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Abstract 

Diamondoids are polycyclic saturated hydrocarbons that possess a cage-like carbon skeleton 

approaching that of diamond. These ‘nano-diamonds’ are used in a range of industries 

including nanotechnologies and biomedicine. Diamondoids were thought to be highly 

resistant to degradation but their presumed degradation acid products have now been 

found in oil sands process-affected waters (OSPW) and numerous crude oils. Recently, a 

diamondoid related structure, 3-noradamantane carboxylic acid, was reported to cause 

genetic damage in trout hepatocytes under in vitro conditions. This particular compound 

has never been reported in the environment but led us to hypothesise that other more 

environmentally-relevant diamondoid acids could also be genotoxic. We carried out in vivo 

exposures (3 d, semi-static) of marine mussels to two environmentally-relevant diamondoid 

acids, 1-adamantane carboxylic acid and 3,5-dimethyladamantane carboxylic acid plus 3- 

noradamantane carboxylic acid with genotoxic damage assessed using the  Comet assay. An 

initial screening test confirmed that these acids displayed varying degrees of genotoxicity to 

haemocytes (increased DNA damage above that of controls) when exposed in vivo to a 

concentration of 30 μmol L-1. In a further test focused on 1-adamantane carboxylic acid with 

varying concentrations (0.6, 6 and 30 μmol L-1), significant (P<0.05%) DNA damage was 

observed in different target cells (viz. gills and haemocytes) at 0.6 μmol L-1. Such a level of 

induced genetic damage was similar to that observed following exposure to a known 

genotoxin, benzo(a)pyrene (exposure concentration: 0.8 μmol L-1). These findings may have 

implications for a range of worldwide industries including oil extraction, nanotechnology 

and biomedicine.  
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Introduction 

Globally, oil industries produce vast quantities of waste water that either enter the 

environment directly or is processed in some manner. Within such waters, one class of polar 

organic compounds, the ‘naphthenic acids’ (NA), was implicated in causing hormonal 

disruption in fish populations in the North Sea, UK (Knag et al. 2013; Thomas et al. 2009). 

These compounds have the general formula CnH2n+zO2 (where n refers to the number of 

carbon atoms and z is zero or a negative even integer referring to the hydrogen deficiency). 

NAs have been implicated as the causative agents responsible for observed sublethal effects 

including hormonal disruption, embryonic developmental defects and genotoxicity, arising 

from exposure to OSPW  e.g. (He et al. 2012; He et al. 2011; Kavanagh et al. 2011; Lacaze et 

al. 2014; Peters et al. 2007; Sansom et al. 2013) and references therein) but studies 

concerned with the toxicity of individual NAs are rare.  

An interesting group of NAs that have been identified in OSPW and in highly-degraded crude 

oils are the diamondoid acids (Rowland et al. 2011a; Rowland et al. 2011c). Diamondoids 

are polycyclic saturated hydrocarbons that possess a cage-like carbon skeleton approaching 

that of diamond, sometimes termed ‘nano-diamonds’, and are used in a range of industries 

including nanotechnologies and biomedicine (Mansoori et al. 2012).  These structures, 

including adamantane and diamantane, were thought to be highly resistant to degradation 

but the discovery of their associated acids suggests that they are subject to metabolic 

processes. Little is known about the toxicities of individual adamantine acids although Jones 

et al. (2011) reported V. fischeri bioluminescence inhibition EC50s in the range 340 to 780 

µmol L-1 and Scarlett et al. (2012) predicted relatively low toxicological effects for a range of 

human and environmental health endpoints based on sophisticated modelling software 
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(Admet™, Simulations Plus). The latter study also experimentally tested several adamantane 

acids using a panel of human cell-derived nuclear receptor reporter gene bioassays (CALUX® 

panel, Biodetection Systems, NL) for estrogenic, androgenic, peroxisome-proliferation, and 

aryl hydrocarbon receptor-mediated transactivation but no significant effects were 

observed. Recently however, Lacaze et al. (2014) reported that 3-noradamantane carboxylic 

acid (Fig. 1) produced a significant genotoxic effect on trout hepatocytes as measured by 

single cell gel electrophoresis (SCGE), commonly referred to as the Comet assay. 

Concentrations in the range 3 - 90 µmol L-1 caused DNA damage of ca. 20 - 27 %, (compared 

to 10% damage observed in negative controls) similar to that produced by exposure to 0.1% 

OSPW. Although similar in structure to adamantane carboxylic acids (Fig. 1), 3-

noradamantane carboxylic acid has never, to our knowledge, been identified in OSPW or 

any environmental sample to date. We hypothesised that if the cage structure was at least 

in part responsible for the observed genotoxicity (Lacaze et al. 2014), then other 

diamondoid acids should also produce similar effects.  

The preliminary study reported herein tested this hypothesis using an adamantane acid and 

an alkylated homologue. As living organisms have the capacity to repair genetic damage 

more efficiently, we performed in vivo exposures. Two diamondoid acids known to be 

present in OSPWs from multiple industries in the Athabasca region of Canada (Lengger et al. 

2015; Rowland et al. 2011a; Rowland et al. 2012; Rowland et al. 2011c), numerous crude 

oils (unpublished data) and commercial mixtures of NA (Rowland et al. 2011b), namely 1-

adamanatane carboxylic acid (1-Ad) and 3,5-dimethyladamantane carboxylic acid (DM-Ad),  

plus 3-noradamantane carboxylic acid (N-Ad) were assessed for their genotoxic potential 

using the widely-employed  Comet assay as an accepted method of DNA damage 
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assessment (Collins 2014 and references therein; Jha 2008). As diamondoid acids are 

present in crude oils they are likely to be present in waste waters from oil platforms and 

pose the potential for genetic damage in the biota. We therefore utilised the marine mussel 

Mytilus galloprovincialis as a test species. Bivalves filter large quantities of water (ca. 2 - 3 L 

h-1) and have commonly been used to assess various endpoints following exposure to oil 

and petroleum-derived products (e.g. Bayne et al. 1982; Booth et al. 2007; Di et al. 2011; 

Dixon et al. 2002; Donkin et al. 2003; Rowland et al. 2001; Scarlett et al. 2011).  

 

Materials and Methods 

For all exposures conducted, positive controls, benzo(a)pyrene (BaP, 0.8 µmol L-1) for in vivo 

and hydrogen peroxide (1000 µM) for in vitro and negative controls (procedural blank, 

seawater, and acetone (0.001% v/v) were performed. Concentrations of BaP and hydrogen 

peroxide used in the study as positive controls were based on the previous validation 

studies carried out in our laboratory (Dallas et al. 2013; Di et al. 2011). 

 

Preparation of in vivo test solutions 

Sodium hydroxide, hydrochloric acid, HPLC-grade water, acetone, BaP (purity ≥96%), 1-

adamantane carboxylic acid (purity ≥99%) and 3,5-dimethyladamantane-1-carboxylic acid 

(purity ≥97%) were purchased from Sigma (Gillingham, UK). 3-noradamantane carboxylic 

acid (≥98% purity) was supplied by Fluorochem (Hadfield, UK). Stock solutions of 30 mmol L-

1 were prepared by dissolving the test compounds in HPLC-grade water and NaOH with 

pH >9 then lowering the pH dropwise with addition of HCl to achieve a final pH of 7.5 – 8. 
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The stock solutions were diluted in HPLC-grade water to give additional concentrations of 6 

and 0.6 mmol L-1. Working solutions (1.8 ml) were dissolved in 1.8 L seawater to produce 

test solutions of 30, 6 and 0.6 µmol L-1. A procedural blank was created using similar 

volumes of NaOH and HCl with a final pH of 7.5 – 8. BaP was used as positive control  since it 

is a known genotoxin (Tung et al. 2014). This was dissolved in acetone and spiked into 

seawater to give a concentration of 0.8 µmol L-1 (acetone 0.001%). An acetone (0.001%) 

negative control for the BaP exposure was also prepared.  Water quality measurements, (O2 

saturation, salinity, pH and temperature) were taken before commencement of the tests 

and daily thereafter. Temperature was 15°C ± 0.5°C, salinity of 34 (± 1) psu, pH 8.1 ± (0.1) 

and O2 saturation >95% throughout the tests. 

 

Collection and maintenance of mussels  

Mussels (M. galloprovincialis, shell length ca. 50 mm, sexually mature) were collected from 

Trebarwith Sands on the north coast of Cornwall, UK (N 50° 38.850’, W 004° 45.680’) and 

transported to the laboratory at Plymouth University within 2h. Under UK law, no specific 

permissions were required for these locations/activities as no endangered or protected 

species were involved.  Following shell cleaning in clean seawater to remove barnacles and 

other epibionts, mussels were maintained in a 15°C temperature-controlled room. Mussels 

were fed daily with the alga Isochrysis galbana in accordance with manufacturer’s 

recommendations (Reed Mariculture, Campbell, Ca, USA) with regular water changes. Prior 

to any exposures, from the collected stock mussels, individuals of similar size (50 ± 5 mm) 

were selected for the exposures and assigned randomly to Pyrex glass beakers containing 

1.8L filtered (2 µm) natural seawater i.e. one mussel per beaker. 
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Exposure tests 

An initial set of exposures were performed using test solutions of 30 µmol L-1 of all three 

adamantane acids (n = 6). This was the concentration of N-Ad reported by Lacaze et al. 

(2014) to cause significant damage in trout hepatocytes. Positive and negative controls were 

employed as described above. Having established that the genotoxic response was similar 

for all three NA, a second set of tests were performed using 1-Ad only with concentrations 

of 30, 6 and 0.6 µmol L-1 (n = 6) plus positive controls, procedural blanks (as above) and 

seawater negative controls. For both sets of tests individual mussels were placed in 1.8 L of 

test solutions and the exposure period was 3 d semi-static with daily water exchanges and 

dosing of test solutions. Mussels were fed daily (as above) following daily water exchanges 

(100 % replenishment). Beakers were coded and their positions were randomly allocated. 

Following the end of the exposures, haemolymph was extracted (and for secondary tests, 

gill tissue excised) from individual mussels and assigned new coding such that the cell 

preparation and Comet assay was performed without knowledge of the treatment received 

(i.e. blind scoring). Prior to performing the comet assay, cell viability was determined using 

Eosin Y staining (Canty et al. 2009), viability was deemed >95 %.  

 

Comet assay  

Determination of DNA damage such as induction of DNA strand breaks and alkali labile sites 

using haemocytes and gill cells of mussels were determined using the Comet Assay as 

described elsewhere (Jha 2008; Dallas et al. 2013). Further details are provided in 
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supplementary information. The replicate microgels on the slides were each stained with 

ethidium bromide and scored under an epifluoresence microscope (Leica, DMR) using the 

Komet 5.0 image-analysis software (Kinetic Imaging, Liverpool, UK).  Slides were coded and 

randomised and 50 cells were scored per replicate. Although the software provided a range 

of parameters, DNA damage is reported here as % tail DNA as is considered to be the most 

reliable parameter and also allows for inter-laboratory comparison (Kumaravel and Jha 

2006). 

 

Statistical analysis 

Statistical analyses of results were performed using Statgraphics® centurion XV, Statpoint 

Inc. (Warrenton, Virginia, USA).  Prior to analysis of variance (ANOVA), data was tested for 

normality using Cochran’s test and log-transformed as necessary. Where there was a 

significant of means, the data were further analyzed by post-hoc Tukey's HSD tests to 

determine significant differences between treatments and controls. 

 

Results and Discussion 

The noradamantane core structure is not a true diamondoid but has a similar three-dimensional 

cage structure (Fig.1). Diamondoids are widely used in many industrial and biomedical processes 

(Mansoori et al. 2012). Our study tested the hypothesis that carboxylic acids of true diamondoid 

structures would produce similar genotox damage as that previously reported for N-Ad (Lacaze et al. 

2014). We chose to test a parent and an alkylated structure, both of which are known to be present 
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in OSPW, commercial mixtures of NA and crude oils (Rowland et al. 2011a; Rowland et al. 2012; 

Rowland et al. 2011b; Rowland et al. 2011c).  

A preliminary exposure revealed that a similar degree of genetic damage of ca. 15% was observed in 

mussel haemocytes (Fig. 2) following exposure to all three acids and BaP (0.8 µmol L-1).  The level of 

damage observed for the positive control (i.e. BaP) was consistent with previous studies (e.g. Banni 

et al. 2010; Di et al. 2011; Kwok et al. 2013; Mitchelmore et al. 1998). The degree of damage 

observed in mussel haemocytes was a little less than that observed by Lacaze et al. (2014) for in 

vitro exposures to N-Ad in fish hepatocytes and was not significantly different to controls at 

the 5 % probability level but was at the more precautionary 10 % level (Fig. 2). We further 

hypothesised that gill tissue cells would display a greater sensitivity than haemocytes as gills 

are the primary target tissue in aquatic filter feeding organisms. For the secondary tests we 

repeated the 30 µmol L-1 exposure to 1-Ad and assessed the damage in both haemolymph 

and gill tissue cells plus two lower concentrations (semi-log scale; 6 and 0.6 µmol L-1). The 

amount of damage in the haemocytes following exposure to 30 µmol L-11-Ad (Fig. 3b) was 

the same as found in the initial test (Fig. 2). Increased damage (approx. double) was 

observed in the gill tissue cells compared to haemocytes but this was not significantly 

different (P > 0.05) from the respective controls (Fig 3). Greater genetic damage was 

observed in both cell types following exposure to the lower concentrations tested (Fig 3), 

with ca. 42 % mean DNA damage for gills (compared to ca. 26% in controls; Fig. 3a) and ca 

21% DNA damage in haemocytes (compared to ca 6 % in controls; Fig. 3b).  In gill cells, 

significant damage of around 40 % (P < 0.05) was found after exposure to both 6 and 0.6 

μmol L-1 i.e. low and mid concentrations, respectively (Fig 3a). An increase in DNA damage 

was also observed in the gill tissue of mussels exposed to 0.8 µmol L-1 BaP similar to that 

produced by 0.6 µmol L-1 1-Ad (Fig. 3). The results produced by Lacaze et al. (2014) suggest 
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oxidative stress as a mechanism of genotoxic damage caused by N-Ad and therefore this 

may be true for the diamondoid acids tested herein but tests for oxidative stress were not 

performed. Hence, the similarly in effect concentrations between BaP and the diamondoid 

acids does not imply similar mode of action.  There was little difference between the genetic 

damage caused by the 6 and 0.6 µmol L-1 exposures (Fig. 3a and 3b) suggesting that the 

mussels’ DNA repair mechanism was able to prevent any further damage. Such 

nonmonotonic responses and low-dose effects are reported to be common in studies of 

natural hormones and endocrine disrupting compounds (reviewed by Vandenberg et al. 

2012). Mechanisms for these concentration-specific effects include signalling via single 

versus multiple steroid receptors due to non-selectivity at higher doses, receptor down-

regulation at high doses versus up-regulation at low doses, differences in the receptors 

present in various tissues, tissue-specific components of the endocrine-relevant 

transcriptional apparatus and cytotoxicity at high doses (Vandenberg et al. 2012 and 

references therin). Cytotoxicity is unlikely to be a factor as the in vitro membrane integrity 

EC10 concentration was determined to be 290 µM 1-Ad (unpublished data) and, to date, 

specific receptor-mediated transactivation for estrogenic, androgenic, peroxisome-

proliferation, or aryl hydrocarbon was found not to occur (Scarlett et al. 2012). Evidence has 

shown that DNA repair mechanisms can affect the response of invertebrates such as 

mussels when exposed to organic contaminants, since DNA breaks produced by these 

compounds may be repaired by base excision repair pathway (Villela et al. 2006).  

Furthermore, the lower DNA damage observed in the high 1-Ad treatment could be 

explained by the exclusion of the apoptotic cells in the Comet assay cell count (Hook and 

Lee 2004). Interestingly, Gagné et al (2013; 2012) reported that gene expression for DNA 

stand breaks in trout hepatocytes was associated with exposure to OSPW. Whether such 
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repair mechanisms would be capable of ameliorating the effects of exposure to genotoxic 

components in aquatic systems receiving inputs from oil industry waste waters or natural oil 

seepages is not known. Much greater DNA damage (92 % ± 6 %) was observed using 

hydrogen peroxide as an in vitro positive control, whereby embedded cells on slides (either 

gills or haemocytes) were exposed to a dose of 1000 µM for 30 min. The rationale for an in 

vitro positive control was two-fold, firstly to demonstrate the assay worked and secondly, to 

demonstrate damage with the effects of the in vivo DNA repair mechanisms in absentia. A 

no-observable-effect concentration (NOEC) was not established so we can only report a 

lowest-observable- effect-concentration (LOEC) of 0.6 µmol L-1 1-Ad. The practice of 

reporting NOECs and LOECs have been criticised and considered outdated (Landis and 

Chapman 2011); further evidence such as EC values (e.g. EC10) would be useful but could not 

be derived in this preliminary study. 

Although present evidence suggests that the potential for genetic damage exists, the 

widespread significance of such results may be difficult to interpret. Diamondoid acids 

represent a substantial fraction of the acid-extractable organic fraction of OSPW (Reinardy 

et al. 2013; Scarlett et al. 2013; West et al. 2013) so collectively could easily be at >mg L-1 

concentrations but distributions of individual adamantane acids can vary both within and 

between storage ponds from different industries (Lengger et al. 2015). At present, OSPW is 

contained within storage ponds although there is increasing evidence for possible leaching 

into the environment (Frank et al. 2014 and references therein). To date and to our 

knowledge, individual diamondoid acids have not been quantified in environmental 

systems. 
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Diamondoid acids are not just present in OSPW but are also present in many crude oils that 

have been substantially biodegraded (unpublished data). As the world’s supply of “sweet” 

oil shrinks, greater reliance on biodegraded oil will likely occur and the NA content in 

produced waters increase. As with all toxicants, the potential for harm diminishes with 

sufficient dilution, especially if they have a low tendency to bioaccumulate or biomagnify. 

Bioconcentration factors for diamondoid acids have not been reported but predictive 

models suggest that they are very low (<10) (Scarlett et al. 2012). The presence of 

adamantane diacids in OSPW, especially aged ponds, (Lengger et al. 2013) suggests that 

further degradation of adamantane acids occur in the environment. However, at present it 

is not known how long diamondoid acids may persist in the environment or if their further 

breakdown products also cause genetic damage. Given that a similar degree of genetic 

damage was observed in two very different species, cell types and exposure route, i.e. O. 

mykiss hepatocytes in vitro (Lacaze et al. 2014), and M. galloprovincialis haemolymph and 

gill tissue in vivo herein, it would appear that the potential exists that diamondoid acids will 

most likely cause similar damage across a broad range of species. 

 

Conclusions 

This preliminary study confirmed that a diamondoid-like acid (3-noradamantane carboxylic acid), 

previously found to be genotoxic in vitro in trout hepatocytes also produced effects in vivo in mussel 

haemocytes. The results also demonstrated that metabolites of true diamondoid structures, an 

adamantane acid (1-Ad) and an alkylated homologue, displayed varying degrees of genotoxicity in 

mussel haemocytes. Greater DNA damage was caused in gill cells with both 6 and 0.6 μmol L-1 1-Ad 

causing significant damage of ca 40% (P < 0.05), similar to that observed for a known genotoxic BaP 
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with a concentration of 0.8 μmol L-1. Although further research would be required to establish the 

level of risk to the environment diamondoid acids may pose, this preliminary study may have 

implications for a range of worldwide industries including oil extraction, nanotechnology and 

biomedicine. 
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Figure legends 

Fig. 1 Chemical structures of selected diamondoid acids. Adamantane is the smallest true 

diamondoid but noradamantane is a close structural analogue containing one less CH2 link. 

Fig. 2 DNA damage in haemocytes (mean ± 1 SE) resulting from exposure to 30 µmol L-1 

diamondoid acids. Letters represent significant differences (P < 0.10) from controls (n = 6). 

Different letters denote significant differences between treatments; same letters denote no 

significant difference e.g. a or b; treatments with multiple letters e.g. ab denote similarities 

with both groups a and b. 

Fig. 3 DNA damage in (A) isolated gill cells and (B) haemocytes (mean ± 1 SE)  resulting from 

exposure to 0.60 (low), 6 mid) and 30 (high) µmol L-1 1-adamantane carboxylic acid (1-Ad). 

Letters represent significant differences (P < 0.05) from controls (n = 6). Different letters 

denote significant differences between treatments; same letters denote no significant 

difference e.g. a or b; treatments with multiple letters e.g. ab denote similarities with both 

groups a and b. 
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