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Abstract 

This paper will cover a variety of topics. First, it will briefly overview the GRACE (Gravity Recovery and 
Climate Experiment) and GOCE (Gravity field and steady-state Ocean Circulation Explorer) satellite 
mission concepts, with a view to the improvements made (and to be made) to the global gravity field. 
Second, it will summarise some results of the assessment of the recent EGM2008 global gravity field 
model, which has a spatial resolution of about 10 km. Third, it will describe the computation and 
evaluation of the AUSGeoid09 model that will be released by Geoscience Australia in the very near 
future. All three topics will be set in the framework of the restrictions of current data and how airborne 
gravimetry can contribute. With the increased interest in coastal zone mapping because of threats like 
sea level change and tsunamis, airborne gravimetry can bridge the gap between land and satellite-
altimeter-derived gravity data. As such, a proposal will be made to collect airborne gravimetry in key 
Australian coastal zones, but preferably along the entire coastline! Another area that lacks gravity data 
is Antarctica, which can adversely affect global gravity field models (the polar-gap problem). Airborne 
gravimetry has already been used to survey the gravity field of the Arctic, so another proposal will be 
made to collect airborne gravity over Antarctica. Of course, both are ambitious and massive projects, 
but it is important to consider them as valuable applications of airborne gravimetry. 
 
Introduction 

Gravity data, in whatever functional form, is the key ingredient in the computation of the geoid, which 
is the equipotential surface of the Earth’s gravity field that corresponds most closely with mean sea 
level in the open oceans and if there were no other perturbing forces such as currents. A common 
application of the geoid is for the determination of physically meaningful heights from GPS (e.g., 
Featherstone, 2008), but it has applications in oceanography and geophysics. In 1849, G.G. Stokes 
first showed how to solve a free boundary-value problem in potential theory to compute the geoid from 
gravity anomalies1. Other adaptations are also available, such as M. Hotine’s integral for the 
determination of the geoid from gravity disturbances1 as a solution of a fixed boundary-value problem.  
 
These boundary-value approaches have since been extended to the computation of the geoid from 
airborne gravimetry and airborne gradiometry (e.g., Schwarz, 1996). This and other variants have now 
been applied in practice, first using gravimetry from the Greenland airborne geophysics project 
(Brozena, 1991). Suggested methods and practical geoid computations from airborne gravimetry are 
described by, e.g., Schwarz and Li (1996), Forsberg et al. (2000), Novàk et al. (2003) and Serpas and 
Jekeli (2005), among others. This has also spawned airborne geoid mapping systems for geodetic and 
other applications (e.g., Forsberg et al., 1996; Bastos et al., 1997).  
 
Numerous gravimetric geoid models have been computed all over the world, as well as global models, 
often in terms of a truncated series expansion in terms of scalar spherical harmonic basis functions. 
Useful reviews of earlier global gravity field models are given by Lambeck and Coleman (1983), 
Nerem et al. (1995) and Rapp (1997), whereas more recent models are documented and stored for 
free download from the International Centre for Global Gravity Field Models (http://icgem.gfz-
potsdam.de/ICGEM/ICGEM.html).  
 
Since the, 1960s, global models have relied heavily upon satellite-based geodetic observations to 
provide the long-wavelength components of the Earth’s external gravity field (e.g., Kaula, 1966; 

                                                      
1 See Hackney and Featherstone (2003) for a definition and discussion of the subtle differences between gravity 
‘anomalies’ and gravity ‘disturbances’. 
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Reigber, 1989), but some of these global models use additional terrestrial gravimetry from a variety of 
sensors, including gravity anomalies derived from satellite radar altimetry and a limited amount of 
airborne gravimetry. Broadly, these can be classified between satellite-only and combined global 
geopotential models.  
 
More recently, the CHAMP (Challenging Mini Satellite Payload; Reigber et al., 1999), GRACE (Gravity 
Recovery and Climate Experiment; Tapley et al., 2004) and GOCE (Gravity field and steady-state 
Ocean Circulation Explorer; Drinkwater et al., 2003; Johannessen et al., 2003) satellite missions have 
significantly enhanced the long-wavelength determination of the gravity field (cf. Balmino et al., 1999). 
However, because of attenuation of the gravitational signal with altitude, satellite-only models are 
always of long wavelength in nature. The short wavelengths can be supplemented by terrestrial gravity 
data (land, marine, altimeter, airborne), but only where it is available.  
 

 

 

Figure 1. An example of the data gaps of between, 20 km and, 200 km in the coastal zone 
between land and marine gravity observations (image courtesy of Dru Smith, US NGS). 

 
Notable gravity data gaps in terrestrial gravity data coverage are over Antarctica and almost all coastal 
and estuarine zones (cf. Figure 1), which is where airborne gravimetry can contribute quite 
significantly. 
  

 Relatively few gravity observations have been collected in the Antarctic (e.g., Diehl et al., 
2008; Scheinert et al., 2008; Jordan et al., 2009; McLean et al., 2009), whereas the Arctic was 
airborne gravity surveyed relatively recently as part of the Arctic Gravity Project (Kenyon et al., 
2008; http://earth-info.nga.mil/GandG/wgs84/agp/). A key benefit of collecting gravity data 
over Antarctica is that it will help solve the so-called polar gap problem (e.g., Sneeuw and van 
Gelderen, 1997; Albertella et al., 2001; Rudolph et al., 2002). 

 Coastal and estuarine zones lack gravity data because of navigation restrictions for ship-borne 
gravimetry and because gravity anomalies derived from satellite altimetry, even if re-tracked 
(cf. Sandwell and Smith, 2009; Andersen et al., 2010), remain contaminated in this region (cf. 
Deng et al., 2002; Deng and Featherstone, 2006). This is where airborne gravimetry can help 
(cf. Hwang et al., 2006). Figure 1 shows an example of a coastal gravity data gap centred on 
New Orleans in the US, which will be filled by airborne gravity as part of the US GRAV-D 
project (described later). 
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Modern satellite gravimetry 

At the broadest conceptual level, dedicated satellite gravimetry missions observe (either directly or 
indirectly) the Earth’s external gravitational gradients. This is essentially through differential 
measurements between two (or more) points, thus largely eliminating correlated errors. This can take 
two approaches (e.g., Rummel, 1979, 1986; Rummel et al., 1999; Jekeli, 1999; Rummel et al., 2002): 
satellite-to-satellite tracking (SST) or a dedicated gravity gradiometer instrument onboard a satellite. 
  
The SST methods can use either low-low inter-satellite tracking (ll-SST), where two low-Earth orbiting 
satellites track one another (Wolff, 1969; Kaula, 1983; Wagner, 1987; Cui and Lelgemann, 2000; 
Cheng, 2002), or high-low inter-satellite tracking (hl-SST), where high-Earth orbiting satellites (notably 
GPS) track the low-Earth orbiting satellite(s) (Schrama, 1991; Visser and van den IJssel, 2000). The 
satellite(s) being tracked should be in low orbits, with the proof masses isolated, as-best-as-possible, 
from the perturbing effects of atmospheric drag. Both SST methods can be applied to satellite gravity 
gradiometry (cf. Ditmar et al., 2003). 
 
Various such missions have been proposed for over two decades, such as GRAVSAT (Piscane, 1982; 
Wagner, 1983), STAGE (Jekeli and Upadhyay, 1990), Aristotles (Visser et al., 1994), STEP (Albertella 
et al., 1995; Petrovskaya, 1997) and SAGE (Sansò et al., 2000). However, only now have dedicated 
satellite gravity field missions been launched, most notably GRACE and GOCE.  
 
GRACE 

GRACE (the Gravity Recovery and Climate Experiment) is a joint US-German mission to map both the 
static and a time-variable parts of the Earth’s external gravity field (Tapley et al., 2004; 
http://www.csr.utexas.edu/grace/; http://grace.jpl.nasa.gov/). Temporal gravity variations have been 
monitored every month (30 days) or less (1-10 days) by different groups. GRACE is used for a variety 
of scientific applications, including oceanography (surface and deep-ocean currents, mass and heat 
content change, sea-level change); hydrology (seasonal storage of surface and subsurface water, 
evapotranspiration); glaciology (ice-sheet mass change, sea-level change); solid Earth geophysics 
(glacial isostatic adjustment, mantle viscosity, lithosphere density) and geodesy (global and regional 
geoid modelling, precise satellite orbit determination).  
 

 
(a) 

 
 

 
(b) 

 
 

Figure 2. (a) The GRACE concept of satellite-to-satellite tracking in the low-low mode combined 
with satellite-to-satellite tracking in the high-low mode (from Rummel et al., 2002). (b) Artist’s 
impression of the GRACE satellites in orbit (from http://www.csr.utexas.edu/grace/). 
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Figure 3. Time-variable GRACE gravity field solutions from various groups. The total number of 
solutions for each group are shown on the right hand side. Delft University of Technology 
(DEOS), University of Bonn (ITG), NASA’s Goddard Space Flight Centre (GSFC), The French 
Centre National d’Études Spatiales (CNES), NASA’s Jet Propulsion Laboratory (JPL), University 
of Texas (CSR) and the German GeoForschungs Zentrum (GFZ). The gaps in some of the time-
series are when the GRACE satellites were going through periods of orbital resonance. (Image 
courtesy of Kevin Fleming, Curtin University) 

 
The GRACE mission consists of two near-identical satellites following one other in the same near-
circular polar orbit, at a ~498-km launch altitude that has now decayed to ~460 km, and separated by 
a distance of ~220 km; a so-called tandem formation. The ll-SST is measured using K-band ranging 
(KBR), coupled with GPS-based hl-SST tracking of both satellites (Figure 2). These data are 
processed in different ways by several different groups worldwide to yield models of the Earth’s 
external gravity field (Figure 3). GRACE was launched on 17 March, 2002 with an anticipated five-year 
lifespan, but the mission is still operating and may extend to, 2013 or, 2015 (12-14 years) because of 
the design life of the satellite components (batteries, altitude, propellant, thrusters, solar panels). 
  
GRACE-based time-variable and static gravity models suffer from some deficiencies: the time-variable 
solutions are only really reliable to spherical harmonic degree ~60 and have to be ‘destriped’ to 
remove correlated errors (Swenson and Wahr, 2006) and filtered, usually using a Gaussian filter of 
width 300-600 km (Wahr et al., 1988), though many other filters are available. Spectral and spatial 
leakages also have to be handled before interpretation (e.g., Baur et al., 2009). The exact methods 
vary among ‘users’ and there is not yet a general consensus on the ‘best’ approach to these problems. 
The stripes also contaminate the static GRACE gravity field solutions, so they either have to be 
truncated to a lower degree or destriped. These problems can also be removed by combining the 
GRACE static solution with terrestrial gravimetry (see section on EGM2008).  
 
GOCE 

GOCE (the Gravity field and steady-state Ocean Circulation Explorer) is a European Space Agency 
(ESA) satellite mission to map the global static gravity field using gravity gradiometry 
(http://www.esa.int/export/esaLP/goce.html; Drinkwater et al., 2003; Johannessen et al., 2003). Due to 
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the use of a low-Earth orbiting (~250 km) gradiometer, and based on numerous simulations, it should 
be able to determine the static gravity field to an accuracy of ~1 mGal in terms of gravity anomalies 
and ~1-2 cm in terms of geoid undulations (cf. Tscherning et al., 2002) down to spatial scales of 
~100 km. A geoid model of this accuracy is important as a global reference surface for geodesy (e.g., 
unification of height datums), and studies of Earth-interior processes, ocean current circulation, ice 
motion and sea-level change, among others.  
 

 
(a) 

 
 

 
(b) 

 
 

Figure 4. (a) The GOCE concept of satellite gravity gradiometry combined with high-low satellite 
tracking (from Rummel et al., 2002). (b) Artist’s impression of the GOCE satellite in orbit (from 
http://www.esa.int/export/esaLP/goce.html). 

 
The GOCE satellite was launched on 17 March, 2009, with an expected mission duration of ~20 
months, but given the experience with GRACE it is possible that this could be extended, but 
atmospheric drag is more of a restriction for the lower orbiting GOCE spacecraft (~250 km vs 
~460 km). GOCE orbits in a dawn-dusk Sun-synchronous orbit at 96.7 degrees inclination. 
Importantly, the GOCE satellite will house a dedicated three-axis electrostatic gravity gradiometer, 
which is used to determine the static gravity field in combination with hl-SST using GPS (Figure 4). 
This will allow determination of the stationary global gravity field at a spatial resolution of ~100-km, 
though there will be circular data gaps centred at the poles (e.g., Sneeuw and van Gelderen, 1997; 
Albertella et al., 2001; Rudolph et al., 2002). This is why airborne gravimetry should be collected in 
Antarctica (see later), which can be integrated to refine GOCE data (cf. Bouman and Koop, 2001).  
 
EGM2008 

EGM2008 (Pavlis et al., 2008) is a recent combined global gravity field model. It is provided in terms of 
fully normalised spherical harmonic coefficients to degree 2190 and order 2160. This corresponds to a 
spatial resolution (half-wavelength) of ~10 km at the equator. These coefficients can be used to 
synthesise any gravity field functional, including the full gravity gradient tensor, using public-domain 
software provided at the NGA website http://earth-
info.nga.mil/GandG/wgs84/gravitymod/egm2008/index.html. 
 
EGM2008 uses a GRACE-derived satellite-only model from the Institute for Theoretical Geodesy (ITG) 
at the University of Bonn, Germany. While this GRACE-only model resolves the gravity field to degree 
and order 180, the higher degree coefficients are far less reliable (see earlier). This results in large 
errors in areas with no terrestrial gravity data, notably in Antarctica where errors in the geoid height 
can be larger than one metre (Morgan and Featherstone, 2009). There is also the problem of striping 
in the static GRACE solution that is not removed in areas devoid of terrestrial gravity data. These 
issues provide justification for airborne gravimetry over Antarctica. 
 
In other areas where gravity data are protected by commercial or military confidentiality clauses, the 
EGM Development Team had to reconstruct free-air gravity anomalies from Bouguer anomaly maps 
and topographic elevations from the Shuttle Radar Topographic Mission (SRTM). Sri Lanka is one 
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example of where this occurred, but where we were able to access observational data to test 
EGM20008 (Abeyratne et al., 2009). The standard deviation of fit of EGM2008 to, 207 GPS-levelling 
points is ±0.184 m and to, 20 gravity points on benchmarks is ±6.743 mGal, showing the 
reconstruction to be effective. 
 
In Australia, Claessens et al. (2009) have shown that EGM2008 reveals some known and unknown 
problems in the AUSGeoid98 national geoid model (Featherstone et al., 2001). Figure 5 shows long-
wavelength differences related to the use of GRACE data in EGM2008 (cf. Featherstone, 2007), linear 
differences offshore due to unadjusted ship-track gravity data (cf. Featherstone, 2009), and the large 
difference in the Gulf of Carpentaria is probably due to mis-modelling because of a 1m non-barotropic 
tide (Tregoning et al., 2008). 
 
EGM2008 performs very well in Australia because a substantial amount of gravity observations have 
been in the public domain for many years. We helped ensure that the EGM Development Team was 
provided access to GADDS (http://www.geoscience.gov.au/gadds), but they also had access to 
additional gravity data not stored in GADDS (Claessens et al., 2009). There are several datasets in the 
Australian region with which to evaluate EGM2008, the results of which are summarised in Table 1. Of 
interest is the rather good fit to the BRAGS airborne gravity survey (Sproule et al., 2001) over the 
northern Barrier Reef. For a more complete analysis, which includes various subsets and localised 
study areas, see Claessens et al. (2009). 
 

 

 
 

Figure 5. Differences (metres) between EGM2008 and AUSGeoid98 [Lambert projection]. 
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Table 1. Fit of EGM2008 to Australian gravity-related data (from Claessens et al., 2009). Units of 
measurement for the maximum, minimum, mean and standard deviations statistics are metres. 

 
data  # points  max  min  mean  std 

All GA GADDS land free‐air  
gravity anomalies (mGal) 

1,304,904 +192.294 –88.756 +0.498  ±5.541

GA GADDS free‐air anomalies  
not used in EGM2008 (mGal) 

548,787 +191.677 –67.641 +0.566  ±6.373

BRAGS airborne free‐air anomalies
(mGal) 

6,725 +13.239 –22.434 –2.495  ±3.954

GPS‐levelling data (m),  
no bias and tilt applied 

254 +0.648 –0.535 +0.063  ±0.242

GPS‐levelling data (m),  
with bias and tilt applied 

254 +0.571 –0.701 +0.000  ±0.173

north‐south vertical  
deflections (arc‐sec) 

1,080 +17.69 –6.99 –0.62  ±1.17

east‐west vertical  
deflections (arc‐sec) 

1,080 +8.70 –11.34 +0.10  ±1.28

 
AUSGeoid09 

AUSGeoid09 will soon replace AUSGeoid98 as the national standard for the transformation of GPS 
heights to the Australian Height Datum (AHD), and should be released by Geoscience Australia as 
soon as final tests are completed. Its gravimetric component was computed by the author and 
colleagues at Curtin University of Technology. This was based on EGM2008 to spherical harmonic 
degree 2190 and adds regional gravity data via numerical integration of a deterministically modified 
Stokes integral using efficient FFT techniques. The full details will be in a forthcoming paper in the 
Journal of Geodesy (Featherstone et al., 2010). 
 
The input data to AUSGeoid09 comprise EGM2008, land gravity anomalies recomputed from raw data 
in the GADDS database (http://www.geoscience.gov.au/gadds), DNSC2009GRA marine gravity 
anomalies derived from re-tracked satellite radar altimetry (Andersen et al., 2010), gravimetric terrain 
corrections computed from the GEODATA DEM of Australia (cf. Kirby and Featherstone, 2002), and 
around 1,000 GPS-levelling points first used to test the computations. 
 
Because EGM2008 is already such a good fit to the Australian gravity field (refer to the section on 
EGM2008), only a small residual quasigeoid signal of up to ~20-30 cm is needed (Figure 6). The 
larger differences in mountainous regions are most probably due to the use of different digital 
elevation models: EGM2008 uses a DEM based on SRTM data, whereas AUSGeoid09 uses the 
GEODATA v3 Australian DEM. Other differences are omission errors because EGM2008 has a spatial 
resolution of 5 arc-mins, whereas AUSGeoid09 has a spatial resolution of 1-arc-min. 
 
The improvements in the fit to GPS-levelling data were only very marginal. The standard deviation of 
fit to a newly reprocessed set of 911 GPS heights at readjusted AHD benchmarks only improved from 
±0.138 m for EGM2008 alone to ±0.129 m for the gravimetric-only component of AUSGeoid09. 
However, the quality of the AHD heights is the major limiting factor in this evaluation (cf. Featherstone, 
2004, 2006; Featherstone and Filmer, 2008; Filmer and Featherstone, 2009). 
 
Because of the deficiencies in the AHD, the released version of AUSGeoid09 has been fitted to the 
AHD using least-squares collocation (Featherstone and Sproule, 2006) to give a model of the base of 
AHD rather than the classical quasigeoid (cf. Featherstone, 1998). This approach is pragmatic 
because the majority of the users of AUSGeoid09 will want to determine AHD heights from Global 
Navigation Satellite Systems (GNSS, notably GPS). The gravimetric version of AUSGeoid09, called 
AGQG2009, is available from the author for scientific purposes only, but must not be distributed in 
case it causes confusion with the official AUSGeoid09 product, especially as AUSGeoid09 will be a 
national standard.  
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Figure 6. (a) Residual terrestrial gravity anomalies (in mGal), and (b) residual quasigeoid 
undulations (in m) used to compute AUSGeoid09 as a regional refinement to EGM2008. 

 
Suggestion 1: Airborne gravity over the Australian coasts 

Although AUSGeoid09 has dispensed with erroneous ship-track data (cf. Featherstone, 2009) and 
used marine gravity anomalies from re-tracked satellite radar altimetry (Andersen et al., 2010), it is still 
likely to be less accurate in coastal and estuarine zones (cf. Andersen and Knudsen, 2000). This is 
because ship-track gravimetry is limited by near-shore navigation restrictions (and poorly modelled 
tides in the coastal zone) and radar re-tracking is imperfect because of backscatter from the land and 
inland water bodies (cf. Deng et al., 2002). Also see the discussion by Hipkin (2000) on the problems 
of modelling the geoid in the coastal zone. A poor geoid model in these zones is of particular concern 
in Australia because the majority of the population and thus users of AUSGeoid09 reside near the 
coast. At present, there are no obvious means with which to solve these problems with the existing 
data restrictions. 
 
As such, it is suggested that Australia collects airborne gravimetry over coastal and estuarine zones. 
Initially, and based on cost considerations, acquisition should be carried out near the most populated 
areas or those that are low-lying and thus vulnerable to marine inundation (sea level change, storm 
surges, tsunamis). Ideally, however, the whole coastline should be airborne gravity surveyed. In this 
regard, the US National Geodetic Survey has already embarked on its GRAV-D project to collect 
airborne gravity in coastal zones, with a view to better mapping of the geoid in the coastal zone 
(http://www.ngs.noaa.gov/grav-d/). There is no reason why Australia should not replicate this initiative. 
It will also allow for the better integration of topographic and bathymetric data that have been collected 
by GPS-controlled air- and ship-borne surveys (e.g., LIDAR and SONAR). 
 
Suggestion 2: Airborne gravity over Antarctica 

As shown in Morgan and Featherstone (2009) and summarised earlier, EGM2008 does not perform 
well in Antarctica. This is simply because the EGM Development Team did not have access to many 
terrestrial gravity observations over this region. Instead, they had to rely on the degree-180 GRACE-
only ITG model from the University of Bonn. GRACE-derived gravity field models are very unreliable at 
these high degrees, where correlated noise and aliasing cause striped patterns. Because satellites 
cannot sense the high-frequency gravity field, the only solution in Antarctica is to collect terrestrial 
gravity (i.e., ground, vehicle, or airborne observations). These data will also help address the polar gap 
problem in GRACE- and GOCE-only models (cf. Sneeuw and van Gelderen, 1997; Albertella et al., 
2001; Rudolph et al., 2002). 
 
Because of the harsh and restricted access in Antarctica, airborne gravity is the most logical choice. 
Moreover, the experience from the Arctic Gravity Project (Kenyon et al., 2008; http://earth-
info.nga.mil/GandG/wgs84/agp/) and some area-limited surveys in Antarctica (Diehl et al., 2008; 
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Scheinert et al., 2008; Jordan et al., 2009; McLean et al., 2009) shows that it is feasible. There is no 
reason why Australia should not replicate the Arctic Gravity Project. 
 
Concluding comment 

This paper has overviewed the GRACE and GOCE satellite mission concepts, presented results of 
some assessments of EGM2008, and described the computation and evaluation of AUSGeoid09. All 
were set in the framework of the restrictions of current data and how airborne gravimetry can help to 
provide solutions. One proposal is to collect airborne gravimetry in key Australian coastal zones, but 
preferably the entire coastline! Another proposal is to collect airborne gravimetry over Antarctica to 
close the polar-gap problem. While both are ambitious projects, it is important to consider them as 
valuable applications of airborne gravimetry.  
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