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Abstract In this contribution we extend ‘Kalman-filter’ the-
ory by introducing a new BLUE-BLUP recursion of the par-
titioned measurement- and dynamic model. Instead of work-
ing with known state-vector means, we relax the model and
assume these means to be unknown. The recursive-BLUP is
derived from first principles, in which a prominent role is
played by the model’s misclosures. As a consequence of the
mean state-vector relaxing assumption, the recursion does
away with the usual need of having to specify the initial
state-vector variance matrix.

Next to the recursive-BLUP, we introduce, for the same
model, the recursive-BLUE. This extension is another con-
sequence of assuming the state-vector means unknown. In
the standard Kalman-filter set-up with known state-vector
means, such difference between estimation and prediction
does not occur. It is shown how the two intertwined recur-
sions can be combined into one general BLUE-BLUP recur-
sion, the outputs of which produce for every epoch, in par-
allel, the BLUP for the random state-vector and the BLUE
for the mean of the state-vector.
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1 Introduction

To determine best estimators or best predictors, the mini-
mum mean squared error (MMSE) criterion is often used.
Different MMSE-predictors exist however. They depend on
the class of functions for which the MMSE-principle is ap-
plied. Examples of different MMSE-predictors are the con-
ditional mean as best predictor (BP), the best linear predic-
tor (BLP), the best integer equivariant predictor (BIEP), or
the best linear unbiased predictor (BLUP), see e.g., (Gold-
berger, 1962; Anderson and Moore, 1979; Stark and Woods,
1986; Sanso, 1986; Simon, 2006; Teunissen, 2007). Although
the same principle is applied, these MMSE-predictors all
have different performances.

In the literature, the Kalman-filter is derived as either a
BP or a BLP, see e.g., (Kalman, 1960; Gelb, 1974; Kailath,
1981; Candy, 1986; Brammer and Siffling, 1989; Jazwin-
ski, 1991; Gibbs, 2011). Both these predictors, BP and BLP,
require that the mean of the to-be-predicted random vec-
tor is known. This is why in the derivation of the Kalman-
filter one usually assumes the mean of the random initial
state-vector to be known, see for instance the contributions
by Sorenson (1966, p. 222), Maybeck (1979, p. 204), An-
derson and Moore (1979, p. 15), Stark and Woods (1986, p.
393), Bar-Shalom and Li (1993, p. 209), Kailath et al (2000,
p. 311), Simon (2006, p. 125), Grewal and Andrews (2008,
p. 138).

Despite the BLP-approach, it is indeed sometimes ac-
knowledged that the mean of the initial state-vector is not
known. The approach then taken is to treat the initial state-
vector as beingdiffuse, meaning that its variance matrix tends
to infinity, see e.g., (Harvey and Phillips, 1979; Ansley and
Kohn, 1985; de Jong, 1991). The proposed approach in prac-
tice is then to initialize the Kalman-filter with a sufficiently
‘large’ variance matrix. With such an approach, however, the
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Kalman-filter is still derived and presented within the BLP-
context.

We believe that the BLP-derivation of the Kalman-filter
is not appropriate in case the mean of the random state-
vector is unknown, a situation that applies to many, perhaps
even most, engineering applications. Not the BLP-principle,
but the BLUP-principle should be applied in case the mean
state-vectors are unknown. In this contribution we derive
and present the recursive-BLUP from first principles and
show how such an approach does away with the need to as-
sume the mean and variance matrix of the initial state-vector
to be known.

Next to the recursive-BLUP, we also present, for the
same model, the recursive best linear unbiased estimator (BLUE).
To appreciate the difference with the recursive-BLUP, it is
important to make a sharp distinction between prediction
and estimation. We speak of prediction if observables are
used to guess the outcome of a random vector and we speak
of estimation if the observables are used to guess the value
of an unknown nonrandom vector.

Our development of the BLUE-BLUP recursion is an ex-
tention of standard ‘Kalman-filter’ theory. This extensionis
a consequence of our relaxing assumptions that the means
of the random state-vectors are unknown. Since these means
are assumed unknown, the problem of estimation can be ad-
dressed as well. In the standard Kalman-filter set-up with
known state-vector means, this difference between estima-
tion and prediction does not occur since one is then only left
with BLP instead of with BLUP of the state-vectors.

This contribution is organized as follows. In Section 2
we briefly review the necessary ingredients of prediction and
estimation for linear models. Essential in our presentation
is the role given to the misclosures of the linear model. We
treat prediction and estimation on an equal footing and show
how predictors and estimators are driven by the way mis-
closures are mapped. We also show how the BLUE and the
BLUP can be decomposed into misclosures and any LUE or
LUP. This decomposition forms the basis for our develop-
ment of the BLUE-BLUP recursion in later sections.

In Section 3, we present the general BLUE-BLUP measurement-
update equations for a time-series of vectorial observables.
Through a one-to-one mapping it is shown how the sequen-
tial prediction errors of the misclosures form the basis of the
predicted residuals. No assumptions are here yet made on
the structure of the variance-covariance matrices.

In Section 4, we develop the BLUP-recursion for the par-
titioned measurement- and dynamic model that forms the
basis of the standard Kalman-filter. Instead of the standard
assumption of known mean state-vectors, we assume the
means of the random state-vectors to be unknown. Through
this relaxation the initialization issue gets resolved, whereby
it is shown that the variance matrix of the initial state-vector
is not needed anymore. In Section 5, we extend standard

‘Kalman-filter’ theory further by introducing, next to the
BLUP-recursion, the BLUE-recursion of the means of the
random state-vectors. It is shown how the two recursions
are intertwined and how their difference is driven by the
presence of system noise. Finally, we show how the two re-
cursions can be combined into one general BLUE-BLUP re-
cursion. It outputs for every epoch, in parallel, the BLUP for
the random state-vector and the BLUE for the mean of this
state-vector.

We make use of the following notation: We use the un-
derscore to denote a random vector. Thusx is random, while
x is not.E(.) andD(.) denote the expectation and dispersion
operator, whileC(., .) denotes the covariance operator. The
norm of a vector is denoted as||.||. Thus||.||2 = (.)T(.).

2 Estimation and Prediction in Linear Models

2.1 Estimation and prediction

As our point of departure, we take the following linear model
of observation equations

y= Ax+e (1)

with mean and dispersion

E(e) = 0 , D(y) = D(e) = Qyy

wherey∈R
m is the random vector of observables andx∈R

n

is the nonrandom vector of unknown parameters. The known
matrix A, of orderm× n, is assumed to be of full column
rank, and the variance matrixQyy is assumed to be positive
definite.

The aims are toestimatea linear function ofx, or, to
predict the outcome of a random vector having a mean that
is a linear function ofx. The to-be-estimated linear function
is given as

z̄= Azx, (2)

with known k× n matrix Az. The to-be-predicted random
vector is given as

z= Azx+ez, with E(ez) = 0 (3)

This random vector is assumed to be stochastically related
to y. Their joint variance matrix is assumed given as

D(

[

y

z

]

) =

[

Qyy Qyz

Qzy Qzz

]

(4)

For our further development, the following canonical form
of the linear model (1) is very helpful.

Lemma 1 (Linear model in canonical form)Define the trans-
formed vector of observables as[x̂T ,uT ]T = Ty, with trans-
formation matrix T= [A+T ,B]T , least-squares inverse A+ =
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(ATQ−1
yy A)−1ATQ−1

yy and where B is a basis matrix of the
null space of AT , i.e. ATB= 0. Then

E(

[

x̂

u

]

) =

[

In

0

]

x, D(

[

x̂

u

]

) =

[

Qx̂x̂ 0

0 Quu

]

(5)

Proof The mean and dispersion of (5) follow from an ap-
plication of the mean- and variance propagation laws toTy.
That the linear model (5) stands in a one-to-one relation with
the original linear model formulation (1) follows from the
invertibility of T = [A+T ,B]T ⇔ T−1 = [A,B+T ], with least-
squares inverseB+ = (BTQyyB)−1BTQyy. ⊓⊔

With the above canonical form, the design matrix has the
simple form[In,0]T , while the dispersion has become block
diagonal. As ˆx and u stand in one-to-one correspondence
with y, while x̂ has the unity-matrix as design matrix and
itself is uncorrelated with the zero-mean vectoru, one may
expect that ˆx contains the full information for the determi-
nation ofx. And indeed, ˆx= A+y∈ R

n is recognized as the
BLUE of x, whileu= BTy∈R

m−n is recognized as the vec-
tor of misclosures(Teunissen, 2000). The dimension of the
vector of misclosures is equal to the redundancy,r = m−n,
i.e. the vector of misclosures only exists in the presence
of redundancy (r > 0). Note that the vector of misclosures
is not unique, since for any invertible matrixL, the vector
v= Lu is again a vector of misclosures, i.e. bothB andBLT

are basis matrices of the null space ofAT .
The advantage of the decompositiony= T−1[x̂T ,uT ]T is

that it enables finding simple representations of estimators
and predictors. The following lemma gives such represen-
tation for linear unbiased estimators/predictors of ¯z andz,
respectively.

Lemma 2 (Linear unbiased estimation/prediction)A linear
function Fy+ f0, satisfying the conditionE(Fy+ f0) = Azx
for all x, is called a linear unbiased estimator (LUE) ofz̄=
Azx, or a linear unbiased predictor (LUP) of z= z̄+ez. Any
such LUE or LUP can be represented as

LUE/LUP= Azx̂+ Ju, for someJ ∈ R
k×r (6)

Proof With E(y) = Ax, the unbiasedness conditionE(Fy+
f0) =Azx,∀x∈R

n, is fulfilled by settingf0 =0 andFA=Az.
Given the matrix equationFA= Az, the general solution for
F is given by the sum of a particular solution and the homo-
geneous solution. A particular solution is given byAzA+,
while the homogeneous solution is provided byJBT , for
some matrixJ ∈ R

k×r . ThereforeF = AzA++ JBT. Eq. (6)
follows then by substituting the result intoLUE = Fy. ⊓⊔

The above representation shows that LUEs and LUPs differ
only through their linear functions of the misclosure vector
u. Hence, it is through the choice of matrixJ that specific
LUEs and LUPs can be identified.

2.2 MMSE estimation/prediction and misclosures

To determine best estimators/predictors, the minimum mean
squared error (MMSE) criterion is used. In case no restric-
tions are placed on the class of predictors, the best predictor
of z in the MMSE-sense is given by the conditional mean,

BP= E(z|y) (7)

(see e.g., Anderson and Moore, 1979; Maybeck, 1979; Te-
unissen et al, 2005). The BP is unbiased, but generally non-
linear, with exemptions, for instance in the Gaussian case.
In casey andz are jointly Gaussian, the BP becomes linear
and identical to the best linear predictor,

BLP= z̄+QzyQ
−1
yy (y− ȳ) (8)

whereȳ andz̄denote the mean ofy andz, respectively (see
e.g., Bar-Shalom and Li, 1993; Kailath et al, 2000; Teu-
nissen, 2008). Although the BLP is linear, it still requires
knowledge of the means ¯y andz̄. These means are however
unknown, sincex is assumed unknown in case of the linear
model (1). Instead of working within the unconstrained class
of linear functions, we therefore work in the more restricted
class as specified by the representation (6). To determine the
best estimator/predictor within this class, use is made of the
following lemma.

Lemma 3 (Minimum mean squared norm)Let ε ∈ R
k and

u∈R
r be given random vectors, withE(u) = 0. Then

ε̂ = ε −QεuQ−1
uu u (9)

has smallest mean squared norm within the class of random
vectorsεJ = ε + Ju, J∈ R

k×r , i.e.

E||ε̂||2 ≤ E||εJ||
2 , ∀J ∈ R

k×r (10)

Proof Since ε̂ = ε −QεuQ−1
uu u is uncorrelated withu, we

have the ‘sum-of-squares’ decomposition

E||ε + Ju||2 = E||ε −QεuQ−1
uu u+(J+QεuQ−1

uu )u||
2

= E||ε̂||2+E||(J+QεuQ−1
uu )u||

2

from which (10) follows. ⊓⊔

This lemma shows that the mean squared norm of a random
vector cannot be made smaller by adding uncorrelated linear
functions of zero mean random vectors. We now use this
lemma to determine the best estimator and the best predictor
within the class of LUEs and LUPs, respectively.

Theorem 1 (BLUE/BLUP) For any LUE ofz̄, with estima-
tion error εLUE = z̄− LUE, and any LUP of z, with pre-
diction error εLUP = z−LUP, the BLUE and BLUP can be
computed as
[

BLUE

BLUP

]

=

[

LUE

LUP

]

+QεuQ−1
uu u , ε =

[

εLUE

εLUP

]

(11)
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Proof Consider a certain fixedLUP. Since theBLUP is a
LUP, it follows from Lemma 2 that theBLUPcan be written
asBLUP= LUP+ Ju for someJ. Hence, their prediction
errors,εBLUP = z−BLUP andεLUP = z−LUP, are related
asεBLUP= εLUP−Ju. According to Lemma 3 (cf. 9),J must
be chosen asJ = QεLUP,uQ−1

uu for E||εBLUP||
2 to be minimal.

This proves the BLUP-part of (11). The proof of the BLUE-
part goes likewise. ⊓⊔

This result clearly shows the important role that is played
by the vector of misclosuresu, both in best estimating ¯zand
in best predictingz. In section 5 we present the recursive
counterpart of the above BLUE-BLUP expression.

The relations between the error covariance matrices are
readily obtained from (11) through an application of the
(co)variance propagation law. They are summarized in the
following corollary.

Corollary 1 (Error covariance matrices)The error covari-
ance matrices of estimation and prediction satisfy:

C(εBLUE,εBLUP) = C(εLUE ,εLUP)−QεLUEuQ−1
uu QuεLUP

C(εBLUE,εBLUP) = C(εBLUE,εLUP) = C(εLUE ,εBLUP)

C(εBLUE,u) = C(εBLUP,u) = 0

(12)

This result shows that the misclosures are uncorrelated with
both the best estimation errors and the best prediction errors.

2.3 From LUE to BLUE

As a direct consequence of the above theorem we have the
following simple relationship between the BLUE and any
LUE.

Corollary 2 (BLUE-LUE formula)The BLUE and its vari-
ance matrix are related to that of any arbitrary LUE as

BLUE = LUE−QLUE,uQ−1
uu u

QBLUE,BLUE = QLUE,LUE −QLUE,uQ−1
uu Qu,LUE

(13)

Proof Since z̄ is nonrandom, it follows fromεLUE = z̄−
LUE thatC(εLUE,u) = −C(LUE,u). Substitution into (11)
proves the first equation of (13). The second equation fol-
lows from an application of the variance propagation law,
thereby making use of the fact that the misclosures are not
correlated with the estimation errorεBLUE (cf. 12) and thus
also not with the BLUE itself,C(BLUE,u) = 0. ⊓⊔

This simple BLUE-LUE relation will be very useful in our
later derivations of the recursive BLUE and the recursive
BLUP. Here three examples are given to see the BLUE-LUE
relation at work.

Example 1(Least-squares as LUE) The least-squares esti-
matorLSE= (ATWA)−1ATWy is a LUE of x. Hence, ac-
cording to (13) the BLUE ofx can be expressed in the LSE
as

BLUE= LSE−QLSE,uQ−1
uu u (14)

which is identical to theLSEwith W = Q−1
yy .

Example 2(Conditional adjustment) Consider the model of
condition equations

BT
E(y) = 0 (15)

It is the implicit formulation of the parametric model of ob-
servation equationsE(y) = Ax. Sincey is a LUE ofE(y), the
BLUE of E(y) can be written according to the BLUE-LUE
formula (13) as ˆy = y−QyuQ−1

uu u. Substitution ofu = BTy
gives

ŷ= y−QyyB(B
TQyyB)

−1BTy (16)

which is the BLUE ofE(y) expressed in the design matrixB
of the conditional model.

Example 3(Tienstra’s phased adjustment) Consider the par-
titioned model of condition equations
[

BT
[i−1]

BT
i

]

E(y) =

[

0

0

]

(17)

with the corresponding partitioned misclosure vectoru[i] =
[uT

[i−1], uT
i ]

T . Then the BLUE ofE(y) based on the first set

of conditionsBT
[i−1]E(y), denoted as ˆy

[i−1]
, is a LUE ofE(y)

for the complete set of conditions. Hence, we have

ŷ
[i]
= ŷ

[i−1]
−Qŷ[i−1]u[i]Q

−1
u[i]u[i]

u[i] (18)

Sinceŷ
[i−1]

is uncorrelated withu[i−1], it follows upon choos-

ing the respresentation of the vector of misclosures asu[i] =
[uT

[i−1], (B
T
i ŷ

[i−1]
)T ]T that

ŷ
[i]
= ŷ

[i−1]
−Qŷ[i−1]ŷ[i−1]

Bi(B
T
i Qŷ[i−1]ŷ[i−1]

Bi)
−1BT

i ŷ
[i−1]

(19)

This is Tienstra’s formula for adjustment in phases (Tienstra,
1956).

2.4 From LUP to BLUP

Similar to the BLUE-LUE relation, we have the following
counterpart for prediction.

Corollary 3 (BLUP-LUP formula)The BLUP, its error-variance
matrix and its variance matrix are related to that of any ar-
bitrary LUP as

BLUP = LUP+Qz−LUP,uQ−1
uu u

QεBLUPεBLUP = QεLUPεLUP −QεLUP,uQ−1
uu Qu,εLUP

QBLUP,BLUP = QLUP,LUP −QLUP,uQ−1
uu Qu,LUP+QzuQ−1

uu Quz

(20)
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Proof The first equation follows from (11), while the second
and third follow from an application of the variance propa-
gation law, thereby making use of the zero-covariance prop-
erty (12). ⊓⊔

Note thatQεBLUPεBLUP andQBLUP,BLUP are two different vari-
ance matrices. The first is the variance matrix of the predic-
tion errorεBLUP = z−BLUP, thus describing the MMSE-
quality of the predictor. The second doesnot describe the
quality of prediction, but instead the precision of the predic-
tor, i.e. the mean squared difference between the predictor
andz̄, instead of between the predictor andz. In case of es-
timation, this difference is absent as we haveQεBLUEεBLUE =
QBLUE,BLUE (cf 13).

From the above corollary we can also directly obtain the
BLUP-BLUE relation.

Corollary 4 (BLUP-BLUE formula)The BLUP, its error-
variance matrix and its variance matrix are related to that
of the BLUE as

BLUP = BLUE+QzuQ−1
uu u

QεBLUPεBLUP = Qz−BLUE,z−BLUE−QzuQ−1
uu Quz

QBLUP,BLUP = QBLUE,BLUE +QzuQ−1
uu Quz

(21)

Proof SinceC(BLUE,u) = 0 and the BLUE, like any other
LUE, is a LUP, (21) follows immediately from (20). ⊓⊔

Here three examples are given to see the above BLUP-relations
at work.

Example 4(The BLUPs ofy ande) The BLUP ofy=Ax+e
is the BLUE ofAx plus the BLUP ofe. The BLUP ofe is
ê= QyuQ−1

uu u. Substitution ofu= BTy gives

ê= QyyB(B
TQyyB)

−1BTy= y− ŷ (22)

If we add the BLUE ofE(y) = Ax, which is ŷ= Ax̂, we get
the BLUP ofy asy=Ax̂+ ê. Hence the BLUP ofy is y itself.
This is thereproducing propertyof best prediction, i.e. the
best prediction of an observable is the observable itself.

Example 5(Equality of BLUP and BLUE) We now con-
sidery= Ax+n in whichx andn are random vectors having
meansE(x) = x andE(n) = 0, respectively. The mean ofx is
assumed unknown. To bring the observation equations into
the standard form of (1), we write

y= Ax+e ,with e= A(x− x)+n (23)

Note that the misclosure vector does not depend onx, but
only on the measurement noise vectorn, i.e.u=BTy=BTn.
Let x̂= A+y be the BLUE ofx. Then according to (21), the
BLUP of x and its error-variance matrix are given as

BLUP = x̂+QxuQ−1
uu u

QεBLUPεBLUP = Qx−x̂,x−x̂−QxuQ−1
uu Qux

(24)

This shows, sinceQxu = QxnB, that the BLUP ofx becomes
identical to the BLUE ofx if C(x,n) = 0, i.e. whenx andn
are uncorrelated. The error variance matrix reduces then to

QεBLUPεBLUP = Qx−x̂,x−x̂ = Qx̂x̂−Qxx (25)

sinceC(x̂,x) = C(A+y,x) = C(x+A+n,x) = Qxx. The fact
that BLUP=BLUE in this case, does not mean that the two
have the same quality. The BLUP should be judged as a pre-
dictor through its error variance matrix (25), whereas the
BLUE should be judged as an estimator through its vari-
ance matrixQx̂x̂. We come back to the BLUE-BLUP relation
when we consider their recursive forms in the next sections.

Example 6(BLUP and BLP compared) UsingBLUE= Azx̂
andQzuQ−1

uu u= QzyB(BTQyyB)−1BTy= QzyQ−1
yy (y− ŷ), we

may write the first equation of (21) as

BLUP= Azx̂+QzyQ
−1
yy (y− ŷ) (26)

This expression makes an easy comparison with the BLP in
(8) possible. It shows that the BLUP can be obtained from
the BLP expression by replacing the means ¯z andȳ by their
BLUEs. The price to pay for such replacement lies in the
larger mean squared errors. The prediction error variance
matrices of the BLP and the BLUP are namely given as

C(εBLP,εBLP) = Qzz−QzyQ−1
yy Qyz

C(εBLUP,εBLUP) = C(εBLP,εBLP)+Az|yQx̂x̂AT
z|y

(27)

with Az|y = Az−QzyQ−1
yy A. Another consequence of estimat-

ing the unknown means in case of the BLUP, is that

C(εBLUP,y) 6= 0, butC(εBLUP,u) = 0 (28)

whileC(εBLP,y) = 0.

For a quick reference, a summary of the estimation-prediction
relations is given in Table 1.

3 BLUE and BLUP Measurement Update Equations

We now generalize the single observational vectory to a
time series of vectorial observables,y

0
, . . . ,y

t
, of which the

means are assumed to be linearly related to the mean ofz.
The index refers to the time instant the data are collected.

The data are collected with the purpose of predictingz
and estimating ¯z= E(z). To show how estimation and pre-
diction are affected by the inclusion of a new observation
vector y

i
, we present the BLUE and BLUP measurement

update equations. No assumptions are yet made on the dis-
persion of the observables. From now on we denote a BLUE
with the .̂-symbol and a BLUP with the ˇ.-symbol. To show
on which set of observables estimation and prediction are
based, we use the notation ˆz|[i−1] andž|[i−1] when based on

y
[i−1]

= [yT
0
, . . . ,yT

i−1
]T .
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Table 1 Estimation and prediction compared for linear models.

x̂= A+y , u= BTy Estimation Prediction

Class representation LUE = Azx̂+Ju for someJ LUP= Azx̂+Hu for someH

Best member BLUE = Azx̂ BLUP= Azx̂+QzuQ−1
uu u

BLUE-LUE (BLUP-LUP) formula BLUE = LUE−QLUE,uQ−1
uu u BLUP= LUP+Qz−LUP,uQ−1

uu u

BLUE (BLUP) variance matrix QBLUE,BLUE = QLUE,LUE −QLUE,uQ−1
uu Qu,LUE QBLUP,BLUP = QLUP,LUP−QLUP,uQ−1

uu Qu,LUP+Qz,uQ−1
uu Qu,z

Error variance matrix QεBLUEεBLUE = QLUE,LUE −QLUE,uQ−1
uu Qu,LUE QεBLUPεBLUP = Qz−LUP,z−LUP−Qz−LUP,uQ−1

uu Qu,z−LUP

Error covariance matrices C(εBLUE,u) = 0,C(εBLUE,BLUE) =C(εBLUE,BLUP) C(εBLUP,u) = 0,C(εBLUP,BLUE) =C(εBLUE,BLUP)

3.1 Uncorrelated misclosures and the statistics of the
block-triangular decomposition

In the results up to now, we have emphasized the role played
by the vector of misclosuresu, both in estimation and in pre-
diction. We also pointed out that the vector of misclosures
is not unique. Any one-to-one transformation ofu produces
again a vector of misclosures. Despite this nonuniqueness,
the BLUE and BLUP are unique, i.e. they are invariant for
any regular transformation of the vector of misclosures. This
is illustrated by the identity

QzuQ
−1
uu u= QzvQ

−1
vv v (29)

which holds for anyv= Lu with invertibleL.

The freedom we have in choosing the vector of mis-
closures makes it possible to choose a vector of misclo-
sures with (block)diagonal variance matrix, e.g. such that
they become uncorrelated from epoch to epoch. This is at-
tractive as it generally simplifies computations. In caseQvv

is (block)diagonal, the multi-epoch inversion can be achieved
through an epoch-by-epoch inversion of lower dimensioned
matrices,

QzvQ
−1
vv v=

t

∑
j=1

Qzvj Q
−1
vj vj

vj (30)

Although there are different ways of making a variance ma-
trix (block)diagonal, it is the triangular decomposition that
is particularly suited for the sequential treatment of the mea-
surement update equations. The following lemma provides
the statistical proporties of the transformed misclosuresthat
correspond to the triangular decomposition of the original
misclosures’ variance matrix.

Lemma 4 (Uncorrelated misclosures)Consider the parti-
tioned misclosure vector u[i] = [uT

[i−1], uT
i ]

T , i = 1,2, . . .,

with u[0] = u0, and define v[i] = [vT
[i−1], vT

i ]
T , i = 1,2, . . . as

[

v[i−1]

vi

]

=





L[i−1] 0

−Quiu[i−1]
Q−1

u[i−1]u[i−1]
I





[

u[i−1]

ui

]

(31)

with L[0] = I. Then

(a) vi = ui − ǔi|[i−1] is the sequential predictor error o f ui

(b) v[i] = L[i]u[i], with L[i] unit lower(block)triangular

(c) Qv[i]v[i] = blockdiag(Qv0v0, . . . ,Qvi vi )

Proof (a) The BLUP of ui based on the previous misclo-
sure vectoru[i−1] is ǔi|[i−1]=Quiu[i−1]

Q−1
u[i−1]u[i−1]

u[i−1]. Hence,

vi = ui − ǔi|[i−1] is the corresponding prediction error.(b)
The transformation matrixL[i] of (31) is lower triangular
with 1’s on the diagonal.(c) We haveC(vi ,u[i−1]) = C(ui −

ǔi|[i−1],u[i−1]) = 0, since the BLUP prediction error is uncor-
related with its misclosure vector. Substitution ofu[i−1] =

L−1
[i−1]v[i−1] givesC(vi ,v[i−1]) = 0. Hence, the variance ma-

trix of v[i] is block diagonal. ⊓⊔

As the above result shows, the random vectorsvi , i = 0,1, . . .,
are uncorrelated misclosures and at the same time sequential
prediction errors of their correlated counterparts.

3.2 Measurement update equations

We are now in a position to use the misclosure vectorv[i] =

[vT
[i−1],v

T
i ]

T and the blockdiagonal structure of its variance
matrix, Qv[i]v[i] = blockdiag(Qv[i−1]v[i−1]

,Qvivi ), to formulate
the BLUE and BLUP measurement update equations.

Lemma 5 (BLUE-BLUP measurement-update)Given the
new observation vector y

i
, the BLUEẑ|[i−1] and BLUPž|[i−1]

of z̄ and z, respectively, are updated as

ẑ|[i] = ẑ|[i−1]−Qẑ|[i−1]vi Q
−1
vivi

vi ,

Qẑ|[i]ẑ|[i] = Qẑ|[i−1]ẑ|[i−1]
−Qẑ|[i−1]vi Q

−1
vivi

Qvi ẑ|[i−1]

(32)

and

ž|[i] = ž|[i−1]+Qz−ž|[i−1],vi Q
−1
vivi

vi ,

P̌z|[i]ž|[i] = P̌z|[i−1]ž|[i−1]
−Qz−ž|[i−1],vi Q

−1
vi vi

Qvi ,z−ž|[i−1]

(33)

Proof Since the BLUE ˆz|[i−1] is a LUE where it is based on
y
[i]

, we can apply the BLUE-LUE formula of Corollary 1,

and obtain

ẑ|[i] = ẑ|[i−1]−Qẑ|[i−1]v[i]Q
−1
v[i]v[i]

v[i],

Qẑ|[i]ẑ|[i] = Qẑ|[i−1]ẑ|[i−1]
−Qẑ|[i−1]v[i]Q

−1
v[i]v[i]

Qv[i]ẑ|[i−1]

(34)
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With C(ẑ|[i−1],v[i−1]) = 0 and the blockdiagonality ofQv[i]v[i] ,
the above equation simplifies to Eq. (32). The proof for the
predictor goes likewise. ⊓⊔

As the lemma shows, the contribution to the difference be-
tween two succeeding estimators resp. predictors, ˆz|[i] and
ẑ|[i−1] or ž|[i] andž|[i−1], is provided byvi . Sincevi is uncor-
related withv[i−1] = L[i−1]u[i−1], it cannot be predicted by
the previous information, and therefore, it contains trulynew
information. The terminnovationfor vi was first indepen-
dently introduced, in case of stationary time series, by Bode
and Shannon (1950) and Zadeh and Ragazzini (1950), and
later further used for known-mean, non-stationary time se-
ries by Kailath (1968).

3.3 Partitioned linear model and predicted residuals

Note that the results of the above two lemmas 4 and 5 do
not depend on the linear model structure of the observables.
We now introduce this structure by means of the partitioned
linear model




y
[i−1]

y
i



=

[

A[i−1]

Ai

]

x+

[

e[i−1]

ei

]

(35)

with mean and dispersion

E(

[

e[i−1]

ei

]

) =

[

0

0

]

, D(





y
[i−1]

y
i



) =





Qy[i−1]y[i−1]
Qy[i−1]yi

Qyiy[i−1]
Qyiyi





We make use of this structure to get a further interpretation
of the innovation vectorvi .

Lemma 6 (Estimation and prediction residuals)Let the trans-
pose of the basis matrix B[i] of the null space of AT[i]= [AT

[i−1],A
T
i ]

be chosen as

BT
[i] =





BT
[i−1] 0

−AiA
+
[i−1] I



 (36)

with A+
[i−1] = (AT

[i−1]Q
−1
y[i−1]y[i−1]

A[i−1])
−1AT

[i−1]Q
−1
y[i−1]y[i−1]

.
Then

(a) ui = y
i
− ŷ

i|[i−1]

(b) vi = y
i
− y̌

i|[i−1]

(37)

with BLUE ŷ
i|[i−1]

= Ai x̂|[i−1] and BLUPy̌
i|[i−1]

= ŷ
i|[i−1]

+

Qyiu[i−1]
Q−1

u[i−1]u[i−1]
u[i−1].

Proof (a)With (36), it follows fromu[i]=BT
[i]y[i]= [uT

[i−1], uT
i ]

T

that ui = y
i
−AiA

+
[i−1]y[i−1]. Hence, with ˆy

i|[i−1]
= Ai x̂|[i−1]

andx̂|[i−1]=A+
[i−1]y[i−1] the result follows.(b)SinceC(x̂|[i−1],u[i−1])=

0, we haveC(ui ,u[i−1])=C(y
i
−Ai x̂|[i−1],u[i−1])=C(y

i
,u[i−1])

and thusQui ,u[i−1]
=Qyi ,u[i−1]

. We may therefore write ˇui|[i−1]=

Qyiu[i−1]
Q−1

u[i−1]u[i−1]
u[i−1]. Substitution intovi = ui− ǔi|[i−1] gives,

with ui = y
i
− ŷ

i|[i−1]
andy̌

i|[i−1]
= ŷ

i|[i−1]
+Qyiu[i−1]

Q−1
u[i−1]u[i−1]

u[i−1],

the stated result. ⊓⊔

The above result (37) shows that the innovation vectorvi is
not only the sequential prediction error ofui (cf. lemma 4),
but also, in case the basis matrix is chosen as (36), that of the
observation vectory

i
. The innovation vectorvi will therefore

from now on be referred to as thepredicted residualof y
i
.

Note, sinceQyiu[i−1]
= 0 if C(y

i
,y

j
) = 0, i 6= j, that the

estimator and predictor coincide, ˆy
i|[i−1]

= y̌
i|[i−1]

, if the ob-

servables are uncorrelated. In that case, we haveui = vi =

y
i
−Ai x̂|[i−1].

Example 7(Recursive least-squares estimation) If we as-
sume uncorrelated observation vectorsy

i
, i.e.C(y

i
,y

j
)= 0, i 6=

j, and takeAz = I , then (32) reduces, withvi = y
i
−Ai x̂|[i−1]

andQx̂|[i−1]vi = −Qx̂[i−1]x̂[i−1]
AT

i , to the well-known recursive
least squares solution

x̂|[i] = x̂|[i−1]+Qx̂|[i−1]x̂[i−1]
AT

i Q−1
vi vi

(y
i
−Ai x̂|[i−1]) (38)

4 Recursive BLUP and the Kalman filter

We now consider as partitioned model the measurement-
and dynamic model that forms the basis of the well-known
recursive Kalman-filter. However, instead of the standard
assumption that the means of the random state-vectors are
known, we assume them to be unknown. Since the model
can be brought into the linear model form, the BLUE and
BLUP results of the previous sections directly apply. The re-
cursive BLUP is shown to follow the Kalman-filter updates,
albeit with an initialization that is different from that ofthe
known-mean, standard Kalman-filter.

4.1 Model assumptions

First we state the assumptions concerning the measurement-
and dynamic model.

The measurement model:The link between the random vec-
tor of observablesy

i
and the random state-vectorxi is as-

sumed given as

y
i
= Aixi +ni , i = 0,1, . . . , t, (39)

together with

E(x0) = x0 (unknown), E(ni) = 0, (40)

and

C(x0,ni) = 0, C(ni ,n j) = Riδi, j , i = 0,1, . . . , t (41)

with δi, j being the Kronecker delta. Thus the zero-mean mea-
surement noiseni is assumed to be uncorrelated in time and
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Table 2 Linear model formulation for estimation and prediction.

Linear model Linear model form of (39) and (42)

Model eqs.

[

y

z

]

=

[

A

Az

]

x+

[

e

ez

]

y=
[

yT
0
, yT

1
, , . . .,yT

t

]T
, A=

[

AT
0 , (A1Φ1,0)

T , . . ., (AtΦt ,0)
T
]T

,

e=
[

[A0(x0−x0)+n0]
T , [A1{Φ1,0(x0−x0)+d1}+n1]

T , . . . , [At{Φt ,0(x0−x0)+∑t
i=1Φt ,i di}+nt ]

T
]T

z= xt , Az = Φt ,0, ez = Φt ,0(x0−x0)+∑t
i=1Φt ,i di

Mean, Dispersion E(

[

e

ez

]

) =

[

0

0

]

, D(

[

y

z

]

) =

[

Qee Qeez

Qeze Qezez

]

Qee=















A0Qx0x0AT
0 +R0

A1Φ1,0Qx0x0AT
0 A1(Φ1,0Qx0x0ΦT

1,0+S1)AT
1 +R1

...
...

.. .

AtΦt ,0Qx0x0AT
0 At(Φt ,0Qx0x0ΦT

1,0+Φt ,1S1)AT
1 . . . At(Φt ,0Qx0x0ΦT

t ,0+∑t
i=1 Φt ,iSiΦT

t ,i)A
T
t +Rt















Qeze =
[

Φt ,0Qx0x0AT
0 , (Φt ,0Qx0x0ΦT

1,0+Φt ,1S1)AT
1 , . . . , (Φt ,0Qx0x0ΦT

t ,0+∑t
i=1Φt ,iSiΦT

t ,i)A
T
t

]

Qezez = Φt ,0Qx0x0ΦT
t ,0+∑t

i=1Φt ,iSiΦT
t ,i

BLUE of z̄ ẑ= Azx̂= Az(AT Q−1
yy A)−1ATQ−1

yy y recursive BLUE ofxt : x̂t |t−1, x̂t |t (cf. 60, 61, 62)

BLUP of z ž= Azx̂+QzyQ−1
yy (y−Ax̂) recursive BLUP ofxt : x̌t |t−1, x̌t |t (cf. 50, 51, 52)

to be uncorrelated with the initial state-vectorx0.

The dynamic model:The linear dynamic model, describing
the time-evolution of the random state-vectorxi , is given as

xi = Φi,i−1xi−1+di , i = 1,2, . . . , t (42)

with

E(di) = 0, C(x0,di) = 0, (43)

C(di ,n j) = 0, C(di ,d j) = Siδi, j , i, j = 1,2, . . . , t (44)

whereΦi,i−1 denotes the transition matrix and the random
vectordi is the system noise. The system noisedi is thus
also assumed to have a zero mean, to be uncorrelated in time
and to be uncorrelated with the initial state-vector and the
measurement noise.

The above model equations are formulated on an epoch-
by-epoch basis (cf. 39 and 42). To establish the link with
the linear model formulation as used in the previous sec-
tions, one can obtain the corresponding multi-epoch linear
model of (39) and (42) by defining the observation vector
asy= [yT

0
, yT

1
, , . . . ,yT

t
]T . This is shown in Table 2. Hence,

we can now directly apply the BLUE-BLUP results of the
previous sections for predicting the random state-vectorxt
and estimating its unknown meanE(xt) = xt . From now on
we denote the variance matrix of the BLUE ˆxt|[t] with Qt|[t],
whereas theerror variance matrix of the BLUP ˇxt|[t] is de-
noted byPt|[t]. Similar notation is employed forQt|[t−1] and
Pt|[t−1]. We start with the initialization, i.e. the caset = 0,
where we assume that the data vectory

0
contains the com-

plete information content to determine the unknown mean
x0, i.e.A0 is of full column rank.

4.2 Initialization

For t = 0, we have the linear modely
0
= A0x0+n0, which

may also be written asy
0
= A0x0 + e0, with e0 = A0(x0 −

x0)+n0. In general the BLUE ofx0 differs from the BLUP

of x0. In our case, however, the two coincide. As shown in
example 5, the predictor and estimator, and their (error) vari-
ance matrices, are simply related as

x̌0|0 = x̂0|0 and P0|0 = Q0|0−Qx0x0 (45)

whenx0 andn0 are assumed uncorrelated. In the next lemma
these expressions are further worked out inA0, R0 andQx0x0.

Lemma 7 (BLUE-BLUP initialization)Let the linear model
at time t= 0 be given as y

0
=A0x0+n0, with unknown mean

state-vectorE(x0) = x0, zero-mean noise vectorE(n0) = 0
and variance matrix Qy0y0 =A0Qx0x0AT

0 +R0. Then the BLUE
of x0 is equal to the BLUP of x0 and given as

x̂0|0 = x̌0|0 = (AT
0 R−1

0 A0)
−1AT

0 R−1
0 y

0
(46)

with (error)variance matrices

Q0|0 = (ATR−1
0 A0)

−1+Qx0x0

P0|0 = (AT
0 R−1

0 A0)
−1

(47)

Proof The equality of the BLUE and BLUP in (46) is due
to the zero correlation between state-vector and measure-
ment noise vector. ThatR−1

0 , instead ofQ−1
y0y0

, may be used
as weight matrix in the least-squares formula of (46) fol-
lows from the matrix identity(AT

0 Q−1
y0y0

A0)
−1AT

0 Q−1
y0y0

y
0
=

(AT
0 R−1

0 A0)
−1AT

0 R−1
0 y

0
for Qy0y0 = A0Qx0x0AT

0 +R0. Appli-
cation of the (co)variance propagation law to (46) gives the
(error)variance matrices of (47). ⊓⊔

As the above result shows, the BLUP ofx0 is independent
of its variance matrixQx0x0. This variance matrix is there-
fore not needed for the initialization. It is not needed for
computing ˇx0|0, nor for its error variance matrixP0|0. This
is a marked difference with the standard formulation of the
Kalman-filter where the mean of the state-vector is assumed
known. In that case prediction is based on the BLP and the
initialization takes the form

x̌BLP
0|0 = E(x0), PBLP

0|0 = C(x0− x̌BLP
0|0 ,x0− x̌BLP

0|0 ) =Qx0x0(48)

Hence, in that case the known mean is taken as the initial
prediction of the random state-vector. As a consequence, the
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variance matrixQx0x0 is then needed as it equals the error
variance matrix.

Although Qx0x0 is not needed for the BLUP, the above
lemma shows that it is needed for the BLUE. Not so much
for computing the BLUE, but for describing its quality by
means of its variance matrixQ0|0.

4.3 Recursive BLUP

Recursion of the BLUP ˇxt|[t] is possible since the predictors
of the zero-mean measurement- and system noise are identi-
cally zero,ňt|[t−1] = 0 andďt|[t−1] = 0. This is a consequence
of having measurement noise and system noise that are both
uncorrelated with the observables and state-vectors of the
previous epochs. They are thus also uncorrelated with the
predicted residuals of these epochs.

Sinceďt|[t−1] = 0, the predictor ˇxt|[t−1] can be computed
directly fromx̌t−1|[t−1], thus providing the time-update. Sim-
ilarly, sinceňt|[t−1] = 0, the predicted residualvt = y

t
− y̌

t|[t−1]
can be computed directly fromy

t
andx̌t|[t−1], thus providing,

in combination with (33), the measurement update of ˇxt|[t−1].

Lemma 8 (Predicted residuals)For the measurement- and
dynamic model (39) and (42), the predicted residual vector
and its variance matrix are given as

vt = y
t
−At x̌t|[t−1]

Qvt vt = Rt +AtPt|[t−1]A
T
t

(49)

Proof As the BLUP of a linear function is the linear func-
tion of the BLUP, the BLUP ofy

t
= Atxt + nt is y̌

t|[t−1]
=

At x̌t|[t−1] + ňt|[t−1], with ňt|[t−1] = 0, sincent is zero mean
and uncorrelated with the previous predicted residuals. Sub-
stitution ofy̌

t|[t−1]
=At x̌t|[t−1] intovt = y

t
− y̌

t|[t−1]
proves the

first equation of (49). The second equation follows from an
application of the variance propagation law tovt = At(xt −

x̌t|[t−1])+nt . ⊓⊔

The steps for the recursion of ˇxt|t can now be summarized as
follows.

Theorem 2 (a) (Recursive BLUP)The three steps of the re-
cursive state-vector prediction are given as

Initialization: x̌0|0 = (AT
0 R−1

0 A0)
−1AT

0 R−1
0 y

0
,

P0|0 = (AT
0 R−1

0 A0)
−1

(50)

Time update: x̌t|[t−1] = Φt,t−1x̌t−1|[t−1],

Pt|[t−1] = Φt,t−1Pt−1|[t−1]ΦT
t,t−1+St

(51)

Measurement update:

x̌t|[t] = x̌t|[t−1]+Ktvt ,

Pt|[t] = Pt|[t−1]−KtQvtvt K
T
t

(52)

with gain matrix Kt = Pt|[t−1]A
T
t Q−1

vt vt
.

Proof Theinitializationwas already proven in (46) and (47).
To find the time-update, we determine the BLUP ofxt =

Φt,t−1xt−1 + dt as x̌t|[t−1] = Φt,t−1x̌t−1|[t−1] + ďt|[t−1], with

ďt|[t−1] = 0, sincedt is zero mean and uncorrelated with the
previous predicted residuals. This proves the first equation
of (51). The second expression follows by applying the vari-
ance propagation law toxt − x̌t|[t−1] =Φt,t−1(xt−1− x̌t−1|[t−1])+

dt and using the relationC(xt−1− x̌t−1|[t−1],dt) = 0. To de-
termine themeasurement-update, we apply (33), noting that
for z= xt , we need the covariance matrixC(xt − x̌t|[t−1],vt).
With vt =At(xt − x̌t|[t−1])+nt , this givesC(xt − x̌t|[t−1],vt) =

Pt|[t−1]A
T
t . Substitution into (33) proves (52). ⊓⊔

This result shows that apart from the initialization, the struc-
ture of the recursive BLUP is identical to that of the Kalman
filter. Although the two expressions of the initialization (50)
may suggest otherwise, it is important to note thatP0|0 is
not the variance matrix of ˇx0|0, but rather itserror variance
matrix. The variance matrix ofy

0
is namely notR0, but

A0Qx0x0AT
0 + R0. The variance matrix of ˇx0|0 is therefore

equal to the sumQx0x0 +P0|0 and not equal toP0|0.
As already pointed out earlier, the BLUP-initialization

does not require the variance matrixQx0x0 of the initial state-
vectorx0. In fact, as the theorem now shows, this variance
matrix is not needed at all. Hence,Qx0x0 can takeanyvalue
(e.g. 0 or∞) without it having any effect on the result and
quality of the recursive BLUP. This is in marked contrast to
the standard Kalman-filter.

5 The BLUE-BLUP recursion

Next to the prediction, we now present the recursive BLUE
solution. This extension of the ‘Kalman-filter’ theory is a
consequence of our relaxing assumptions that the means of
the random state-vectors are unknown. In the standard Kalman-
filter set-up with known state-vector means, this difference
between estimation and prediction does not occur since one
is then only left with BLP instead of with BLUP of the state-
vectors.

5.1 Time evolution of the error covariances

In order to develop the recursion for the BLUE ˆxt|[t−1], we
first determine the time evolution of the BLUE-BLUP error
covariance matrices

Ct|[t] = C(xt − x̂t|[t],xt − x̌t|[t]) and

Ct|[t−1] = C(xt − x̂t|[t−1],xt − x̌t|[t−1])
(53)

The following lemma shows how these error covariance ma-
trices can be computed recursively.
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+

Delay

Gain matrix

Gain matrix

t
G

t
K

Design matrix

t
A , 1−Φ

t t

(BLUE)

(BLUP)
Time update

Measurement update

Fig. 1 Block diagram of the recursive BLUE-BLUP method with measurement- and time-update.

Lemma 9 (BLUE-BLUP error covariance)The time evo-
lution of the error covariance matrices Ct|[t] and Ct|[t−1] is
given as:

initialization: C0|0 = P0|0 (54)

time update: Ct|[t−1] = Φt,t−1Ct−1|[t−1]ΦT
t,t−1 (55)

measurement update: Ct|[t] =Ct|[t−1](I −KtAt)
T (56)

Proof For theinitialization (t = 0) we haveC0|0 = C(x0−
x̂0|0,x0 − x̌0|0) = Q0|0 −Qx0x0 = P0|0, since ˆx0|0 = x̌0|0 and
C(x̂0|0,x0) =C(x0,x0). This proves (54). For thetime-update
we have, witĥε t|[t−1] = xt − x̂t|[t−1] andε̌ t|[t−1] = xt − x̌t|[t−1],
that

Ct|[t−1] = C(ε̂ t|[t−1], ε̌t|[t−1])

= C(Φt,t−1ε̂t−1|[t−1],Φt,t−1ε̌t−1|[t−1]+dt)

= Φt,t−1Ct−1|[t−1]ΦT
t,t−1

(57)

which proves (55). To prove themeasurement-update, we
make use of Corollary 1. Sincêεt|[t−1] and ε̌t|[t−1] are both
uncorrelated withvi for i < t, it follows from Corollary 1,
with ε̂ t|[t] = xt − x̂t|[t] andε̌t|[t] = xt − x̌t|[t], that

C(ε̂t|[t], ε̌t|[t]) =

C(ε̂ t|[t−1], ε̌ t|[t−1])−C(ε̂t|[t−1],vt)Q
−1
vt vt

C(ε̌ t|[t−1],vt)
T

(58)

Furthermore we have, withvt = At ε̌t|[t−1]+nt ,

C(ε̂ t|[t−1],vt) = C(ε̂t|[t−1], ε̌ t|[t−1])A
T
t =Ct|[t−1]A

T
t

C(ε̌ t|[t−1],vt) = C(ε̌t|[t−1], ε̌ t|[t−1])A
T
t = Pt|[t−1]A

T
t

(59)

Substitution into (58) gives the measurement update of the
error covariance matrix asCt|[t] =Ct|[t−1](I−AT

t Q−1
vtvt

AtPt|[t−1]),
which proves (56). ⊓⊔

5.2 Recursive BLUE

With the help of the recursion of these error covariance ma-
trices it becomes possible to set up the recursion for the
BLUE of the mean state-vectorsxt = E(xt).

Theorem 2 (b) (Recursive BLUE)The three steps of the re-
cursive mean state-vector estimation are given as

Initialization: x̂0|0 = (AT
0 R−1

0 A0)
−1AT

0 R−1
0 y

0
,

Q0|0 = Qx0x0 +P0|0

(60)

Time update: x̂t|[t−1] = Φt,t−1x̂t−1|[t−1],

Qt|[t−1] = Φt,t−1Qt−1|[t−1]ΦT
t,t−1

(61)

Measurement update:

x̂t|[t] = x̂t|[t−1]+Gtvt ,

Qt|[t] = Qt|[t−1]−GtQvtvt G
T
t

(62)

with gain matrix Gt =Ct|[t−1]A
T
t Q−1

vtvt
.

Proof Theinitializationwas already proven in (46) and (47).
Since the BLUE of a linear function is the linear function
of the BLUE, also thetime-update(61) directly follows.To
determine themeasurement-update, we apply (32), noting
that for z̄ = E(xt), we need the covariance matrixC(xt −

x̂t|[t−1],vt). With vt = At(xt − x̌t|[t−1])+nt , this givesC(xt −

x̂t|[t−1],vt) =Ct|[t−1]A
T
t . Substitution into (32) proves (62).

⊓⊔

Compare this BLUE-recursion with the BLUP-recursion of
Theorem 2 (a). Both look very similar. They have the same
structure and they even have the same initialization ( ˆx0|0 =
x̌0|0) and the same time-update ( ˆxt|[t−1] =Φt,t−1x̂t−1|[t−1] ver-
sus x̌t|[t−1] = Φt,t−1x̌t−1|[t−1]). They differ however in the
variance matrices and in their measurement-updates. In case
of the BLUP, the error variance matrixPt|[t−1] is used both in
the computation of the gainKt and in the quality evaluation
of the predictor. In case of the BLUE, however, the quality
of the estimator ˆxt|[t−1] is described byQt|[t−1], whereas the
gain is computed from the error covariance matrixCt|[t−1].

As another important difference, note that in contrast
to the BLUP-recursion, the BLUE-recursion cannot stand
on its own. It requires the predicted residualsvt and there-
fore the BLUP ˇxt|[t−1]. Figure 1 shows the block diagram
of the BLUE-BLUP recursion. The input isy

t
and the out-

puts are the BLUE ˆxt|[t] and the BLUP ˇxt|[t]. The block dia-
gram shows that estimation and prediction have the time-
update in common, but not the measurement-update. The
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two measurement-updates are fed with the same predicted
residual, but have different gains. Their gain matrices are
related as

Gt =Ct|[t−1]P
−1
t|[t−1]Kt (63)

Let us now compare the two recursions with regards to their
need of knowingQx0x0, the variance matrix of the initial
state-vectorx0. We already pointed out that this matrix does
not play a role at all in the BLUP-recursion (cf. Theorem
2 (a)). It does however seem to play a role in the BLUE-
recursion, as it shows up in its initialization (60). A closer
study of the mechanism of the BLUE-recursion shows how-
ever thatQx0x0 has also no effect on the outcomes of the
BLUE. The gain matrix of the BLUE-recursion is namely
not driven by the variance matrixQt|[t−1], but by the error
covariance matrixCt|[t−1], which itself does not depend on
Qx0x0 (cf. lemma 9). Hence, the only role played byQx0x0

lies in describing how the uncertainty ofx0 contributes to the
uncertainty of the estimators at the various epochs. Working
with a model with unknown, but deterministic initial state-
vector, i.e.Qx0x0 = 0, will therefore produce the same state-
vector estimate as obtained when working with a random
initial state-vector with unknown mean. Only the variance
matrices of the two solutions will differ, since the latter is
impacted by the randomness of the initial state-vector.

A further comparison between the two recursions shows
that the difference between the BLUE and the BLUP is only
driven by the system noise. Since both have the same ini-
tialization and the same time-update, the difference between
the two only starts to be felt in the measurement-update of
epocht = 1. The measurement-updates differ, since the gain
matrices differ,Gt 6= Kt (cf. 63). These gain matrices are the
same however, in caseCt|[t−1] = Pt|[t−1], which is the case
when the system noise is absent. We therefore have the fol-
lowing result.

Corollary 5 (BLUE=BLUP) The recursive BLUP becomes
identical to the recursive BLUE in case system noise is ab-
sent, i.e. if St = 0 for all t, then

x̂t|[t] = x̌t|[t] and x̂t|[t−1] = x̌t|[t−1] (64)

for all t.

Thus in all cases where system noise is present the recursive
BLUE will give an output different from that of the recursive
BLUP.

5.3 Recursive BLUE-BLUP

Since the BLUE- and BLUP recursions have the same struc-
ture and are both based on the same predicted residuals, one
can combine them into one recursion. For that purpose we

denote the BLUE-BLUP state-vector and its error variance
matrix as

x̃t|[t−1] =

[

x̂t|[t−1]

x̌t|[t−1]

]

, P̃t|[t−1] =

[

Qt|[t−1] Ct|[t−1]

CT
t|[t−1] Pt|[t−1]

]

(65)

with a likewise definition for ˜xt|[t] andP̃t|[t]. Thus combining
the recursions, the combined results of Theorems 2 (a) and
(b) can be summarized as follows.

Theorem 2 (Recursive BLUE-BLUP)The three steps of the
BLUE-BLUP recursion are given as

Initialization: x̃0|0 = Ex̂0|0,

P̃0|0 = EP0|0ET + Q̃x0x0

(66)

with E= [In, In]T andQ̃x0x0 = blockdiag(Qx0x0,0).

Time update: x̃t|[t−1] = Φ̃t,t−1x̃t−1|[t−1],

P̃t|[t−1] = Φ̃t,t−1P̃t−1|[t−1]Φ̃T
t,t−1+ S̃t

(67)

with transition matrixΦ̃t,t−1 = blockdiag(Φt,t−1,Φt,t−1) and
system noise variance matrix̃St = blockdiag(0,St).

Measurement update:

x̃t|[t] = x̃t|[t−1]+ K̃tvt ,

P̃t|[t] = P̃t|[t−1]− K̃tQvt vt K̃
T
t

(68)

with predicted residual vt = y
t
− Ãt x̃t|[t−1], Ãt =At [0, In], and

gain matrixK̃t = P̃t|[t−1]Ã
T
t Q−1

vt vt
.

This result shows how the recursive BLUE and the recursive
BLUP can be mechanized into one single recursion. This
result is therefore the recursive formulation of the BLUE-
BLUP expression given in Theorem 1. With this extention of
the standard ‘Kalman filter’ theory, we are thus also able to
recursively compute the best estimate of the unknown mean
state-vector, instead of only the best prediction of the ran-
dom state-vector outcome.

In analogy with Kalman-filter based smoothing, it also
possible to develop the BLUE-BLUP smoothing solution.
For the BLUE-part, smoothing is rather straightforward, since
x̂t|[s] = Φt,sx̂s|[s] and Qt|[s] = Φt,sQs|[s]ΦT

t,s. For the BLUP-
part, the smoothing will resemble the standard smoothing
methods, like fixed-point, fixed-interval or fixed-lag smooth-
ing, see e.g., (Gelb, 1974; Maybeck, 1979; Jazwinski, 1991;
Gibbs, 2011).

6 Summary and conclusions

In this contribution the BLUE-BLUP recursion of the par-
titioned measurement- and dynamic model was introduced
(see Table 3). It extends ‘Kalman-filter’ theory by replacing
the BLP-approach with the BLUP, thereby relaxing the as-
sumptions on the state-vector means. It was argued that the
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Table 3 The three steps of the BLUE-BLUP recursion compared.

Estimation Prediction

Initialization x̂0|0 = (AT
0 R−1

0 A0)
−1AT

0 R−1
0 y

0
x̌0|0 = x̂0|0 = (AT

0 R−1
0 A0)

−1AT
0 R−1

0 y
0

Q0|0 = Qx0x0 +(AT
0 R−1

0 A0)
−1 P0|0 = (AT

0 R−1
0 A0)

−1

Time update x̂t |[t−1] = Φt ,t−1x̂t−1|[t−1] x̌t |[t−1] = Φt ,t−1x̌t−1|[t−1]

Qt |[t−1] = Φt ,t−1Qt−1|[t−1]ΦT
t ,t−1 Pt |[t−1] = Φt ,t−1Pt−1|[t−1]ΦT

t ,t−1+St

Measurement update x̂t |[t ] = x̂t |[t−1]+Ct |[t−1]A
T
t Q−1

vtvt
vt x̌t |[t ] = x̌t |[t−1]+Pt |[t−1]A

T
t Q−1

vt vt
vt

Qt |[t ] = Qt |[t−1]−Ct |[t−1]A
T
t Q−1

vt vt
AtCT

t |[t−1] Pt |[t ] = Pt |[t−1]−Pt |[t−1]A
T
t Q−1

vt vt
AtPt |[t−1]

BLUP-approach is often more appropriate, since in many,
if not most, applications the means of the state-vectors are
indeed unknown.

The recursive-BLUP was derived from first principles,
thereby making use of an earlier derived decomposition of
the BLUP into misclosures and any LUP. The role of the
misclosures was emphasized and it was shown how they
form the basis for constructing the predicted residuals. It
was also shown how the recursive-BLUP, as a consequence
of the relaxing assumption on the state-vector means, does
away with the need of having to specify the initial state-
vector variance matrix.

Next to the recursive-BLUP, we introduced, for the same
model, the recursive-BLUE. This extension is new and an-
other consequence of assuming the state-vector means un-
known. In the standard Kalman-filter set-up with known state-
vector means, such difference between estimation and pre-
diction does not occur since one is then only left with BLP
instead of with BLUP of the state-vectors.

Finally, it was shown how the two intertwined recursions
can be combined into one general BLUE-BLUP recursion.
The recursion outputs for every epoch, in parallel, the BLUP
for the random state-vector and the BLUE for the mean of
the state-vector (cf. the block diagram of Figure 1).
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