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Abstract—Based on the knowledge of instantaneous channel
state information (CSI), the optimal source and relay pre-
coding matrices have been developed recently for multiple-
input multiple-output (MIMO) relay communication systems.
However, in real communication systems, the instantaneous CSI
is unknown and needs to be estimated at the destination node.
In this paper, we propose a superimposed channel training
method for MIMO relay communication systems. It is shown
that to minimize the mean-squared error (MSE) of channel
estimation, the optimal training sequence at each node matches
the eigenvector matrix of the transmitter correlation matrix
of the forward MIMO channel. Then we optimize the power
allocation among different streams of the training sequence at
the source node and the relay node. Simulation results show
that the proposed algorithm leads to a smaller MSE of channel
estimation compared with the conventional MIMO relay channel
estimation algorithm.

I. INTRODUCTION

Recently, multiple-input multiple-output (MIMO) relay sys-

tems have attracted many research interests [1]-[6]. For three-

node two-hop MIMO relay systems where the direct source-

destination link is omitted, the optimal relay precoding matrix

is derived in [2]-[3] to maximize the source-relay-destination

channel mutual information. For two-hop MIMO relay systems

with multiple parallel relay nodes, the optimal relay precoding

matrices are derived in [4] to minimize the mean-squared error

(MSE) of the signal waveform estimation at the destination

node. A unified framework has been developed in [5] for

optimizing the source and relay precoding matrices of two-

hop MIMO relay systems with a broad class of commonly

used objective functions. Recently, the optimal source and

relay precoding matrices have been derived in [6] for MIMO

relay systems when a nonlinear decision feedback equalizer

(DFE) is applied at the destination node.

For the MIMO relay systems [1]-[6] mentioned above, the

instantaneous channel state information (CSI) knowledge of

both the source-relay and relay-destination links is required at

the destination node to estimate the signals transmitted by the

source node. Moreover, in order to optimize the source and/or

relay precoding matrices, the instantaneous CSI knowledge of

both links is necessary to implement the optimization algo-

rithm. However, in real communication systems, the instanta-

neous CSI is unknown and needs to be estimated. Recently, a

tensor-based channel estimation algorithm has been developed

in [7] for two-way MIMO relay systems. However, since

the algorithm in [7] exploits the channel reciprocity in two-

way relay systems, it cannot be straightforwardly applied to

one-way relay systems. In [8], a least-squares (LS) fitting-

based relay channel estimation algorithm is proposed. The

performance of the algorithm in [8] is further analyzed and

improved by using the weighted least-squares (WLS) fitting in

[9]. However, the number of training symbol blocks required

by the algorithms in [8] and [9] is at least equal to the

number of relay antennas, resulting in a low system spectral

efficiency, particularly for systems with a large number of

relay antennas. For amplify-and-forward relay networks with

single-antenna source, relay, and destination nodes, the optimal

training sequence is developed in [10]. The optimal training

sequence is derived in [11] for a MIMO relay system with one

multi-antenna relay node. However, two stages are required

in [11] to estimate the CSI of the source-relay and relay-

destination links, resulting in a low system spectral efficiency.

In this paper, we propose a superimposed channel train-

ing algorithm for MIMO relay communication systems. In

particular, the source node first transmits a training block to

the relay node. After receiving the training block sent by the

source node, the relay node amplifies it, superimposes its own

training matrix, and transmits the superimposed signal to the

destination node. Finally, the destination node estimates both

the source-relay and relay-destination channels based on the

training sequences from the source node and the relay node.

Compared with existing methods (for example [8] and [9]),

the proposed algorithm has a higher spectral efficiency, since

the number of channel training blocks can be much smaller

than the number of relay antennas. We prove that in order to

minimize the MSE of channel estimation, the optimal training

matrix at each node matches the eigenvector matrix of the

transmitter correlation matrix of the forward MIMO chan-

nel. Then we optimize the power allocation among different

streams of the training sequence at the source and relay nodes.

Simulation results show that the proposed algorithm leads

to a smaller MSE of channel estimation compared with the

conventional MIMO relay channel estimation algorithm.

The rest of this paper is organized as follows. In Section II,

we introduce the model of a two-hop MIMO relay communi-

cation system where superimposed channel training technique

is applied. The optimal training sequence and power loading

are developed in Sections III. In Section IV, we show some

numerical examples. Conclusions are drawn in Section V.

II. SYSTEM MODEL

We consider a three-node two-hop MIMO communication

system where the source node (node 1) transmits information



to the destination node (node 3) with the aid of one relay

node (node 2). The ith node is equipped with Ni, i = 1, 2, 3,

antennas. We focus on the case where the direct link between

the source and destination nodes is sufficiently weak to be

ignored as in [2]-[5]. This scenario occurs when the direct

link is blocked by an obstacle such as a mountain. In fact, a

relay plays a much more important role when the direct link

is weak than when it is strong.

Training sequences are employed to estimate both the N2×
N1 source-relay MIMO channel matrix H1 and the N3 ×N2

relay-destination MIMO channel matrix H2 at the destination

node. In the first time block, the source node transmits an

N1 × T training signal matrix S1, where T is the length of

the training sequence and will be determined later. The N2×T

received signal matrix Y2 at the relay node is given by

Y2 = H1S1 +V2 (1)

where V2 is an N2 × T noise matrix at the relay node.

In the second time block, the relay node amplifies Y2 and

superimposes its own training matrix S2. Thus, the N2 × T

signal matrix transmitted by the relay node can be written as

X2 =
√
αY2 + S2 (2)

where α > 0 is the relay amplifying factor. From (1) and (2),

the N3 × T received signal matrix at the destination node is

given by

Y3 = H2X2 +V3

=
√
αH2H1S1 +H2S2 +

√
αH2V2 +V3 (3)

where V3 is an N3 × T noise matrix at the destination node.

We assume that all noises are independent and identically

distributed (i.i.d.) additive white Gaussian noise (AWGN) with

zero mean and unit variance.

We assume that both channel matrices satisfy the well-

known Gaussian-Kronecker model [12], i.e., Hi is a complex-

valued Gaussian random matrix with

Hi ∼ CN (0,Θi⊗Φi), i = 1, 2. (4)

Here Θi denotes the Ni ×Ni covariance matrix at the trans-

mitter side, while Φi is the Ni+1 × Ni+1 covariance matrix

from the receiver side, and ⊗ stands for the matrix Kronecker

product [13]. In other words, we have Hi = AiHw,iB
H
i ,

i = 1, 2, where AiA
H
i = Φi, BiB

H
i = ΘT

i , and Hw,i is

an Ni+1 ×Ni Gaussian random matrix with i.i.d. zero mean

and unit variance entries. Here (·)T and (·)H denotes matrix

(vector) transpose and Hermitian transpose, respectively. We

assume that Hw,1 is independent of Hw,2. The following

lemma is important in deriving the optimal training matrices

in the next section.

LEMMA 1 [14]: For H ∼ CN (0,Θ ⊗ Φ), there is

E[HAHH ] = tr(AΘT )Φ, and E[HHAH] = tr(ΦA)ΘT .

Here E[·] stands for statistical expectation.

III. OPTIMAL TRAINING MATRICES

Let us introduce the eigenvalue decomposition (EVD) of

ΘT
i as UiΛiU

H
i , i = 1, 2. Then we have BH

i = ΠiΛ
1

2

i U
H
i ,

where Πi is an arbitrary Ni × Ni unitary matrix. Using (4),

we can equivalently rewrite (3) as

Y3 = G
√
αS̃1 + H̃2S̃2 + V̄ (5)

where G , H2H̃1, S̃i , UH
i Si, H̃i , HiUi, i = 1, 2,

and V̄ ,
√
αH2V2 + V3 is the equivalent noise matrix at

the destination node. In the following, we develop a novel

algorithm to estimate H̃2 and G. Then an estimation of H2

and H1 can be obtained as Ĥ2 = H̆2U
H
2 and Ĥ1 = Ĥ

†
2ĞUH

1 ,

where (·)† stands for matrix pseudo-inverse, H̆2 and Ğ are

estimation of H̃2 and G, respectively.

By vectorizing both sides of (5), we obtain

y3 =
[√

αS̃T
1 ⊗IN3

, S̃T
2 ⊗IN3

][

gT , h̃T
2

]T
+ v̄

= Mγ + v̄ (6)

where y3 , vec(Y3), g , vec(G), h̃2 , vec(H̃2), and v̄ ,

vec(V̄). Here for a matrix A, vec(A) stacks up the columns

of matrix A into a single column vector, In denotes an n×n

identity matrix, M ,
[√

αS̃T
1 ⊗IN3

, S̃T
2 ⊗IN3

]

, and γ ,
[

gT , h̃T
2

]T
is the vector of unknown variables.

Due to its simplicity, a linear MMSE estimator [15] is

applied to estimate γ. We have

γ̂ = WHy3 (7)

where γ̂ stands for an estimation of γ and W is the weight

matrix of the MMSE estimator and given by

W =
(

MRγM
H +Rv̄

)−1
MRγ. (8)

Here (·)−1 denotes matrix inversion. From (6), we find that

since a linear estimator is used, there is T ≥ N1 +N2. Using

(6)-(8), the MSE of estimating γ can be obtained as

MSE = E
[

tr
(

(γ̂ − γ)(γ̂ − γ)H
)]

= tr
(

[

R−1
γ +MHR−1

v̄ M
]−1
)

(9)

where tr(·) denotes matrix trace. In (9), Rv̄ , E[v̄v̄H ] is

the noise covariance matrix which can be calculated using

Lemma 1 and is given by

Rv̄ = IT ⊗
(

αtr(BH
2 B2)A2A

H
2 + IN3

)

= IT ⊗
(

αtr(ΘT
2 )Φ2 + IN3

)

. (10)

In (9), Rγ , E[γγH ] is the covariance matrix of γ and can

be calculated in the following. First, the ith column of G is

given by gi = λ
1

2

1,iA2Hw,2B
H
2 A1Hw,1π1,i, i = 1, · · · , N1,

where λ1,i is the ith diagonal element of Λ1, and π1,i is the

ith column of Π1. Since Hw,1 and Hw,2 are independent, the

covariance matrix of gi can be calculated using Lemma 1 and

is given by

E
[

gig
H
i

]

= λ1,itr(B
H
2 A1A

H
1 B2)A2A

H
2

= λ1,ic1Φ2, i = 1, · · · , N1 (11)



where c1 , tr(Φ1Θ
T
2 ). Second, the covariance matrix of the

ith column of H̃2, denoted as h̃2,i, is given by

E
[

h̃2,ih̃
H
2,i

]

= λ2,iΦ2, i = 1, · · · , N2 (12)

where λ2,i is the ith diagonal element of Λ2. From (11) and

(12), Rγ can be written as

Rγ = Bdiag
[

Λ1⊗c1Φ2, Λ2⊗Φ2

]

(13)

where Bdiag[·] denotes a block diagonal matrix.

The transmission power consumed at the source node is

tr(S1S
H
1 ) = tr(S̃1S̃

H
1 ) (14)

From (2), the power consumed at the relay node is given by

αE
[

tr
(

H1S1S
H
1 HH

1 + IN2

)]

+ tr(S2S
H
2 )

= αN2 + αtr(Λ1S̃1S̃
H
1 )tr(Φ1) + tr(S̃2S̃

H
2 ). (15)

From (9), (14), and (15), the optimal training matrices can be

designed by solving the following optimization problem

min
α,S̃1,S̃2

tr
(

[

R−1
γ +MHR−1

v̄ M
]−1
)

(16)

s.t. tr(S̃1S̃
H
1 ) ≤ P1 (17)

αN2+αtr(Λ1S̃1S̃
H
1 )tr(Φ1)+tr(S̃2S̃

H
2 ) ≤ P2(18)

where Pi is the transmission power available at node i, i =
1, 2. The following theorem establishes the optimal structure

of S1 and S2.

THEOREM 1: The optimal training sequence Si satisfies

S1S
H
2 = 0 and SiS

H
i = UiΣiU

H
i , i = 1, 2, where Σi is

an Ni ×Ni diagonal matrix.

PROOF: See Appendix A. �

The optimal structure of Si can be obtained from Theorem 1

as Si = UiΣ
1

2

i Qi, where Qi is an Ni×T semi-unitary matrix

satisfying QiQ
H
i = INi

, i = 1, 2, and Q1Q
H
2 = 0. Such

Q1 and Q2 can be easily constructed, for example, from the

normalized discrete Fourier transform (DFT) matrix with T ≥
N1 +N2.

Interestingly, it can be seen that the optimal training matrix

at node i matches the eigenvector matrix of the transmitter

correlation matrix of Hi. Using Theorem 1, the optimization

problem (16)-(18) is converted to the following problem

min
α,Σ1,Σ2

tr
(

[

D1+αΣ1⊗D3

]−1
+
[

D2+Σ2⊗D3

]−1
)

(19)

s.t. tr(Σ1) ≤ P1 (20)

αN2 + αtr(Λ1Σ1)tr(Φ1) + tr(Σ2) ≤ P2 (21)

Σ1 ≥ 0, Σ2 ≥ 0, α > 0 (22)

where for a matrix A, A ≥ 0 means that A is a positive

semi-definite matrix. Using the definition of Di, i = 1, 2, 3 in

(36)-(38), the problem (19)-(22) can be equivalently rewritten

as the following problem with scalar variables

min
α,σ1,σ2

N1
∑

i=1

N3
∑

j=1

(

1

c1λ1,iδ2,j
+

ασ1,i

1 + αc2δ2,j

)−1

+

N2
∑

i=1

N3
∑

j=1

(

1

λ2,iδ2,j
+

σ2,i

1 + αc2δ2,j

)−1

(23)

s.t.

N1
∑

i=1

σ1,i ≤ P1 (24)

αN2 + α c3

N1
∑

i=1

λ1,iσ1,i +

N2
∑

i=1

σ2,i ≤ P2 (25)

α > 0, σ1,i ≥ 0, σ2,j ≥ 0,

i = 1, · · · , N1, j = 1, · · · , N2 (26)

where σi , [σi,1, σi,2, · · · , σi,Ni
]T , i = 1, 2, c2 , tr(ΘT

2 ),
c3 , tr(Φ1), and λ1,i, λ2,i, σ1,i, σ2,i, δ2,i are the ith diagonal

element of Λ1,Λ2,Σ1,Σ2,∆2, respectively.

Interestingly, it can be seen from (23) that the terms in

the first double summation are monotonically decreasing and

convex with respect to α, while the terms in the second double

summation are monotonically increasing and concave with

respect to α. This reflects that the estimation error of the

source-relay channel is decreased when more power at the

relay node is assigned to assist the estimation of G. While

the estimation of the relay-destination channel is improved if

more power at the relay node is spent on the superimposed

training sequence S2. However, the overall objective function

(23) is nonconvex with respect to α, thus the problem (23)-(26)

is a nonconvex optimization problem. Nevertheless, it can be

shown that the problem (23)-(26) can be efficiently solved by

the successive geometric programming (GP) technique [16],

[17].

In the following, we show some insights of the optimal α by

considering the special case where three nodes have the same

number of antennas, i.e., Ni = N , i = 1, 2, 3, and both H1

and H2 have i.i.d. entries, i.e., Θi = Ψi = IN , i = 1, 2. In

this case, we have λ1,i = λ2,i = δ2,i = 1, i = 1, · · · , N , and

ci = N , i = 1, 2, 3. Thus, the optimization problem (23)-(26)

can be equivalently written as

min
α,σ1,σ2

N

N
∑

i=1

[

(

1

N
+

ασ1,i

1 + αN

)−1

+

(

1 +
σ2,i

1 + αN

)−1
]

(27)

s.t.
N
∑

i=1

σ1,i ≤ P1 (28)

αN

(

1 +
N
∑

i=1

σ1,i

)

+
N
∑

i=1

σ2,i ≤ P2 (29)

α > 0, σi,j ≥ 0, i = 1, 2, j = 1, · · · , N. (30)

Obviously, the optimal σ1 and σ2 for the problem (27)-(30)

is

σ1,i =
P1

N
, σ2,i =

P2

N
− α(P1 + 1), i = 1, · · · , N. (31)

Substituting (31) back into (27), the MSE objective function

is given by

N2





(

1

N
+

αP1

N(1 + αN)

)−1

+

(

1+
P2

N
− α(P1 + 1)

(1 + αN)

)−1


 .

(32)

Fig. 1 shows the MSE value in (32) versus α for different

P1 where N = 4 and P2 is set to be 20dB. We observe from
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Fig. 1. MSE versus α for different P1 with N = 4 and P2 = 20dB.

Fig. 1 that (32) is a unimodal (quasiconvex) function of α.

Moreover, it can also been seen from Fig. 1 that the convexity

of (32) with respect to α indeed depends on the value of P1

and P2.

IV. NUMERICAL EXAMPLES

In this section, we study the performance of the proposed

channel estimation algorithm through numerical simulations.

In particular, we compare the proposed superimposed chan-

nel training algorithm with the conventional channel training

algorithm, where the channel estimation is completed in two

stages [11]. In particular, in the first stage, the relay node

sends training sequence to the destination node to enable

the estimation of the relay-destination channel. In the second

stage, the training sequence is sent from the source node via

the relay node to the destination node, where the source-

relay channel is estimated. All simulation results are averaged

over 104 channel realizations. For each channel realization,

the normalized MSE (NMSE) of channel estimation for both

algorithms is calculated as

‖H1 − Ĥ1‖2F
N1N2

+
‖H2 − Ĥ2‖2F

N2N3

where ‖ · ‖2F stands for the matrix Frobenius norm.

We consider a two-hop MIMO relay communication system

where the number of antennas at each node is N1 = 4, N2 = 3,

and N3 = 4. Throughout the simulations, we use the minimal

T , i.e., T = N1 +N2. Based on [12], we assume that Θi and

Φi, i = 1, 2, have the commonly used exponential Toeplitz

structure such that

[Θi]m,n = J0

(2π|m− n|
θi

)

, [Φi]m,n = J0

(2π|m− n|
φi

)

where J0(·) is the zeroth order Bessel function of the first

kind, and θi and φi stand for the correlation coefficient which

depends on physical factors such as the angle of arrival spread,

spacing between antenna elements, and the wavelength at the

center frequency [12]. In the simulations, we choose θi = 10
and φi = 5, i = 1, 2.

In the first example, we set the transmission power at

the relay node P2 to be 20dB above the noise level. The

NMSE of both the proposed and the conventional MIMO

relay channel estimation algorithms is shown in Fig. 2 versus

the transmission power at the source node P1. In the second

example, we fix P1 = 20dB. The NMSE performance of both

algorithms versus P2 is displayed in Fig. 3. It can be seen

from both Figs. 2 and 3 that the proposed algorithm yields a

smaller NMSE than the conventional algorithm.
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Fig. 2. Example 1: Normalized MSE versus P1, P2 = 20dB.
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Fig. 3. Example 2: Normalized MSE versus P2. P1 = 20dB.

V. CONCLUSIONS

We have proposed a superimposed channel training algo-

rithm for MIMO relay communication systems. The optimal

structure of the training sequence and the optimal power load-

ing among different streams are derived. Simulation results



show a better performance of the proposed algorithm com-

pared with the conventional MIMO relay channel estimation

algorithm.
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APPENDIX A

PROOF OF THEOREM 1

PROOF: Let us introduce the EVD of Φ2 = V2∆2V
H
2 . We

can equivalently rewrite (10) and (13) as

Rv̄ = IT ⊗
(

V2(αtr(Θ
T
2 )∆2 + IN3

)VH
2

)

(33)

Rγ = Bdiag
[

IN1
⊗V2, IN2

⊗V2

]

Bdiag
[

Λ1⊗c1∆2,

Λ2 ⊗∆2

]

Bdiag
[

IN1
⊗VH

2 , IN2
⊗VH

2

]

. (34)

Substituting (33) and (34) back into (9), the MSE can be

rewritten as

MSE = tr

([(

D1 0

0 D2

)

+

(√
αS̃∗

1⊗IN3

S̃∗
2⊗IN3

)

IT ⊗D3

×
(√

αS̃T
1 ⊗IN3

, S̃T
2 ⊗IN3

)]−1
)

(35)

where (·)∗ denotes complex conjugate and

D1 , Λ−1
1 ⊗(c1∆2)

−1 (36)

D2 , Λ−1

2 ⊗∆−1

2 (37)

D3 ,
(

αtr(ΘT
2 )∆2 + IN3

)−1
(38)

are all diagonal matrices.

It can be seen from (35) that MSE is minimized only if

(S̃∗
1⊗IN3

)IT ⊗D3(S̃
T
2 ⊗IN3

) =
(

S̃∗
1S̃

T
2

)

⊗D3 = 0. (39)

Equation (39) holds if and only if S̃∗
1S̃

T
2 = 0, or equivalently

S1S
H
2 = 0. Then the MSE in (35) can be written as

MSE=tr
(

[

D1+αS̃∗
1S̃

T
1 ⊗D3

]−1
+
[

D2 + S̃∗
2S̃

T
2 ⊗D3

]−1
)

.

(40)

Since D1, D2, and D3 are all diagonal, to minimize (40),

S̃∗
1S̃

T
1 and S̃∗

2S̃
T
2 must be diagonal. Note that the diagonality

of S̃iS̃
H
i does not change tr(S̃1S̃

H
1 ) and tr(S̃2S̃

H
2 ) in the con-

straints (17) and (18). Moreover, tr(Λ2S̃1S̃
H
1 ) is minimized

if S̃1S̃
H
1 is diagonal and its diagonal entries are in the inverse

order of that of Λ2 [18, 9.H.1.h]. Let us denote S̃iS̃
H
i = Σi,

i = 1, 2. Then we have SiS
H
i = UiΣiU

H
i , i = 1, 2. �
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