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Abstract

This paper derives Hamilton-Jacobi equation (HJE) in Hilbert space for
optimal control of stochastic distributed parameter systems (SDPSs) governed
by partial differential equations (SPDEs) subject to both state-dependent and
additive stochastic disturbances. First, nonlinear SDPSs are transformed to
stochastic evolution systems (SESs), which are governed by stochastic ordi-
nary differential equations (SODEs) in Hilbert space, using functional analy-
sis. Second, the Hamilton-Jacobi equation (HJE), of which the solution results
in an optimal control law, is derived. Third, a problem of optimal control of
linear SDPSs, which include the air pollution process, with a quadratic cost
functional is addressed as an application of the HJE. After, the control design
is done, the SESs are transformed back to Euclidean space for implementation.

Keywords: Hamilton-Jacobi Equation, Hilbert space, stochastic distributed
parameter system, stochastic evolution equation, optimal control, air pollution.

1 Introduction

Although optimal control of DPSs, i.e., systems governed by partial differential
equations (PDEs), has been under development since 1960s, optimal control of non-
linear SDPSs subject to stochastic disturbances has been rarely addressed, [6], [40],
[39], [36], [27], [25], [5], [10], [23]. The optimal control methods of the DPSs can be
roughly classified into two main approaches.

The first approach, referred to as the modal control one, discretizes the PDEs
to obtain lumped-parameter systems described in terms of modal coordinates, i.e.,
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systems of ordinary differential equations (ODEs), to which the classical control
design methods [1], [21], [22] can be applied. The modal control approach, see [30],
[35], [18], can only control a certain number of modes of a DPS, and has difficulty
in computing appropriate gain matrices.

The second approach applies the calculus of variations [8], [19] to derive a set of
Euler-Lagrange (EL) equations in a form of the two-point boundary value (TPBV)
problem, of which the solution results in optimal control inputs. Several techniques
proposed to solve the TPBV problem include [26], [31] on hill-climbing algorithms,
and [20], [32], [17], [3], [4] on an extension of the representer method to nonlinear
systems based on linearization. However, the hill-climbing algorithms require a
search in the whole control trajectories and the extended representer method requires
many representers. To overcome the above issue, a non-climbing algorithm was
proposed in [13] to solve a general TPBV problem.

On the other hand, the use of tools from functional analysis makes it possible
to represent PDEs in Euclidean space as evolution systems, i.e., systems governed
by ODEs in Hilbert space. Thus, we can utilize various ideas from control design
methods well developed for systems governed by ODEs in Euclidean space. Af-
ter nonlinear SDPSs are transformed to SESs in Hilbert space by using functional
analysis, the goal of this paper is to present a derivation of the HJE in Hilbert
space, which is relatively easy to follow, for optimal control of SDPSs subject to
both state-dependent and additive stochastic disturbances. Several remarks on ap-
plications of the derived HJE are then made in relation to optimal control design
procedure for SESs, stability analysis of SESs, and Itô’s formula frequently used
in control of stochastic systems. Finally, the HJE is applied to solve the optimal
control problem of linear SDPSs, which include the air pollution process, with a
quadratic cost functional.

2 Problem formulation

Let D be a open bounded set in Euclidean r-space Rr with piecewise smooth bound-
ary S, and let t denote time defined on an interval T = [t0, tf ] with tf > t0 ≥ 0. In
this paper, we consider the following SDPS in the Euclidean space:

∂X(x, t)

∂t
= N

(
X(x, t),

∂X(x, t)

∂x
, ...,

∂r1X(x, t)

∂xr1
,x, t,ud(x, t)

)
+ G

(
X(x, t),

∂X(x, t)

∂x
, ...,

∂r2X(x, t)

∂xr2
,x, t

)
ẇ(x, t), x ∈ D

X(x, t0) = X0(x), x ∈ D

N b

(
X(ξ, t),

∂X(ξ, t)

∂n
, ...,

∂r3X(ξ, t)

∂nr3
,x, t,ub(ξ, t)

)
, ξ ∈ S,

(1)

defined for t ∈ T , where x = col(x1, ..., xr) ∈ D is the r-dimensional spatial coor-
dinate vector; X(x, t) is the n-dimensional vector function describing the system
state; w(x, t) is p-dimensional stochastic disturbance; the dot over w(x, t) denotes
the formal derivative with respect to time t; N (·) and N b(·) are the n-dimensional
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vector functions; G(·) are the n × p matrix function; X0(·) is the n-dimensional
Gaussian random vector with zero mean and the covariance matrix P0(x,y); n is
the outward directed normal vector to the boundary S; ud(·) is the md-dimensional
distributed control input; and ub(·) is mb-dimensional boundary control input. In
(1), the following notations have been used

∂Xri(·)
∂xri

=
∂riXd(·)
∂xk1

1 ...∂kr
xr

, ri = k1 + ...+ kr, i = 1, 2,

∂X(·)
∂n

=
r∑

i=1

∂X(·)
∂xi

cos(n, xi)

(2)

where ri ≥ 0, and k. are nonnegative integers; and cos(n, xi) is the direction cosine
of xi. We assume that the p-dimensional stochastic disturbance vector w(·) is a
Wiener process with zero mean value and the covariance matrix function given by

E
{⟨

h(x, t),w(x, t)
⟩
L2
p(D)

⟨
h(y, t),w(y, t)

⟩
L2
p(D)

}
=∫

D

⟨
h(x, t),Q(x,y)h(y, s)

⟩
L2
p(D)

dy min((t− t0), (s− t0))
(3)

for t, s ∈ T and any p-dimensional square integrable function h(x, t) on D, where
Q(x,y) is a p× p symmetric positive definite matrix function, and

⟨
·, ·
⟩
L2
p(D)

is the

inner product: ⟨
h(x, t),h(x, s)

⟩
L2
p(D)

=
∫
D
hT (x, t)h(x, s)dx. (4)

Hence, ẇ(x, t) can be regarded as the white Gaussian noise in t [9].
The control objective is to design the control inputs ud(·) and ub(·)) so as to

minimize the cost functional:

J(X(x, t0), t0) = E(X,t0

{
Jf (X(x, tf ), tf )+

∫ tf

t0
L(X(x, τ), τ,ud(τ),ub(τ))dτ

}
, (5)

where E(X,t{·} is the conditional expectation of {·} with respect to the σ-field gen-
erated by {(X(x, τ), t0 ≤ τ ≤ t}; and Jf (·) and L(·) are the positive and real-valued
integrable functions with respect to time t.

3 Transformation of SDPS in Euclidean to SES

in Hilbert space

In this section, functional analysis [41] is used to transform the SDPS (1) in the
Euclidean space to a SES in the Hilbert space. As such, we first define L2

n(D) and
Hm

n (D) spaces by

L2
n(D) =

{
ϕ(x, t)

∣∣∣∫
D
∥ϕ(x, t)∥2ndx < ∞

}
Hm

n (D) =
{
ϕ(x, t)

∣∣∣ ∂|α|ϕ(x, t)

∂xk1
1 ....∂xkr

r

∈ L2
n(D)

}
,

(6)
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where ∥ · ∥n is the n-dimensional Euclidean norm; |α| = k1 + ... + kr ≤ m for
α = (k1, ..., kr) with k1, ..., kr nonnegative integers. The spaces L2

n(S) and Hm
n (S)

are defined similarly by replacing D by S in (6). We now define the norms of L2
n(D)

and Hm
n (D) by

∥ϕ(x, t)∥L2
n(D) =

⟨
ϕ(x, t),ϕ(x, t)

⟩
L2
n(D)

=
∫
D
∥ϕ(x, t)∥2ndx,

∥ϕ(x, t)∥Hm
n (D) =

⟨
ϕ(x, t),ϕ(x, t)

⟩
Hm

n (D)
=

∑
|α|≤m

⟨ ∂|α|ϕ(x, t)

∂xk1
1 ....∂xkr

r

,
∂|α|ϕ(x, t)

∂xk1
1 ....∂xkr

r

⟩
L2
n(D)

.

(7)

Thus, L2
n(D) and Hm

n (D) are Hilbert spaces endowed with the norms ∥ϕ(x, t)∥L2
n(D)

and ∥ϕ(x, t)∥Hm
n (D), respectively, given in (7).

Considering x ∈ D as the parameter defined at very t ∈ T , we can regardX(x, t)
as X(t) ∈ U1 = Hm

n (D) with m ≥ max(ri), i = 1, 2, 3. Similarly, w(x, t), ud(x, t),
X(ξ, t), and ub(ξ, t) are regarded as w(t) ∈ U2 = L2

n(D), ud(t) ∈ U3 = L2
n(D),

X(t) ∈ U4 = Hm
n (S), and ub(t) ∈ U5 = L2

n(S), respectively. Therefore, the SDPS
(1) can be described as

dX(t) = N (X(t), t,ud(t))dt+ G(X(t), t)dw(t)

X(t0) = X0

N b

(
X(t), t,ub(t)) = 0,

(8)

which is referred to as the SES in the Hilbert space. In (8), N (·) maps U1×T ×U3

into U6 = L2
n(D); N b(·) is the mapping defined on U4 × T × U5; and G(·) defined

on U1 × T is an element of L (U2,U6) showing the aggregate of bounded linear
mapping from U2 into U6.

The covariance matrix function of w(x, t) is described from (3) by

E
{
w(t) ◦w(t)

}
= Qmin((t− t0), (s− t0)), (9)

where Q is a compact, positive, bounded, and trace class operator mapping U2 into
U2. If h1, h2, and h are any elements of the Hilbert space H , then h1 ◦ h2 is an
element of L (H ,H ) defined by

(h1 ◦ h2)h = h1

⟨
h2, h

⟩
H
, (10)

where
⟨
·, ·
⟩

H
is an inner product in H . The cost functional J(·) can be written

from (5) as

J(X(t0), t0) = EX,t0

{
Jf (X(tf ), tf ) +

∫ tf

t0
L(X(τ), τ,ud(τ),ub(τ))dτ

}
. (11)

4 Hamilton-Jacobi equation in Hilbert space

In this section, we derive the HJE for the SES (8). As such, Let W (X(t), t) be the
minimum of J(·) with respect to ud(t) ∈ U3 and ub(t) ∈ U5, i.e.,

W (X(t), t) = min
ud(t)∈U3,ub(t)∈U5, t≤τ≤tf

[
J(X(t), t)

]
. (12)
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Let us assume that W (X(t), t) is continuously differentiable on T and continuously
twice Fréchet differentiable on U1. Applying Bellman’s optimality principle [2] to
the integral term of (11) results in

min
ud(τ)∈U3,ub(τ)∈U5, t≤τ≤tf

[L1 + L2 −W (X(t), t)] = 0, (13)

where

L1 = EX,t

{∫ t+σ

t
J(X(τ), τ,ud(τ),ub(τ))dτ

}
,

L2 = EX,t

{
W (X(t+ σ), t+ σ)

}
,

(14)

with σ > 0. Applying the mean-value theorem to the term L1 yields

L1 = EX,t

{
J(X(t+ σε), t+ σε,ud(t+ σε),ub(t+ σε))

}
σ, (15)

where 0 < ε < 1. On the other hand, applying the Taylor expansion theorem [11]
to the term L2 results in

L2 =W (X(t), t) + σ
∂W (X(t), t)

∂t
+WX(X(t), t)EX,t{∆X(t)}

+
1

2
EX,t{WXX [∆X(t) ∆X(t)]}+O(∥∆X(t)∥3U6

),

(16)

where WX(·) and WXX(·) are the first and the second order Fréchet derivatives
on U1, which are a linear mapping from U1 into the real-valued R, and a bilinear
mapping from U1×U1 into R, respectively, and O(·) is the same order infinitesimal,
and

∆X(t) = X(t+ σ)−X(t). (17)

We now calculate the term L2 in (16). From (8), we have

EX,t{∆X(t)} =
∫ t+σ

t
N (X(τ), τ,ud(τ))dτ,

EX,t{Φ[∆X(t),∆X(t)]} = Tr(Φ)(G
√
Q)σ,

Tr(Φ)(G
√

Q) =
∞∑
i=1

Φ
[
G(X(t), t)

√
λiei,G(X(t), t)

√
λiei

]
.

(18)

where Φ is a a bilinear mapping from U1 × U1 into R and {λi, ei, i = 1, 2, ...} is an
orthonormal set of eigenvalues and eigenfunctions of the operator Q, i.e.,

Qei = λiei. (19)

Substituting (18) into (16) yields

L2 =W (X(t), t) + σ
∂W (X(t), t)

∂t
+WX(X(t), t)

∫ t+σ

t
N (X(τ), τ,ud(τ))dτ

+
1

2
Tr(WXX(X(t), t))(G

√
Q)σ +O(∥∆X(t)∥3U6

).

(20)
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On the other hand, from (8), (13), (14), and (15) we have

O(∥∆X(t)∥3U6
) = O(σ3). (21)

Substituting (15) and (20) with O(∥∆X(t)∥3U6
) satisfied (21) into (13) yields

− ∂W (X(t), t)

∂t
= min

ud(t+σ),ub(t+σ)

[
EX,t

{
J(X(t+ σε), t+ σε,ud(t+ σε),ub(t+ σε))

}
+

1

σ
WX(X(t), t)

∫ t+σ

t
N (X(τ), τ,ud(τ))dτ +

1

2
Tr(WXX(X(t), t))(G

√
Q)

]
.

(22)

From the Bochner theorem [41], we have

lim
σ→0

1

σ

∫ t+σ

t
N (X(τ), τ,ud(τ))dτ = N (X(t), t,ud(t)). (23)

Using this identity and letting σ → 0 in (22) result in the following HJE in the
Hilbert space:

−∂W (X(t), t)

∂t
= min
ud(t+σ),ub(t+σ)

[
H(X(t), t,ud(t),ub(t),WX(X(t), t),WXX(X(t), t)))

]
,

(24)
whereH(·) is referred to as the system Hamiltonian, which is a real-valued functional
given by

H(·) =J(X(t), t,ud(t),ub(t)) +
⟨
WX(X(t), t),N (X(t), t,ud(t))

⟩
U6

+
1

2
Tr

[
G(X(t), t)QG∗(X(t), t)WXX(X(t), t)

]
,

(25)

with Tr[·] and the asterisk being the trace and the adjoint of the corresponding
operator, respectively.

Remark 4.1 If the functional space is replaced by a space of finite dimension,
then N (·) and G(·) become a vector and a matrix in the finite dimensional space,
respectively, and the HJE (24) is reduced to the HJE derived for stochastic lumped-
parameter systems (SLPSs) in Euclidean space [24]. Moreover, if the SDPS (8) is
linear subject to additive stochastic noise, the HJE (24) is reduced to the results
in [39].

Remark 4.2 The optimal controls ud(t) and ub(t) can be found by performing
the following three-step procedure:

1. Minimize the Hamiltonian H(·) to obtain ud(·) and ub(·) as functions of X(t),
t, and W (t), i.e., ud(·) = ϖd(X(t), t, W (t)) and ub(·) = ϖb(X(t), t, W (t));

2. Substitute the above ϖd(·) and ϖb(·) into (24), then solve for W (·), which
must satisfy the aforementioned conditions such as the boundary defined in
the third equation of (8) and twice Fréchet differentiable;
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3. Substitute the found W (·) into the expressions of ϖd(·) and ϖb(·) to obtain
the controls ud(·) and ub(·).

In general, the first two steps of the above procedure are formidable for a predefined
cost functional J(·) in (11) and a general nonlinear SES in (8). This formidable
task was tackled by approximating methods on either dealing with the above procedure
directly or converting the HJE (24) to a two-point boundary value problem, see [26,
31] on hill-climbing algorithms; [3, 17, 20, 32] on an extension of the representer
method [3] to nonlinear systems based on linearization; and [13] on a non-clinbing
algorithm. Moreover, no formal proof of convergence of the approximating solutions
by the above approximating methods to the true ones even though there only are
several works on existence and uniqueness of (weak/viscosity) solutions of HJEs to
certain SLPSs and SDPSs [7,29,38].

Remark 4.3 If the controls ud(t) and ub(t) in the SES (8) are set to zero or
are designed such that they are functions of X(t) and t, the HJE (24) can be used
for stability analysis of the SES (8) without controls or of the resulting closed loop
system. This was used in [12] for stability analysis of linear DPSs. Moreover, if the
SES (8) does not contain the controls ud(t) and ub(t), and the cost functional J(·)
is chosen as

J(·) = −dW (X(t), t)

dt
+
⟨
WX(X(t), t),G(X(t), t)w(t)

⟩
U6
, (26)

the HJE (24) reduces to Itô’s formula [34].

5 Application to optimal control of an air pollu-

tion process

5.1 Mathematical model of an air pollution process

LetD be a open bounded set in Euclidean three-dimensional space R3 with piecewise
smooth boundary S, let t denote time defined on an interval T = [t0, tf ] with
tf > t0 ≥ 0, and let r = col(x, y, z). An air pollution process can be modeled by
a system of advection-diffusion equations, which are a set of the following partial
differential equations in three dimensional space as follows [37]:

∂c(r, t)

∂t
=−∂(V xc(r, t))

∂x
−∂(V yc(r, t))

∂y
−∂(V zc(r, t))

∂z
+ f(r, t)+

∂

∂x

(
Kx∂c(r, t)

∂x

)
+

∂

∂y

(
Ky ∂c(r, t)

∂y

)
+

∂

∂z

(
Kz ∂c(r, t)

∂z

)
−Kc(r, t) +Bd(r, t)ud, ∀r ∈ D,

K̄x∂c(r, t)

∂x
lx + K̄y ∂c(r, t)

∂y
ly + K̄z ∂c(r, t)

∂z
lz + K̄bc(r, t) +Bb(r, t)ub = 0, ∀r ∈ S,

c(r, t0) = c0(r)

(27)
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where c(r, t) = col(c1(r, t), ..., cn(r, t)) is the n-dimensional vector of pollutant con-
centrations in location r and at time t measured in parts per million (p.p.m); V x,
V y and V z are wind velocities in the x, y and z directions, respectively (m/s); Kx,
Ky and Kz are turbulent diffusivities which are simplycalled diffusion coefficient
matrices in the x, y and z directions, respectively (m2/s); K̄x, K̄y and K̄z are the
mean parts of Kx, Ky and Kz, respectively; K is the deposition coefficient matrix;
K̄b is a constant parameter matrix; f(r, t) represents the emission source; lx, ly and
lz are direction cosines of the outward normal to the boundary surface S; Bd(r, t)
and Bb(r, t) are n×md and n×mb matrix functions; ud and ub are md-dimensional
and mb-dimensional control input vectors. It is noted that the controls ud and ub

can be either distributed or discrete over the domain D and the boundary S, see
Subsection 5.6.

Now the wind velocities (V x, V y, V z), and the turbulent diffusivities (Kx,Ky,Kz)
are decomposed of their mean and stochastic parts as follows

V x = V̄ x +W V x, V y = V̄ y +W V y, V z = V̄ z +W V z,

Kx = K̄x +WKx, Ky = K̄y +WKy, Kz = K̄z +WKz,

K = K̄ +WK ,

(28)

where •̄ andW • denote the mean and stochastic parts of •, respectively. Substituting
(28) into (27) results in

∂c(r, t)

∂t
= −∂(V̄ xc(r, t))

∂x
− ∂(V̄ yc(r, t))

∂y
− ∂(V̄ zc(r, t))

∂z
+

∂

∂x

(
K̄x∂c(r, t)

∂x

)
+

∂

∂y

(
K̄y ∂c(r, t)

∂y

)
+

∂

∂z

(
K̄z ∂c(r, t)

∂z

)
− K̄c(r, t) +Bd(r, t)ud

− ∂(W V xc(r, t))

∂x
− ∂(W V yc(r, t))

∂y
− ∂(W V zc(r, t))

∂z
+

∂

∂x

(
WKx∂c(r, t)

∂x

)
+

∂

∂y

(
WKy ∂c(r, t)

∂y

)
+

∂

∂z

(
WKz ∂c(r, t)

∂z

)
−WKc(r, t) + f(r, t) ∀r ∈ D,

K̄x∂c(r, t)

∂x
lx + K̄y ∂c(r, t)

∂y
ly + K̄z ∂c(r, t)

∂z
lz + K̄bc(r, t) +Bb(r, t)ub = 0, ∀r ∈ S,

c(r, t0) = c0(r).

(29)

It is now seen that the air pollution process has been rewritten as a system of
stochastic PDEs. In the next subsection, we will present an application of the
control design in the previous sections to a fairly general linear SDPS, which covers
the stochastic air pollution process (29). The control objective is to design the
controls ud and ub so as to minimize the pollutant concentration c(r, t) while putting
appropriate weights on the controls ud and ub.
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5.2 Linear stochastic distributed parameter system

Consider the following linear SDPS subject to both state-dependent and additive
stochastic disturbances:

∂X(x, t)

∂t
= AxX(x, t) +Bd(x, t)ud(x, t) +G1(x, t)X(x, t)ẇ1(x, t)

+G0(x, t)ẇ0(x, t), x ∈ D

X(x, t0) = X0(x), x ∈ D

βξX(ξ, t) = Bb(ξ, t)ub(ξ, t), ξ ∈ S

(30)

where

Ax[•] =
n∑

i,j=1

Aij(x, t)
∂2[•]
∂xi∂xj

+
n∑

i=1

Bi(x, t)
∂[•]
∂xi

+C(x, t)[•],

βξ[•] =
n∑

j=1

Aj(ξ, t)
∂[•]
∂xj

+ F (ξ, t)[•],
(31)

where the Aij(x, t), Bi(x, t), C(x, t), F (ξ, t), G1(x, t) are r×r symmetric matrices
defined on D × T and Aij(x, t) = Aji(x, t), and Aj(ξ, t) is given by

Aj(ξ, t) =
n∑

i=1

Aij(ξ, t) cos(n, xi), (32)

with n being the outward normal to the boundary S at the point ξ ∈ S, and (n, xi)
being the angle between the outward normal n and the xi-axis. In (30), G0(x, t) is
an n-dimensional vector function; G1(x, t) is a n× n matrix function; Bd(x, t) and
Bb(ξ, t) are n×md and n×mb matrix functions; w(x, t) = col(w1(x, t), w0(x, t)) is
mutually independent Wiener process, of which intensity Q(x,y) of the covariance
matrix function defined by (3) is given by

Q(x,y) = diag(Q1(x,y), Q0(x,y)). (33)

Moreover, the functionals Jf (·) and L(·) in (5) are specified in a quadratic form as

Jf (X(x, tf ), tf ) =
1

2

∫
D
XT (x, tf )Ωf (x,y)X(y, tf )dy,

L(X(x, t), t,ud(x, t),ub(ξ, t)) =
1

2

∫
D
XT (x, t)Ω(x,y)X(y, t)dy

+
1

2

∫
D
uT

d (x, t)Rd(x,y)ud(y, t)dy +
1

2

∫
S
uT

b (ξ, t)Rb(ξ,η)ub(η, t)dSη,

(34)

where Ωf (x,y) and Ω(x,y) are n × n positive definite matrix functions; and
Rd(x,y) and Rb(ξ,η) are md ×md and mb ×mb positive definite matrix functions,
respectively. It is clearly seen that the linear SDPS (30) includes the stochastic air
pollution process (29).
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5.3 Transformation to SES in Hilbert space

Applying the procedure in the previous section, we can transform the linear SDPS
(30) to the following SES in Hilbert space:

dX(t) = A(t)X(t) +Bd(t)ud(t) +G1(t)X(t)ẇ1(t) +G0(t)ẇ0(t),

X(t0) = X0,

βX(t) = Bb(t)ub(t),

(35)

and the functionals Jf (·) and L(·) from (34) are transformed to

Jf (X(tf ), tf ) =
1

2

⟨
X(tf ),ΩfX(tf )

⟩
L2
n(D)

,

L(X(t), t,ud(t),ub(t)) =
1

2

⟨
X(t),ΩX(t)

⟩
L2
n(D)

+
1

2

⟨
ud(t),Rdud(t)

⟩
L2
md

(D)

+
1

2

⟨
ud(t),Rdud(t)

⟩
L2
mb

(S)

(36)

Therefore, the Hamiltonian H(·) of the system (35) is given from (25) by

H(·) = 1

2

⟨
X(t),ΩX(t)

⟩
L2
n(D)

+
1

2

⟨
ud(t),Rdud(t)

⟩
L2
md

(D)
+

1

2

⟨
ud(t),Rdud(t)

⟩
L2
mb

(S)

+
⟨
WX(X(t), t),A(t)X(t)

⟩
L2
n(D)

+
1

2
Tr

[
(G1(t)X(t)Q1X

∗(t)G∗
1(t)WXX(X(t), t) +G0(t)Q0G

∗
0(t))WXX(X(t), t)

]
.

(37)

5.4 Control design

To design the controls ud(t) and ub(t), we need to solve the HJE (24) with H(·)
given in (37). Let us assume that W (X(t), t) is of the following form

W (X(t), t) =
1

2

⟨
X(t),P (t)X(t)

⟩
L2
n(D)

+
1

2
P0(t) (38)

where P (t) ∈ L (U1×U1) is a self-adjoint positive definite trace class operator with
the kernel P (x,y, t) and P0(t) is a positive and real-valued function of t. From (38),
the first and second Fréchet derivatives WX(X, t) and WXX(X, t) are given by

WX(X(t), t) = P (t)X(t),

WXX(X(t), t) = P (t).
(39)

Substituting (39) into (37) results in

H(·) =1

2

⟨
X(t),ΩX(t)

⟩
L2
n(D)

+
1

2

⟨
ud(t),Rdud(t)

⟩
L2
md

(D)
+

1

2

⟨
ud(t),Rdud(t)

⟩
L2
mb

(S)

+
⟨
P (t)X(t),A(t)X(t)

⟩
L2
n(D)

+
1

2
Tr

[
(G1(t)X(t)Q1X

∗(t)G∗
1(t)WXX(X(t), t) +G0(t)Q0G

∗
0(t))P (t)

]
.

(40)
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Applying Green’s formula, see Lemma 3.1 in [14] to
⟨
P (t)X(t),A(t)X(t)

⟩
L2
n(D)

yields⟨
P (t)X(t),A(t)X(t)

⟩
L2
n(D)

=
⟨
A∗(t)P (t)X(t),X(t)

⟩
L2
n(D)

+
⟨
β(t)X(t),P (t)X(t)

⟩
L2
n(S)

−
⟨
β∗(t)P (t)X(t),X(t)

⟩
L2
n(S)

,
(41)

where A∗(t) and β∗(t) are given by

A∗(t)[•] = A∗
x[•] =

n∑
i,j=1

∂2(Aij(x, t)[•])
∂xi∂xj

−
n∑

i=1

∂(Bi(x, t)[•])
∂xi

+C(x, t)[•],

β∗(t)[•] = β∗
ξ[•] =

n∑
j=1

Aj(ξ, t)
∂[•]
∂xj

−
n∑

i=1

[
Bi(ξ, t)−

n∑
j=1

∂Aij(ξ, t)

∂xj

]
× cos(nξ, xi)[•] + F (ξ, t)[•].

(42)

Substituting (40) with the use of (41) into the HJE (24) yields the following
optimal controls

ud(t) = −R−1
d B∗

d(t)P (t)X(t),

ub(t) = −R−1
b B∗

b (t)P (t)X(t),
(43)

and P (t) and P0(t) must satisfy the following equations:

dP (t)

dt
= −A∗(t)P (t)− (A∗(t)P (t))∗ −Ω−G∗

1(t)P (t)Q1G1(t)

+ P (t)Bd(t)R
−1
d B∗

d(t)P (t) + Pb(t)Bb(t)R
−1
b B∗

b (t)P (t),

P (tf ) = Ωf , β∗P (t) = 0,

dP0(t)

dt
= −Tr (G∗

0(t)P (t)Q0G0(t)), P0(tf ) = 0,

(44)

where (A∗(t)P (t))∗ and Pb(t) are the adjoint of A∗(t)P (t) and an element of
L (L2

n(S),L2
n(S)), respectively, and satisfy:⟨

X(t),A∗(t)P (t)X(t)
⟩
L2
n(D)

=
⟨
(A∗(t)P (t))∗X(t),X(t),

⟩
L2
n(D)

,⟨
P (t)X(t),X(t)

⟩
L2
n(S)

=
⟨
X(t),Pb(t)X(t)

⟩
L2
n(D)

.
(45)

5.5 Transformation of SES in Hilbert space to PDE in Eu-
clidean space

For implementation, we now need to transform the controls ud(t) and ub(t) in (43)
and P (t) and P0(t) in (44) to Euclidean space. For symmetric operators, the fol-
lowing two equations hold from the Schwartz kernel theorem [28]:

P (t)ϕ(t) =
∫
D
P (x,y, t)ϕ(y, t)dy,

P−1(t)ϕ(t) =
∫
D
P̄ (x,y, t)ϕ(y, t)dy,

(46)
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where ϕ(t) is an infinitely differentiable function with compact support inD, P (x,y, t)
and P̄ (x,y, t) are kernels of P (t) and P−1(t), respectively. With (46), the controls
ud(t) and ub(t) in (43) are transformed to Euclidean space as follows:

ud(x, t) = −
∫
D2R̄d(x,y)B

T
d (y, t)P (y,y′, t)X(y′, t), dydy′

ub(ξ, t) = −
∫
S

∫
D
R̄b(ξ,η)B

T
b (η, t)P (η,x, t)X(x, t)dxdSη.

(47)

Moreover, P (t) and P0(t) in (44) are transformed to Euclidean space as follows:

∂P (x,y, t)

dt
= −A∗

xP (x,y, t)− (A∗
yP (x,y, t))T −Ω(x,y)

−
∫
D
GT

1 (x, t)P (x,x′, t)Q1(x
′,y)G1(y, t)dx

′

+
∫
D2P (x,x′, t)Bd(x

′, t)R̄d(x
′,y′)BT

d (y
′, t)P (y′,y, t)dx′dy′

+
∫
S2P (x, ξ, t)Bb(ξ, t)R̄b(ξ,η)B

T
b (η, t)P (η,y, t)dSξdSη,

P (x,y, tf ) = Ωf (x,y), β∗
ξP (x, ξ, t) = 0,

dP0(t)

dt
= −

∫
D2G

T
0 (x, t)P (x,y, t)Q0(x,y)G0(y, t)dxdy, P0(tf ) = 0.

(48)

5.6 Finite number of controls

We assume that there are Md controllers at fixed points x1, ...,xMd
of the domain

D and Mb controllers at fixed points ξ1, ..., ξMb
of the boundary S. Thus, by setting

Bd(x, t)ud(x, t) =

Md∑
i=1

Bd(xi, t)ud(xi, t)Iδ(x− xi),

Bb(ξ, t)ub(ξ, t) =

Mb∑
i=1

Bb(ξi, t)ub(ξi, t)Iδ(ξ − ξi),

uT
d (x, t)Rd(x,y)ud(y, t) =

Md∑
i,j=1

(
uT

d (xi, t)Rd(xi,yj)ud(yj, t)
)
Iδ(x− xi)Iδ(y − yi),

uT
b (ξ, t)Rb(ξ,η)ub(η, t) =

Mb∑
i,j=1

(
uT

b (ξi, t)Rb(ξi,ηj, t)ub(ηj, t)
)
Iδ(ξ − ξi)Iδ(η − ηj),

(49)

where δ(·) is the Dirac delta function, we can use the same control design procedure
in the previous subsections to obtain the following optimal controls:

ud(xi, t) = −
Md∑
j=1

∫
D
R̄d(xi,xj)B

T
d (xj, t)P (y,xj, t)X(y, t)dy

ub(ξi, t) = −
Mb∑
j=1

∫
D
R̄b(ξ,ξj)B

T
b (ξj, t)P (ξj,x, t)X(x, t)dx.

(50)
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Moreover, P (x,y, t) is given by:

∂P (x,y, t)

dt
= −A∗

xP (x,y, t)− (A∗
yP (x,y, t))T −Ω(x,y)

−
∫
D
GT

1 (x, t)P (x,x′, t)Q1(x
′,y)G1(y, t)dx

′

+

Md∑
i,j=1

P (x,x′
i, t)Bd(x

′
i, t)R̄d(x

′
i,y

′
j)B

T
d (y

′
j, t)P (y′

j,y, t)

+

Mb∑
i,j=1

P (x, ξi, t)Bb(ξi, t)R̄b(ξi,ηj)B
T
b (ηj, t)P (ηj,y, t),

P (x,y, tf ) = Ωf (x,y),

β∗
ξP (x, ξ, t) = 0,

(51)

and P0(t) is the same as given in (48).

6 Conclusions

This paper has presented a procedure to transform the nonlinear SDPSs in the
Euclidean space to the SESs in the Hilbert space. Then, the HJE for the SESs
was derived for solving the optimal control problem of nonlinear SDPSs under both
state-dependent and additive stochastic disturbances. The HJE was applied to solve
the optimal control problem of linear SDPSs, which include the stochastic air pol-
lution process. The designed control laws were then transformed back to Euclidean
space for implementation using the Schwartz kernel theorem. The proposed optimal
control design can be applied to further improve performance of controlling other
practical DPSs such as marine riser systems in [15], [16], and [33].
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