Furthermore we have, with = A, 1 +1, sus X1 = Pt-1%_y-1). They differ however in the
variance matrices and in their measurement-updates. én cas
(gtm 1V V) = C(gtm 1 gt“ 1 A = =Cyjp lAt - of the BLUP, t.he error variance mgtrﬁq[t,l] is.used both.in
ClE w) = C(& % JAT — P AT (59)  the computation of the gail§; and in the quality evaluation
t[t—1]>4 =124t Hit-1 of the predictor. In case of the BLUE, however, the quality
Substitution into (58) gives the measurement update of thef the estimato;_y is described by 1), whereas the
error covariance matrix & = Cy—q (I —ATQuLA Rit-1), 9ainis computed from the error covariance ma@ix ).
which proves (56). O As another important difference, note that in contrast
to the BLUP-recursion, the BLUE-recursion cannot stand
on its own. It requires the predicted residuglsind there-
5.2 Recursive BLUE fore the BLUPX;;_y. Figure 1 shows the block diagram
of the BLUE-BLUP recursion. The input i and the out-
With the help of the recursion of these error covariance maputs are the BLUEx; and the BLUPx;;. The block dia-
trices it becomes possible to set up the recursion for thgram shows that estimation and prediction have the time-
BLUE of the mean state-vectoxs= E(x;). update in common, but not the measurement-update. The
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two measurement-updates are fed with the same predicte®note the BLUE-BLUP state-vector and its error variance
residual, but have different gains. Their gain matrices arenatrix as

related as .
1 [L(”tl]] ; li[\[tfl] =
G = G-y Ry gk (63) Xt-1

Let us now compare the two recursions with regards to thewith a likewise definition forg, andlfitm. Thus combining
need of knowingQy,x,, the variance matrix of the initial the recursions, the combined results of Theorems 2 (a) and
state-vectok,. We already pointed out that this matrix does (b) can be summarized as follows.

not play a role at all in the BLUP-recursion (cf. Theorem )

2 (a)). It does however seem to play a role in the BI_UE_Theorem 2 (Recurs_|ve BLUE-BLUP)Fhe three steps of the
recursion, as it shows up in its initialization (60). A close BLUE-BLUP recursion are given as
study of the mechanism of the BLUE-recursion shows how

Q-1 G-
%1 = -1 G-

Ct-\r[tfl] Rit-1

1 (65)

Tnitialization:  %g = EXgo,

ever thatQy, has also no effect on the outcomes of the e T (66)
BLUE. The gain matrix of the BLUE-recursion is namely Folo = ERyoE " + Quxo

not driven by the variance matri@;_y, but by the error  ith £ = [I,,,1,]T andQy,x, = blockdiad Qux,, 0).
covariance matrixC 1, which itself does not depend on )

Qux (cf. lemma 9). Hence, the only role played Ry,  Time update: %;_y = Prt-1% 11, (67)

liesin dgscrlblng howthe uncertalntygcontnbutes tothe . Fh‘)t\[tfl] _ ¢t,t71|5t71\ 1 (Dt-l,-tfl +§
uncertainty of the estimators at the various epochs. Wgrkin B
with a model with unknown, but deterministic initial state- with transition matrix® ;, = blockdiag @1, ® 1) and
vector, i.e.Qy,x, = 0, will therefore produce the same state-System noise variance mati# = blockdiag0,s).
vector estimate as obtained when working with a random
initial state-vector with unknown mean. Only the variance Measurement update: )
matrices of the two solutions will differ, since the latter i X1 = &jir—1 + Kewr, (68)
impacted by the ran(.jomness of the initial state—v.ector. B = B 1] — KeQuu KT
A further comparison between the two recursions shows . . . .

that the difference between the BLUE and the BLUP is onlyWith predicted residualy=y, — A%y, A = A[0, In], and
driven by the system noise. Since both have the same ingain matrixK; = R Af Qyu..
tialization and the same t|me—_update, the difference berwe his result shows how the recursive BLUE and the recursive
the two only starts to be felt in the measurement-update . . : . :

. . .BLUP can be mechanized into one single recursion. This
epocht = 1. The measurement-updates differ, since the gain

. . . i result is therefore the recursive formulation of the BLUE-
matrices differG; # K; (cf. 63). These gain matrices are the . : . . . .
: o BLUP expression given in Theorem 1. With this extention of
same however, in casg 1 = Rj—1, which is the case

hen th " ise is absent. We therefore h the f the standard ‘Kalman filter’ theory, we are thus also able to
:N en the S){ts €M Noise IS absent. Ve theretore have the 0écursively compute the best estimate of the unknown mean
owing resutt. state-vector, instead of only the best prediction of the ran

Corollary 5 (BLUE=BLUP) The recursive BLUP becomes d0m state-vector outcome.

identical to the recursive BLUE in case system noise is ab- N analogy with Kalman-filter based smoothing, it also
sent, i.e. if 5= 0for all t, then possible to develop the BLUE-BLUP smoothing solution.

For the BLUE-part, smoothing is rather straightforwardcsi

X =Xy and Xyp-q = Xjp-y (64) Ky = Py and Qg = PsQqyq M5 For the BLUP- -
part, the smoothing will resemble the standard smoothing

for allt. methods, like fixed-point, fixed-interval or fixed-lag smioot

. L .ineg, see e.g., (Gelb, 1974; Maybeck, 1979; Jazwinski, 1991;

Thus in all cases where system noise is present the recurs%Ibbs 2011)

BLUE will give an output different from that of the recursive ' ’

BLUP.
6 Summary and conclusions

5.3 Recursive BLUE-BLUP In this contribution the BLUE-BLUP recursion of the par-

titioned measurement- and dynamic model was introduced
Since the BLUE- and BLUP recursions have the same strudsee Table 3). It extends ‘Kalman-filter’ theory by replagin
ture and are both based on the same predicted residuals, ahe BLP-approach with the BLUP, thereby relaxing the as-
can combine them into one recursion. For that purpose wsumptions on the state-vector means. It was argued that the



12

Table 3 The three steps of the BLUE-BLUP recursion compared.

‘ Estimation ‘ Prediction
Initialization Ro0 = (AS Ry *A0) *ATRG Yy, %010 = %o = (AS Ry M A0) TATRG MY,
Qoo = Qo + (AR A0) ™ Poo = (ATRy *Ao)
Time update K-y = Pri-1% g1 Xt-1 = Pra-1% g
Quit-y = P 1Q 1y P4 Rii-y =Pt 1R g1+ S
Measurement update % = %—1 + G- uA Quir Mk % = %1+ Ry gAY Qur e
Qi = Q- — C-uA Qi ACT g | Ri = Rir-y — Rie-uA QuiARyi-y

BLUP-approach is often more appropriate, since in manyBode H, Shannon C (1950) A simplified derivation of linear
if not most, applications the means of the state-vectors are least square smoothing and prediction theory. Proceed-
indeed unknown. ings of the IRE 38(4):417-425
The recursive-BLUP was derived from first principles, Brammer K, Siffling G (1989) Kalman-Bucy Filters. Artech
thereby making use of an earlier derived decomposition of House
the BLUP into misclosures and any LUP. The role of theCandy J (1986) Signal Processing: Model Based Approach.
misclosures was emphasized and it was shown how they McGraw-Hill, Inc.
form the basis for constructing the predicted residuals. IGelb A (1974) Applied optimal estimation. MIT Press
was also shown how the recursive-BLUP, as a consequen&ibbs B (2011) Advanced Kalman Filtering, Least-squares
of the relaxing assumption on the state-vector means, doesand Modeling: A Practical Handbook. Wiley
away with the need of having to specify the initial state-Goldberger A (1962) Best linear unbiased prediction in the
vector variance matrix. generalized linear regression model. Journal of the Amer-
Next to the recursive-BLUP, we introduced, for the same ican Statistical Association 57(298):369-375
model, the recursive-BLUE. This extension is new and anGrewal MS, Andrews AP (2008) Kalman Filtering; Theory
other consequence of assuming the state-vector means un-and Practice Using MATLAB, 3rd edn. John Wiley and
known. In the standard Kalman-filter set-up with known state Sons
vector means, such difference between estimation and prétarvey AC, Phillips GDA (1979) Maximum likelihood esti-
diction does not occur since one is then only left with BLP mation of regression models with autoregressive-moving
instead of with BLUP of the state-vectors. average disturbances. Biometrika 66(1):49-58
Finally, it was shown how the two intertwined recursionsJazwinski A (1991) Stochastic processes and filtering the-
can be combined into one general BLUE-BLUP recursion. ory. Dover Publications
The recursion outputs for every epoch, in parallel, the BLURde Jong P (1991) The diffuse Kalman filter. The Annals of
for the random state-vector and the BLUE for the mean of Statistics 19(2):1073-1083
the state-vector (cf. the block diagram of Figure 1). Kailath T (1968) An innovations approach to least-squares
estimation—part |: Linear filtering in additive white noise
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