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SUMMARY: Natural soils are one of the most inherently variable in the ground. Although 26 

the significance of inherent soil variability in relation to reliable predictions of consolidation 27 

rates of soil deposits has long been realized, there have been few studies which addressed the 28 

issue of soil variability for the problem of ground improvement by prefabricated vertical 29 

drains (PVDs). Despite showing valuable insights into the impact of soil spatial variability on 30 

soil consolidation by PVDs, available stochastic works on this subject are based on a single-31 

drain (or unit cell) analyses. However, how the idealized unit cell solution can be a 32 

supplement to the complex multi-drain systems for spatially variable soils has never been 33 

addressed in the literature. In this study, a rigorous stochastic finite elements modeling 34 

approach that allows the true nature of soil spatial variability to be considered in a reliable and 35 

quantifiable manner, both for the single and multi-drain systems, is presented. The feasibility 36 

of performing an analysis based on the unit cell concept as compared to the multi-drain 37 

analysis is assessed in a probabilistic context. It is shown that with proper input statistics 38 

representative of a particular domain of interest, both the single and multi-drain analyses yield 39 

almost identical results. 40 

41 
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INTRODUCTION 51 

 52 

The use of prefabricated vertical drains (PVDs) in combination with pre-loading is becoming 53 

one of the most commonly used methods for promoting radial drainage to accelerate the time 54 

rates of soil consolidation. Natural soils, however, are highly variable in the ground due to the 55 

uneven soil micro fabric, geological deposition and stress history, and soil consolidation by 56 

PVDs is strongly dependent on spatially variable soil properties, most significantly is the 57 

coefficient of consolidation. The review of relevant literature has indicated that although the 58 

significance of inherent soil variability in relation to reliable predictions of soil consolidation 59 

rates has long been realized [1], only few studies [e.g. 2-5] have investigated the problem of 60 

ground improvement by PVDs for spatially variable soils, using stochastic analyses. Despite 61 

showing valuable insights into the impact of soil spatial variability on soil consolidation, 62 

available stochastic studies for PVD-improved ground have been based on an idealized 63 

single-drain (or unit cell) system rather than the actual full multi-drain situation. A design 64 

procedure for PVD-ground improvement incorporating soil spatial variability for the single-65 

drain concept was previously developed by Bari and Shahin [6], and in the current study, the 66 

multi-drain system will be considered and its results will be compared with those of the 67 

single-drain system. More importantly, a methodology will be developed for the unit cell 68 

analysis to achieve an equivalent solution to that of the multi-drain system with a much 69 

reduced computational cost. 70 

 71 

Indeed, soil improvement via PVDs typically consists of hundreds of drains installed 72 

in the form of square or triangular patterns, with spacing varied between 1–3m. This means 73 

that the consolidating area (including all the drains) can be significantly large and 74 

computationally too expensive for any numerical deterministic analysis. This computational 75 
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cost becomes prohibitive when conducting a probabilistic analysis since each soil 76 

configuration requires a significant number of calls of the deterministic model in the order of 77 

several hundreds, when searching the first two statistical moments (i.e. mean and standard 78 

deviation) of a system response. The number of calls becomes even very large (about several 79 

thousands) when computing a small value of probability of occurrence of an undesirable 80 

event. In order to reduce the computational effort within the deterministic context, a full three 81 

dimensional (3D) multi-drain system is usually simulated by considering a soil cylinder with 82 

a single central vertical drain so that the consolidation problem can be analyzed at the unit cell 83 

level. Each unit cell is assumed to be identical, having the same homogeneous soil, and thus 84 

the single-drain analysis is often sufficient to represent the overall soil consolidation behavior 85 

[7]. However, for spatially variable soils, the unit cell idealization used to represent the multi-86 

drain system may not lead to identical solutions. Therefore, the aim of this paper is to 87 

investigate the conditions that need to be employed into the idealized unit cell analysis so as 88 

to establish stochastic equivalence between the unit cell and multi-drain analyses. 89 

 90 

In order to treat soil spatial variability in most geotechnical engineering problems, 91 

stochastic computational schemes that combine the finite elements (FE) method and Monte 92 

Carlo technique are often used [e.g. 2, 6, 8, 9]. The same approach is adopted in the present 93 

study which allows the soil spatial variability to be considered in a quantifiable manner, both 94 

for the single and multi-drain analyses. The approach involves the development of advanced 95 

numerical models that merge the local average subdivision (LAS) technique [10] of the 96 

random field theory [11] and the FE method into a Monte Carlo framework. For the case of 97 

PVDs, the overall consolidation is governed by the horizontal radial* flow of water rather than 98 

the vertical flow due to the fact that the drainage length in the horizontal direction is usually 99 

much less than that of the vertical direction, and the horizontal permeability is often much 100 

* Radial herein means that the flow is occurring towards the PVD and not necessary being in straight lines 
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higher than the vertical one [12]. Under such reasoning, soil consolidation by PVDs in the 101 

current study is considered by 2D radial drainage problem (for both cases of idealized unit 102 

cell and multi-drain systems). The probabilistic results (i.e. the mean and standard deviation 103 

of the degree of consolidation and probability of achieving a target degree of consolidation) as 104 

obtained from both the idealized unit cell model and multi-drain model are presented for 105 

different conditions imposed on the unit cell case to determine the necessary conditions 106 

leading to equivalence between the two probabilistic analyses. In the sections that follow, the 107 

stochastic finite elements Monte Carlo (FEMC) approach is described in some detail followed 108 

by detailed demonstration and discussion of the obtained results. 109 

 110 

STOCHASTIC FINITE ELEMENTS MONTE CARLO (FEMC) APPROACH 111 

 112 

As indicated earlier, the equivalence between the single and multi-drain systems is examined 113 

by employing a stochastic finite elements Monte Carlo (FEMC) approach, which has the 114 

following steps: 115 

1. Create a virtual soil profile that represents a realization of designated spatially varying 116 

soil properties, allowing the correlation structure (expressed by the autocorrelation 117 

function) of the soil properties to be realistically simulated; 118 

2. Incorporate the generated realization of soil profile into FE modeling of soil 119 

consolidation by PVDs; and 120 

3. Repeat Steps 1 and 2 several times using the Monte Carlo technique. Each time, a new 121 

realization of virtual soil profile (Step 1) is created and implemented into a subsequent 122 

FE analysis (Step 2). At the end, a series of values of the degree of consolidation is 123 

obtained from which the following two items can be estimated: (i) the first two statistical 124 
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moments of the degree of consolidation; and (ii) the probability of achieving a target 125 

degree of consolidation. 126 

The above steps, as well as the numerical procedures, are described in some detail below. 127 

 128 

Simulation of virtual soil profiles 129 

 130 

In order to warrant the true influence of soil spatial variability for the problem at hand, virtual 131 

soil profiles that allow the rational distributions of designated spatially variable soil properties 132 

across the soil mass need to be generated (based on a predefined probability density function, 133 

PDF, and a prescribed spatial correlation function) which can then be implemented into the 134 

FE modeling. Prior to proceeding with this step, it is necessary to identify the soil properties 135 

that have the most significant impact on soil consolidation by PVDs so that they can be 136 

treated as random fields when creating the virtual soil profiles. The spatial variability of 137 

several soil properties can affect soil consolidation by PVDs. However, as far as the 2D 138 

horizontal drainage is concerned which is the case considered in the current study, the 139 

coefficient of horizontal consolidation, ch, is the most significant random soil property 140 

affecting the behavior of soil consolidation by PVDs, as indicated by many researchers [e.g. 141 

4, 5]. Accordingly, in the current study, ch is considered to be spatially variable, whereas the 142 

other soil properties are held constant and treated deterministically so as to reduce the 143 

superfluous complexity of the problem. 144 

 145 

The spatial variability of ch is assumed to be characterized by lognormal distribution 146 

because observation obtained from field data reported by Chang [13] suggested that the 147 

variation of ch can be adequately modeled by a lognormal distribution. Based on the random 148 

field theory, a spatially variable soil property with lognormal distribution and predefined 149 
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autocorrelation function can be characterized by: (i) the soil property mean value, µ, the 150 

variance, σ2 (which can also be represented by the standard deviation, σ, or coefficient of 151 

variation, υ, where υ = σ/μ); and (ii) the correlation length, θ, that appears within the 152 

predefined autocorrelation function. The value of θ describes the limits of spatial continuity 153 

and can simply be defined as the distance over which a soil property shows considerable 154 

correlation between two spatial points. Therefore, a large value of θ indicates strong 155 

correlation (i.e. uniform soil property field), whereas a small value of θ implies weak 156 

correlation (i.e. erratic soil property field). In this paper, the horizontal coefficient of 157 

consolidation ch is assumed to be spatially variable, in both directions of the (x-y) horizontal 158 

plane, and also be statistically isotropic, i.e. the correlation lengths in the x and y coordinates 159 

are assumed to be the same (i.e.
hhh cycxc ln)(ln)(ln θθθ == ). The reason for assuming isotropic ch  160 

is that the correlation structure is more related to the formation process (i.e. layer deposition) 161 

in the horizontal (x-y) plane. The correlation coefficient between ch measured at a point A (x1, 162 

y1) and a second point B (x2, y2) is specified in this paper by an exponentially decaying spatial 163 

correlation function, ρ(τ), as follows [10]: 164 

 165 











−=

hcθ
ττρ

ln

2exp)(                                                                                                                   (1) 166 

 167 

where τ is the distance separating the two points A and B, and 
hclnθ  is the isotropic correlation 168 

length. It can be seen from Equation (1) that the spatial correlation length is estimated with 169 

respect to the underlying normally distributed field, i.e. ln(ch).  170 

 171 

In the current study, the local average subdivision (LAS) method [10] which is a fast 172 

and largely accurate method of generating realizations of Gaussian random field is used to 173 
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produce 2D random fields of ch for soil consolidation under horizontal drainage conditions. 174 

The concept of LAS approach was first extracted from the stochastic subdivision algorithm 175 

[14] and then incorporated the local averaging theory [15] into it. Since ch is assumed to be 176 

2D random filed, a brief overview of the 2D implementation of LAS is presented herein. The 177 

2D LAS method involves a several staged subdivision process in which a parent cell is 178 

divided into four (2 × 2) equal sized cells at each stage. The parent cells of the previous stage 179 

are used to obtain the best linear estimates of the mean of each new cell in such a way that the 180 

upward averaging is preserved and they are properly correlated with each other. The linear 181 

estimation of the mean is accomplished by using the covariance between the local averages 182 

over each cell. At Stage 0, an initial network of low resolution field (parent cells for Stage 1) 183 

are generated directly using Cholesky decomposition. As shown in Figure 1, the parent cells 184 

from Stage 0 denoted as i
lG (where, l = 1, 2, 3, …) is subdivided into four equal sized cells 185 

(child cells) at Stage 1 and are then denoted as 1+i
jG , (where, j = 1, 2, 3, …). Although each 186 

parent cell is eventually subdivided in the LAS process, subdivision of only iG5  is shown in 187 

Figure 1 for simplicity. 188 

 189 

Following the above process, correlated local averages of standard normal random 190 

field G(x) are first generated with zero mean, unit variance and spatial correlation function. 191 

The required lognormally distributed random field of ch defined by 
hcµ and 

hcσ is then 192 

obtained using the following transformation function [10]: 193 

 194 

( ){ }icch xGc
hhi lnlnexp σµ +=                                                                                                          (2) 195 

 196 
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where, xi and 
ihc  are, respectively, the vectors containing the coordinates of the centers of the 197 

soil elements and the soil property values assigned to those elements; 
hclnµ  and 

hclnσ are, 198 

respectively, the mean and standard deviation of the underlying normally distributed ch, i.e. 199 

ln(ch). The LAS algorithm generates realizations of ch in the form of a grid of cells that are 200 

assigned locally averaged values of ch different from one another across the soil mass, by 201 

taking full account of the finite elements size in the local averaging process, albeit remained 202 

constant within each element within the soil domain. 203 

 204 

Finite elements modelling incorporating soil spatial variability 205 

 206 

The 2D spatial variation of ch simulated in the previous step is mapped onto the refined FE 207 

mesh and the consolidation analysis is followed. A modified version of the FE computational 208 

scheme ‘‘Program 8.6’’ as presented in the book by Smith and Griffiths [16] is used in this 209 

study to carry out all the numerical modeling analyses. The simplest form of the governing 210 

consolidation equations with the assumption that the laminar flow through the saturated soil 211 

(Darcy’s law) is valid can be expressed by Equation (3), which forms the basis of this 212 

program allowing multidimensional consolidation analysis over a general finite element 213 

mesh, and is expressed as follows: 214 

 215 
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 217 

It can be noticed in Equation (3) that there is only a single dependent variable (i.e. pore 218 

pressure) and the analysis is thus “uncoupled” (i.e. no displacement degrees of freedom). 219 

Originally “Program 8.6” was for general two or three dimensional analyses of uncoupled 220 
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consolidation equation using an implicit time integration with the ‘‘theta’’ method and 221 

interested readers are referred to Smith and Griffiths [16] for the description of such method.  222 

The authors have modified the source code of “Program 8.6” to allow repetitive stochastic 223 

Monte-Carlo analyses. Although the modified version of “Program 8.6” can also be used for 224 

3D analysis, 2D FEMC analyses are conducted in the current study as the drainage of water is 225 

assumed to take place in the horizontal direction only, as discussed previously.  226 

 227 

The multi-drain influence area is assumed to be equal to a square of 3.8m × 3.8m 228 

containing 16 drains (4 × 4), which is equivalent to the sum of each influence area (0.95m × 229 

0.95m) of all individual drains (see Figure 2). The spacing, S, between the drains is assumed 230 

to be equal to 0.95m (see Figure 2a). On the other hand, the drain spacing, S, in the multi-231 

drain analysis represents the side length, S, of the square influence area in the single-drain 232 

“unit cell” analysis (see Figure 2b). It should be noted that the band-shaped PVD is 233 

transformed into a square-shaped of a side length,
2

w
w

r
S

π
=  (where the equivalent radius of 234 

the drain, rw, is assumed equal to 0.032m). This is because the LAS method requires square 235 

(or rectangular) elements to be able to accurately compute locally averaged values of ch for 236 

each element across the grid. Notice also that, for simplicity, the well resistance which may 237 

affect the rate of consolidation is not considered in the current study. This is due to the fact 238 

that the discharge capacities of most PVDs available in the market are relatively high; hence, 239 

the impact of well resistance can be ignored in most practical cases, as suggested by many 240 

researchers [e.g. 17]. 241 

 242 

Generally speaking, the more finite elements in the mesh used to discretize the 243 

domain of the problem, the greater the accuracy of the FE solution. However, a trade-off 244 

between accuracy and run-time efficiency is necessary. Previous literature reported some 245 
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recommendations regarding the optimum ratio of the correlation length to the size of the 246 

finite elements. For example, Ching and Phoon [18] stated that this ratio should be ≥ 20, 247 

whereas Harada and Shinozuka [19] pointed out that it should be ≥ 2. In the current study, a 248 

sensitivity analysis on two different FE meshes with element sizes of 0.05m and 0.025m is 249 

considered, for the purpose of obtaining the optimum mesh discretization. For a certain 250 

correlation length, two random fields of two selected meshes are generated using the same 251 

seed value, and FE analyses are conducted. The results obtained from the two meshes are 252 

then compared to see if they are identical, otherwise, finer meshes are generated and the 253 

previous process is repeated. Several different random seeds and correlation lengths are tested 254 

for the highest coefficient of variation of ch considered in this study. It is found that 0.05m 255 

and 0.025m meshes gave nearly identical solutions, as long as the ratio of the correlation 256 

length to FE size ≥ 2, which complies with the recommendation given by Harada and 257 

Shinozuka [19] albeit disagrees with the ratio recommended by Ching and Phoon [18]. This is 258 

because the ratio of 20 recommended by Ching and Phoon (2013) was for a shear strength 259 

problem which is different from the consolidation problem as the spatial average shear 260 

strength is computed along the most critical slip surface rather than over the entire domain 261 

that is usually used for the consolidation problems. Based on the above discussion, a mesh 262 

with elements size of 0.05m × 0.05m, which is more than two times smaller than the 263 

minimum correlation length is adopted in the current study. 264 

 265 

The initial condition for the uncoupled consolidation approach (i.e. no displacement 266 

degrees of freedom and only pore pressure degrees of freedom) is such that the excess pore 267 

pressure at all nodes (except at the nodes of the drain boundary) is set to be equal to 100kPa, 268 

while the excess pore pressure at each node of the drain boundary is set to be zero. After 269 

generating a given realization and subsequent FE consolidation analysis of that realization, 270 
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the corresponding degree of consolidation, U(t), at any consolidation time, t, is calculated 271 

based on the excess pore pressure concept with the help of the following expression: 272 

 273 

0

)(1)(
u

tutU −=                                                                                                                (4) 274 

 275 

where, u0 is the initial uniform excess pore water pressure and ū(t) is the average excess pore 276 

water pressure. It has to be emphasized that the average excess pore pressure ū(t) at any time 277 

during the consolidation process is calculated by numerically integrating the excess pore 278 

water pressures across the entire area of the mesh and dividing it by the total mesh area.  279 

 280 

Repetition of process based on Monte Carlo technique 281 

 282 

By applying the Monte-Carlo technique (on either the unit cell system or the multi-drain 283 

approach), the process of generating a realization of ch and the subsequent FE consolidation 284 

analysis are repeated numerous times until convergence of the estimated statistical outputs 285 

[i.e. mean μU and standard deviation σU of U(t) and probability P of achieving a target value 286 

of U(t)] is obtained. Convergence is deemed to be achieved if there is stabilization in the first 287 

two statistical moments (mean and standard deviation) as the number of simulations 288 

increases. It should be emphasized that the three quantities μU(t), σU(t) and P(t) are all 289 

functions of the time t; however, the symbol t is omitted later for simplicity. A total number 290 

of simulations of 2000 is used for all probabilistic computations throughout the paper. This 291 

number is much beyond the one required to achieve convergence for the first two statistical 292 

moments of the degree of consolidation (i.e. mean, μU, and standard deviation, σU). It can be 293 

seen from Figures 3a and 3b that 400 simulations are sufficient to achieve required 294 
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convergence (as far as the convergence are concerned, the single drain analysis with 295 

coefficient of variation of ch = 100% and 
hclnθ = 4.0m shows the worst result). Notice 296 

however that (Figure 3c) the number of 2000 simulations was necessary to arrive to an 297 

acceptable maximal value (of about 5%) of the coefficient of variation of P at its value equal 298 

to 90%. It should be noted that the probabilistic analysis of a single configuration 299 

(corresponding to prescribed 
hcµ , 

hcσ and
hclnθ ) with 2000 Monte-Carlo simulations 300 

typically takes around 1 hour for the single drain analysis and it takes about 30 hours for the 301 

multi-drain analysis on an Intel core i5 CPU @ 3.4 GHz computer. Notice also that although 302 

each simulation of the Monte Carlo process involves the same
hcµ , 

hcσ and
hclnθ , the spatial 303 

distribution of ch varies from one simulation to the next while preserving the correlation 304 

structure of the random field.  305 

 306 

The obtained U(t) from the suite of 2000 realizations of the Monte Carlo process are 307 

collated, and μU and σU of the degree of consolidation over the 2000 simulations are 308 

estimated as a function of t using the method of moments, while the probability of achieving a 309 

target degree of consolidation, Us (i.e. P[U ≥ Us]), at specified consolidation time, ts, is 310 

simply estimated by counting the number of simulations in which U ≥ Us (i.e. NU  ≥ Us), and 311 

dividing it by the total number of simulations, Nsim. As 90% consolidation, U90, is usually 312 

acceptable for the purpose of design of most soil improvement projects [20], U90 is thus 313 

assumed to be the target degree of consolidation (i.e. Us =  90%) in this study. On the other 314 

hand, the probability of achieving 90% target degree of consolidation, P[U ≥ U90], is 315 

estimated from the sampled values of U and expressed as a function of t. 316 

 317 

 318 

 319 
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PARAMETRIC STUDIES 320 

 321 

Following the stochastic FEMC procedure set out in the previous section, parametric studies 322 

are performed to investigate the equivalence between the single and multi-drain analyses in 323 

terms of μU, σU and P[U ≥ U90] of the degree of consolidation. For this purpose, two groups 324 

of FEMC analyses are performed. In the first group, the point mean and standard deviation 325 

and the correlation length are assumed to be the same for both the single and multi-drain 326 

cases, whereas in the second group the associated point statistics of each soil domain are 327 

derived in such a way that their underlying local average statistics remain the same. 328 

 329 

Results considering same point statistics for both single and multi-drain cases 330 

  331 

The results obtained from the single and multi-drain FEMC analyses employing the same 332 

point random field parameters are compared in this section for different combinations of 
hcσ333 

and 
hclnθ , while 

hcµ is kept at a fixed value equal to 15 m2/ year.  It should be noted that 
hcσ334 

is presented herein by a non-dimensional parameter called the coefficient of variation,
hcυ , 335 

where 
hhh ccc µσυ /= . The values of 

hcυ and 
hclnθ used in the analyses are as follows: 336 

• 
hcυ  = 25, 50 and 100 (%) 337 

• 
hclnθ = 0.5, 1.0, 4.0, 16 and 100 (m)  338 

The abovementioned selected range of 
hcυ is typical to that reported in the literature [e.g. 21]. 339 

Unlike the coefficient of variation of soil properties, the correlation length (or 
hclnθ ) is less 340 

well-documented, particularly in the horizontal direction. However, Phoon and Kulhway [22] 341 

reported suggested guidelines for the range of correlation length of soil properties based on a 342 
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comprehensive review of various test measurements and found that the horizontal correlation 343 

length typically ranges between 3m and 80m, while the typical range of vertical correlation 344 

length is 0.8m to 6.2m, as observed in real soils [18]. On the other hand, Popescu et al. [23] 345 

reported that the correlation length is dependent on the sampling intervals but that closely 346 

spaced data are rarely available in the horizontal direction. Accordingly, a wide range of 347 

correlation length is selected in this study where its minimum and maximum values are 348 

specified to be equal to 0.5m and 100m, respectively. 349 

  350 

The sensitivity of μU and σU on the statistically defined input data (i.e. 
hcυ and

hclnθ ) 351 

is examined in Figures 4−5 in which μU and σU are expressed as functions of the 352 

consolidation time t. The comparison between μU derived from the single and multi-drain 353 

FEMC simulations is examined in Figure 4. The effect of increasing 
hcυ on μU at a fixed 354 

value of 
hclnθ = 0.5m is illustrated in Figure 4a, which indicates that μU obtained from the 355 

single-drain case agrees very well with that obtained from the multi-drain counterpart, for all 356 

cases of 
hcυ . For both cases, µU decreases with the increase of 

hcυ . On the other hand, 357 

Figure 4b shows the variation of μU as estimated by the single and multi-drain FEMC 358 

analyses, for various values of 
hclnθ and at a fixed value of 

hcυ  = 50%. In general, it can be 359 

observed that the results for various θ are embodied into a single curve (see Figure 4b), 360 

implying that the obtained results at different 
hclnθ are very close and cannot be distinguished. 361 

The virtually identical curves for all 
hclnθ demonstrate that μU obtained from the single-drain 362 

and multi-drain cases are almost identical. 363 

  364 
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 The possible stochastic equivalence between the single and multi-drain analyses is 365 

further examined via matching the estimated σU at different values of 
hcυ and 

hclnθ , as shown 366 

in Figure 5. It can be seen that σU obtained from the single-drain case is significantly higher 367 

than that obtained from the multi-drain case and the difference in σU between the two 368 

solutions increases as 
hcυ increases (see Figure 5a). For 

hcυ = 100%, the difference in σU 369 

between the two solutions at time corresponding to the maximum value of σU is almost 215%. 370 

This can be explained as follows: since the averaging domain is significantly smaller for the 371 

single-drain case compared to the multi-drain case, there is less variance reduction (for a 372 

certain θ, the variance reduction increases with the increase in the domain size and vice 373 

versa), resulting in higher σU in the single-drain case than the multi-drain solution. The 374 

influence of 
hclnθ on the compliance between the single and multi-drain solutions in terms of 375 

σU at a fixed value of 
hcυ  = 50% is emphasized in Figure 5b. It can be seen that considerable 376 

differences in σU (as obtained from the two solutions) are found particularly when 
hclnθ is as 377 

low as 0.5m. The difference in σU between the two solutions at time corresponding to the 378 

maximum value of σU is almost 210% for 
hclnθ = 0.5m. On the other hand, little or no 379 

difference in σU is found for very high 
hclnθ (e.g. 100.0m). This is due to the fact that when 380 

hclnθ >> D (where D is the size of the problem), the variance reduction factor γ(D) →1.0, 381 

implying no variance reduction (the details about γ(D) will be explained later in the following 382 

section). It can also be seen from Figure 5 that the maximum σU occurs at an intermediate t, 383 

while σU is zero at t = 0 and at large t. This can be explained by noting that U(t) approaches 0 384 

and 1 as t approaches 0 and ∞, regardless of the variability of ch. 385 

 386 
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From the above results it is clear that by employing the same point statistics for both 387 

the single and multi-drain cases, the stochastic response of soil consolidation by PVDs is 388 

different except for extremely large correlation length in comparison to the size of the 389 

problem domain. This means that the point statistics of soil property which is representative 390 

of one domain may not be considered as representative of another domain of different size 391 

unless the correlation length is very large in both domain sizes.  Therefore, the logical 392 

question that should be asked is that how the spatially variable soil property statistics of one 393 

domain (e.g. multi-drain) can be used in another domain of different dimension (e.g. single-394 

drain) to achieve identical probabilistic consolidation solutions. This question can be 395 

answered by employing the concept of local averaging, which is discussed below. 396 

 397 

Results considering same local average statistics for both single and multi-drain 398 

cases 399 

 400 

In the random field context, the input parameters in relation to the random soil properties (i.e.401 

hcµ , 
hcσ and 

hclnθ of ch) are usually defined at the point level. Detailed description of the 402 

methods used for evaluating spatial variation of soil properties at the point level is beyond the 403 

scope of the present paper and can be found in many publications [e.g. 24, 25]. Although the 404 

random field is characterized by their point statistics, Vanmarcke [26] pointed out that it is not 405 

the point scale characteristics of random soil properties that govern the performance of 406 

geotechnical structures but rather the local average soil properties. Thereby, the stochastic 407 

equivalence between the idealized single-drain and multi-drain analyses may therefore be 408 

achieved if the local average statistics for both resolutions are the same. The suitability of 409 

using the concept of the local average statistics for problems involving large spatial 410 

mechanisms (e.g. bearing capacity, settlement of foundations, slope stability) has been 411 
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examined by many researchers [e.g. 27, 28]. However, for problems with preferential flow 412 

path (e.g. soil consolidation by PVDs), the local variability may be significant because some 413 

worse case combination of the random filed parameters may cause blockage to the flow due 414 

to lack of flow option in the system, particularly for one 1D and 2D geometries. Therefore, 415 

the effectiveness of the local average statistics to establish stochastic equivalence between the 416 

single-drain and multi-drain systems needs a thorough investigation, as follows.   417 

 418 

It should be noted that the local average statistics associated with the input point 419 

statistics depend on several factors, namely [29]: (i) the size of the averaging domain, D; (ii) 420 

the correlation function, ρ; and (iii) the type of averaging that governs the behavior of 421 

geotechnical structures. By assuming that the local average statistics for which the overall 422 

behavior of a PVD system is affected can be represented by the geometric average of the 423 

actual spatially variable soil (note that the geometric average represents the “natural” average 424 

of the lognormal distribution), the relationships between the local average statistics and ideal 425 

point mean, 
hcµ , and standard deviation, 

hcσ , can be expressed as follows [29]: 426 
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 where, µD and υD ( DDD µσυ /= in which σD is the local average standard deviation of ch) 432 

are, respectively, the local average mean and coefficient of variation of ch; γ(D) is the 433 

variance reduction factor corresponding to the underlying normal random field ln(ch) which is 434 
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a function of the size of the averaging domain and correlation structure of the soil [note that 435 

by providing appropriate geometric dimensions for the single and multi-drain problems, γ(D) 436 

for both resolutions can be computed numerically for various 
hclnθ from the algorithm 437 

presented in Appendix A].   438 

         439 

As the local average statistics depend on the variance reduction factor (i.e. a function 440 

of the size of the averaging domain D and correlation length θ or merely a function of the 441 

normalized correlation length Θ, which is the ratio of the correlation length to the size of the 442 

averaging domain, i.e. Θ = θ/D), it is possible (see Equations (5) and (6)) that the same 443 

underlying local average statistics for any two soil domains of different dimensions may be 444 

achieved through two approaches, as follows: (i) by employing different correlation lengths, 445 

hclnθ , while 
hcµ and 

hcσ are kept the same through providing the same γ(D); and (ii) by 446 

employing different
hcµ and 

hcσ , while 
hclnθ is kept the same through providing different 447 

γ(D). The first approach is denoted herein as Approach-1 (or A1), while the second approach 448 

is denoted as Approach-2 (or A2) and they will be presented in the next sections in more 449 

detail. In the following sections, the results of the parametric studies performed to investigate 450 

the possible stochastic equivalence of the degree of consolidation between the single and 451 

multi-drain analyses for both approaches are compared and discussed in some detail below. 452 

 453 

Approach-1 454 

 455 

The use of different 
hclnθ while considering 

hcµ and 
hcσ as constant parameters is a possible 456 

way of obtaining the same underlying local average statistics for soil domains with different 457 

dimensions. For the purpose of generalization, a particular domain is often expressed with 458 
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respect to the normalized form of θ, over the influence zone, D, as utilized by many 459 

researchers [e.g. 9, 28, 30-32]. This means that the domain D1, employing certain θ1, can be 460 

considered to be representative of another domain D2 (D2 ≠ D1) with different θ2 provided 461 

that 
hcµ and 

hcσ remain the same irrespective of the domain size. The value of θ2 that needs 462 

to be assigned for D2 can be obtained from the following proposed expression: 463 

 464 

Θ==
2

2

1

1

DD
θθ                                                                                                                             (7) 465 

 466 

where, Θ is the normalized correlation length, as defined earlier. Following Equation (7), the 467 

effect of using θ1 and θ2 for D1 and D2 (i.e. the same Θ), respectively, will yield the same 468 

underlying local average statistics µD and Dσ  for both domains, subsequently will lead to 469 

identical probabilistic results. In other words, if θ1 and θ2 follow Equation (7), the point 470 

variance will be reduced by the same amount for averaging over D1 and D2 (i.e. γ(D1) = 471 

γ(D2)). For convenience of presentation in the current study, the domain size of single and 16-472 

drains systems are denoted as D1d and D16d, respectively. 473 

 474 

Approach-2 475 

 476 

Assigning different 
hcµ and 

hcσ for the single-drain system while keeping 
hclnθ as a constant 477 

parameter is another way of obtaining the same underlying local average statistics to those of 478 

the multi-drain system. Under this approach, 
hcµ and 

hcσ related to the single-drain system 479 

are computed using Equations (5) and (6), by substituting the local average statistics (i.e. µD  480 

and Dσ ) with those obtained from the specified random field parameters of the multi-drain 481 

system and γ(D) corresponding to the single-drain system (i.e. γ(D1d)). It should be noted that 482 
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although
hclnθ is the same for both resolutions under this approach, γ(D1d) ≠ γ(D16d) as D1d ≠ 483 

D16d. In the sections that follow, Approach-1 and Approach-2 of the single-drain analyses are 484 

denoted as SD-A1 and SD-A2, respectively, for convenience of presentation. 485 

 486 

In order to investigate the stochastic equivalence between the single and multi-drain 487 

solutions under both approaches of obtaining the same underlying local average statistics, a 488 

series of FEMC analyses is performed for both the single and multi-drain cases and the results 489 

are compared. The random field parameters for the 16 drain cases and their corresponding 490 

single-drain analyses under both approaches are shown in Table 1. The 16 drain cases under 491 

each specified 
hclnθ with constant 

hcµ = 
hcσ  = 15 m2/ year (i.e. 

hcυ = 100%), as shown in 492 

Table 1 (columns 1, 2 and 3), are selected for the purpose of comparison. The local average 493 

statistics for the 16 drain system for each selected 
hclnθ are then computed using Equations (5) 494 

and (6), and are summarized in Table 1 (columns 5 and 6). The normalized scale of 495 

fluctuation, Θ, for the 16 drain system is also shown in Table 1 (column 4). In order to 496 

provide the same µD and Dσ in case SD-A1, Θ needs to be same as that of its corresponding 497 

16 drain analysis. Accordingly, different 
hclnθ are assigned in case SD-A1 (column 9) during 498 

the FEMC analysis, calculated based on its corresponding Θ while 
hcµ and 

hcσ (columns 7 499 

and 8) remain the same as those of the 16 drain counterpart. On the other hand,
hcµ and 

hcσ  500 

related to case SD-A2 for providing the same µD  and Dσ to those of the 16 drain cases are 501 

calculated following the procedure discussed above and summarized in Table 1 (columns 10 502 

and 11). In case SD-A2, 
hclnθ  (column 12) remains the same as that of its corresponding 16 503 

drain analysis. It is clear from Table 1 that the input variability for the single-drain cases is 504 

reduced from that of the 16 drain cases either by employing smaller 
hclnθ (in case A1) or by 505 
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providing lower 
hcυ (in case A2) to obtain the same µD and Dσ to those of the 16 drain 506 

system. This is expected because of the fact that the smaller averaging domain for the unit cell 507 

analysis would lead to less variance reduction within the influence zone than for the 16 drain 508 

domain which is counterbalanced by assigning smaller 
hclnθ or lower

hcυ for the unit cell. The 509 

results obtained from the 16 drain system and both approaches of the single-drain FEMC 510 

analyses employing their corresponding
hcµ , 

hcσ and 
hclnθ (as shown in Table 1) are 511 

compared in terms of μU, σU and P[U ≥ U90], as depicted in Figures 6–8, in which μU, σU and 512 

P[U ≥ U90] are expressed as functions of the consolidation time t. It should be noted that the 513 

results of case SD-A1 and the 16 drain system are compared with respect to Θ because Θ is 514 

same for these two solutions. On the other hand, 
hclnθ  is the same for case SD-A2 and 16 515 

drain system, therefore, their results are compared based on 
hclnθ .  516 

 517 

The agreement between both approaches of the single and multi-drain solutions in 518 

terms of µU under various µD and Dσ  is emphasized in Figure 6, which shows that for a 519 

particular SOF, μU obtained from the single and multi-drain cases are almost identical, 520 

implying that both approaches yield equivalent μU.  The equivalence between the single and 521 

multi-drain analyses is further examined via matching the estimated σU at different values of 522 

local average statistics, as shown in Figure 7. It can be seen that considerable differences in 523 

σU obtained from case SD-A1 and 16 drain solution are found particularly when Θ is as low 524 

as 1.05. When Θ is as low as 0.13 and 1.05, the difference in σU between the two solutions is 525 

about 73% and 30%, respectively. On the other hand, little or no difference in σU (less than 526 

10%) is found when Θ ≥ 4.21. This means that the difference in σU between case SD-A1 and 527 

16 drain solution is the smallest for the highest value of Θ and this difference is inversely the 528 

highest for the smallest value of Θ. Figure 7 also shows that unlike case SD-A1, case SD-A2 529 
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yields very good agreement compared to the multi-drain analyses with respect to σU for all 530 

cases of 
hclnθ . It should be noted that the maximum difference in σU between case SD-A2 and 531 

16 drain solution at time corresponding to the maximum value of σU is 12% and this is found 532 

to correspond to 
hclnθ = 0.5m. 533 

 534 

Although emerges from the same theoretical background, case SD-A1 produces higher 535 

discrepancy in σU than case SD-A2 when compared to the multi-drain solution. This 536 

discrepancy in σU may be attributed to the fact that the decay pattern of the correlation 537 

function in the multi-drain system is different from that of case SD-A1 as 
hclnθ in each case is 538 

different.  When 
hclnθ ≤ D, different random field distributions between the two domains 539 

occur, leading to different excess pore water pressure distributions. On the other hand, when 540 

hclnθ ≥ D, the decay pattern of the correlation function in case SD-A1 becomes similar to that 541 

of the individual drain of the multi-drain system and thus, the discrepancy in σU gradually 542 

disappears.  543 

 544 

The agreement between the single and multi-drain solutions in terms of P[U ≥ U90] 545 

under various µD and Dσ is illustrated in Figure 8. It can be seen that for any probability level 546 

> 50%, i.e. P[U ≥ U90] > 0.5 (note that the probability of achieving a target degree of 547 

consolidation of interest is greater than 50%), P[U ≥ U90] obtained from case SD-A1 is 548 

significantly lower (conservative) than its corresponding P[U ≥ U90] obtained from the multi-549 

drain system when Θ ≤ 1.0. The difference in P[U ≥ U90] between the two solutions is 550 

insignificant for any Θ ≥ 4.21. This is due to the fact that in this range of Θ, σU from case SD-551 

A1 is higher than its multi-drain counterpart, whereas μU is identical for each solution 552 
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strategies. On the other hand, as can be seen from Figure 8, case SD-A2 yields very good 553 

agreement with the multi-drain analyses with respect to P[U ≥ U90] for all cases of 
hclnθ . 554 

 555 

 From the above results, it is clear that Approach-1 of the single-drain analysis using 556 

the same underlying local average statistics to the multi-drain cases does not seem to produce 557 

reasonable equivalence in terms of the standard deviation of the degree of consolidation and 558 

in turn the probability of achieving a target degree of consolidation, except for extremely 559 

large correlation length in comparison with the size of the problem domain. However, the 560 

good agreement between Approach-2 of the single and multi-drain analyses in terms of μU, 561 

σU and P[U ≥ U90] indicates that the stochastic equivalence between the unit cell analyses and 562 

multi-drain solutions can be established by assigning appropriate representative input 563 

statistical parameters for the idealized unit cell which can be computed from the statistical 564 

parameters assigned to the multi-drain system, keeping the correlation length same for both 565 

domains in such a way that their underlying local average statistics remain also the same. 566 

 567 

Due to the promising results obtained from Approach-2 in establishing the stochastic 568 

equivalence between the single and multi-drain systems, Approach-2 is further examined for: 569 

(i) different random field generation method; (ii) another domain shape of the multi-drain 570 

system; and (iii) taking into account the smear effect. The parametric studies performed under 571 

each of the abovementioned situations are based on the same local average statistics for both 572 

the single and multi-drain resolutions, for each specified
hclnθ , and the associated point 573 

statistics of the soil domain of interest are derived using Equations (5) and (6). The mean, µD, 574 

and coefficient of variation, υD, of the locally averaged ch are arbitrarily selected to be equal 575 

to 15 m2/ year and 0.2, respectively, and the results are presented in Figures 9–11. It should be 576 

noted that the results for 
hclnθ = 16.0 m are omitted from Figures 9–11 to enhance the 577 
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readership of figures. For the same reason, results for smaller 
hclnθ (i.e.

hclnθ = 0.5m and 4.0m) 578 

are presented on the left hand side, while the results of larger 
hclnθ (i.e.

hclnθ = 4.0m and 579 

100.0m) are illustrated on the right hand side in each graph of Figures 9–11.       580 

 581 

• Effect of random field generation method 582 

 583 

As mentioned earlier, the LAS algorithm generates realizations of ch in the form of grid of 584 

cells that are assigned locally averaged values of ch by taking full account of the finite 585 

elements size in the local averaging process which is analogous to that of the large scale 586 

averaging process shown earlier. In this section, the sensitivity of the multi-drain response to 587 

the random field discretization method is examined by comparing the results obtained using 588 

the LAS method with those obtained employing another random field generation method. 589 

Apart from the LAS method, there are several other methods that can be used such as the 590 

Karhunen-Loève (K-L) expansion method and the EOLE (Expansion Optimal Linear 591 

Estimation) method, and in the current study the K-L expansion method is used. The 592 

expression of the lognormal random field of ch using the K-L expansion method is given by 593 

[e.g. 33]: 594 

 595 
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 597 

where, X denotes the spatial coordinates; ψ indicates the stochastic nature of the random field; 598 

M is the size of the series expansion; λi and ϕ i are the eigenvalues and eigenfunctions of the 599 

covariance function, and ξi(ψ) is a vector of standard uncorrelated random variables. The 600 

choice of the number of terms M in the K-L expansion method depends on the desired 601 

25 
 



 
 

accuracy of the problem at hand. In this paper, this number is taken to be equal to 1000, 602 

which corresponds to a maximal error estimate of 18% for the worst situation considered (i.e. 603 

hclnθ = 0.5m). The same correlation function given in Equation (1) is used in this case. Details 604 

of the K-L expansion method is beyond the scope of this paper and can be found elsewhere 605 

[e.g. 34, 35]. 606 

 607 

In this part of the parametric study, it is assumed that µD and υD of the locally 608 

averaged ch over the soil domain of interest for each specified
hclnθ are taken to be equal to 15 609 

m2/ year and 0.2, respectively. The given local average statistics are then used to derive the 610 

associated point statistics for the square area of the 16 drains which is required for generating 611 

the random field of ch. By substituting the given µD, υD and computed values of γ(D) 612 

corresponding to each specified 
hclnθ in Equations (5) and (6), 

hcµ and 
hcσ  are calculated for 613 

the 16 drains and the results are summarized in Table 2 (columns 2 and 3). Using the 614 

statistical parameters shown in Table 2 (columns 1 to 3), the 16 drains square domain is 615 

discretized using both the LAS and K-L expansion methods, and the FEMC analyses are 616 

performed. The stochastic response of the 16 drains obtained from the FEMC analyses using 617 

both the LAS and K-L expansion random field discretization methods for various 
hclnθ is 618 

compared in terms of μU, σU and P[U ≥ U90] and the results are shown in Figure 9. It can be 619 

seen that μU (Figure 9a), σU (Figure 9b) and P[U≥ U90] (Figure 9c) obtained from both 620 

random field methods (i.e. LAS and K-L expansion) are nearly identical for a particular
hclnθ . 621 

More specifically, the maximum difference in μU between the two random field discretization 622 

methods is less than 2% throughout the consolidation process for 
hclnθ = 0.5m. On the other 623 

hand, a maximal difference of 15% in σU is obtained in the case of 
hclnθ = 100m at time 624 
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corresponding to the peak value of σU. However, for any probability level > 50%, the 625 

maximum difference in P[U ≥ U90] is found to be less than 5% for 
hclnθ = 100m. As a 626 

conclusion, the probabilistic outputs of the degree of consolidation are insensitive to the 627 

random field generation method. Therefore, the LAS method is adopted for random field 628 

generation of the remaining FEMC analyses of this study. 629 

 630 

• Effect of domain shape 631 

 632 

So far, the stochastic equivalence between the unit cell and multi-drain solutions is examined 633 

over a square domain of multi-drain system. However, in practice, PVD-improved ground 634 

may take different shapes other than square. Therefore, the effect of the rectangular domain 635 

shape for the multi-drain system on the stochastic equivalence between the single-drain unit 636 

cell and multi-drain analyses is examined herein. For this purpose, the 16 drains are assumed 637 

to be installed over a rectangular area in two rows with 8 drains in each row so that the width 638 

to length ratio (i.e. width W in x-direction/length L in y-direction) of the area is 1:4. The 639 

representative point statistics (i.e. 
hcµ and 

hcσ ) for both the single and multi-drain (in a 640 

rectangular domain) cases are then computed using the given local average statistics (i.e. µD = 641 

15 m2/ year and υD = 0.2) and their respective values of γ(D) in Equations (5) and (6), which 642 

are summarized in Table 2 (columns 4 to 7). The values of 
hcµ and 

hcσ for the rectangular 643 

domain show slightly different values from those of the square domain and this is because 644 

γ(D) values for the square domain case are different from those of the rectangular case. The 645 

FEMC analyses for both the single-drain and multi-drain for the rectangular domain are 646 

performed using their respective values of 
hcµ , 

hcσ and 
hclnθ , and the results are shown in 647 

Figure 10. It can be seen that, as with the square domain, μU (Figure 10a), σU (Figure 10b) 648 
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and P[U≥ U90] (Figure 10c) obtained from the FEMC analyses for both the single-drain and 649 

multi-drain systems considering rectangular domain are almost identical (the maximal 650 

difference in σU at time corresponding to the maximum value of σU is found to be 19% for 651 

hclnθ = 0.5m), implying that the stochastic equivalence is independent of the domain shape.    652 

 653 

• Effect of smear zone 654 

 655 

During mandrel installation of PVDs, a disturbed zone (i.e. smear zone) of reduced 656 

permeability is produced. However, soil spatial variability in the smear zone persists [36], 657 

albeit the fact that it is no longer fully natural. Although the intensity and extent of smearing 658 

depends on factors such as the mandrel size, installation procedure and soil type [20, 37, 38], 659 

it is unavoidable in any PVD soil improvement project. Therefore, it is important to 660 

investigate the effect of smear on the stochastic equivalence between the single and multi-661 

drain analyses. The ratio kh/ hk ′ (where kh and hk′ are the horizontal permeability in the 662 

undisturbed and smear zone, respectively), which may vary from 2 to 6 as reported by various 663 

researchers [e.g. 12, 17], is assumed to be equal to 3. It can be noticed that no explicit 664 

permeability parameter is considered in this study. Accordingly, to simulate such reduced 665 

permeability condition in the smear zone during the FE analysis, it is assumed that kh/ hk ′ = hc /666 

hc′ (where hc′  is the horizontal coefficient of consolidation in the smear zone), i.e. hc / hc′ is 667 

taken to be equal to 3. The 16 drains in a square area is selected as the multi-drain problem 668 

and it is assumed that the equivalent radius of the smear zone rs = 0.197m. However, a square 669 

shaped of a smear zone of side length Ss = 0.35m ( 2
ss rS π= ) is modelled at the centre of 670 

each individual drain to avoid the unfavourable mesh shape for the LAS method. 671 

   672 
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At this point it is worthwhile mentioning that in geotechnical engineering, the random 673 

field models are often non-stationary in their mean; however, the variance and covariance 674 

structure are generally assumed to be stationary because they need prohibitive volumes of 675 

data to estimate their parameters [29]. Accordingly, the variance and covariance structure of 676 

ch are assumed to be stationary, while a non-stationary mean is used to take into account the 677 

smear effect. This means that ch varies spatially in such a way that its second moment 678 

structures (variance, covariance, etc.) in the undisturbed and smear zones are identical with 679 

respect to the mean, i.e. 
hcυ =

hc′υ , 
hclnθ =

hc′lnθ (where 
hc′υ and 

hc′lnθ  are, respectively, the 680 

coefficient of variation and correlation length of the smear zone). Under this argument, the 681 

mean, Dµ′ , and coefficient of variation, Dυ′ , of the local average measurement of ch in the 682 

smear zone are assumed to be equal to 5 m2/ year and 0.2, respectively. By substituting the 683 

given Dµ′ , Dυ′ and respective γ(D) corresponding to a particular 
hclnθ in Equations (5) and (6), 684 

the point mean,
hc′µ , and standard deviation,

hc′σ , of the smear zone are computed for both the 685 

single and multi-drain analyses for various 
hclnθ , as summarized in Table 3.  686 

 687 

In order to simulate the smear effect during the FE analysis of the multi-drain system, 688 

two independent random fields of ch are generated. By making use of the specified
hcµ and 689 

hcσ (see Table 2) into the LAS method, a random field of ch is generated first for the whole 690 

soil domain and mapped onto the corresponding grid of the finite element mesh. Then another 691 

random field of ch is generated using the same seed number of the previously generated field 692 

(for the whole soil domain of interest) with
hc′µ and 

hc′σ (see Table 3). However, for both 693 

random fields, the same value of 
hclnθ is used. Now from the second random field, only the 694 

corresponding elements to the smear zone are mapped onto the finite elements mesh. The 695 
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same random field generation process is also followed for the FE analysis of the single-drain 696 

counterpart. This process of random field generation ensures the original random nature of ch  697 

over the soil domain and reasonably reflects the smear effect as well.  698 

 699 

Following the above random field generation process, the FEMC analyses 700 

corresponding to various 
hclnθ are performed for both the single-drain and multi-drain systems 701 

and the equivalence between the two solutions in terms of μU, σU and P[U ≥ U90] are 702 

examined and their results are depicted in Figure 11. It can be seen that, as with the case of no 703 

smear, μU (Figure 11a), σU (Figure 11b) and P[U ≥ U90] (Figure 11c) obtained from the 704 

single-drain analysis agree well with those obtained from the multi-drain analysis, for all 705 

cases of 
hclnθ .  706 

 707 

The overall results presented in this section indicate that the behavior of PVD-708 

improved ground is governed by the local average soil properties instead of the point soil 709 

properties.  The results also demonstrate that the geometric average, which is lying between 710 

the arithmetic and harmonic averages, is a reasonable approach to estimating the local average 711 

soil properties for different domain shape even if the smear effect is to be considered.  712 

 713 

CONCLUSIONS 714 

 715 

This paper used the random field theory and finite elements modeling to investigate the 716 

stochastic equivalence between the single-drain “unit cell” and multi-drain solutions for 717 

ground improvement by prefabricated vertical drains (PVDs). The horizontal coefficient of 718 

consolidation, ch, was treated as the most significant random field affecting PVD-improved 719 

ground and an uncoupled 2D finite elements soil consolidation analysis was applied.  720 
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In the first part of the paper, the point input statistical parameters were assumed to be the 721 

same for both the single and multi-drain cases. Despite the reasonable agreement obtained in 722 

terms of the mean degree of consolidation, μU, for the single and multi-drain analyses 723 

irrespective of the input parameters, a significant difference in the standard deviation, σU, 724 

between the two solutions was found except for extremely large correlation lengths. 725 

Therefore, it can be concluded that the point soil properties which are considered to be 726 

representative of a certain domain (over which they are measured) need to be adjusted prior to 727 

applying to another domain of different size. This conclusion demonstrates the potential 728 

pitfall of using typical statistical soil properties without referencing to the site investigation 729 

scale.  730 

 731 

In the second part of the paper, it was argued that the stochastic equivalence between 732 

the idealized unit cell and multi-drain analyses can be achieved if the local average statistics 733 

for both resolutions are the same. Under this reasoning, two groups of stochastic finite 734 

elements Monte Carlo (FEMC) analyses were performed. In the first group, the same 735 

underlying local average statistics for both domains were obtained by employing the same 736 

point mean and standard deviation but using different correlation lengths calculated based on 737 

the size of the domain. It was found that μU obtained from the single-drain analysis agrees 738 

very well with that obtained from the multi-drain counterpart. However, considerable 739 

discrepancies in σU and P[U ≥ U90] derived from the two solutions were found except for 740 

very high correlation lengths. Therefore, it can be concluded that the method of obtaining the 741 

same local average statistics for soil domains with different dimensions by altering the 742 

correlation length while keeping the point mean and standard deviation the same is not a 743 

reasonable approach to establish stochastic equivalence between the single and multi-drain 744 

solutions of PVD improved ground. In the second group, the same local average statistics for 745 
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both the single and multi-drain domains were obtained by employing different point mean and 746 

standard deviation, while keeping the correlation length the same for both resolutions. Under 747 

this method, it was found that μU , σU and P[U ≥ U90] obtained from the single-drain analysis 748 

agree very well with those obtained from the multi-drain analysis, for all selected correlation 749 

lengths using different random field generation methods, different domain shapes and 750 

considering the smear effect. Therefore, it was concluded that it is not the point statistics soil 751 

properties that should be the same for the unit cell but rather the local average soil properties. 752 

It was also concluded that the geometric average is a reasonable approach for estimating the 753 

local average soil properties for different domain of shapes including the smear effect.  754 

 755 

Overall, it was shown that the stochastic equivalence between the unit cell and multi-756 

drain solutions can be established by assigning appropriate representative point statistics for 757 

the idealized unit cell, which can be computed from the statistical parameters assigned to the 758 

multi-drain by keeping the same correlation length for both domains and using appropriate 759 

transformation functions in such a way that their underlying local average statistics remain the 760 

same. The procedure of doing so can be briefly explained as follows: one should first compute 761 

the local average statistics for the multi-drain-system based on its size and the point statistics 762 

of the random field. Then, the same local average statistics as obtained from the multi-drain 763 

system need to be adopted for the unit cell to deduce the corresponding point statistics of the 764 

unit cell using Equations (5) and (6) of this study. 765 

 766 

Although inherent soil variability is essentially three-dimensional (3D), it is limited to 767 

2D random field in the current study. That is soil is assumed to be spatially variable in the 768 

horizontal plane, while soil variability in the vertical direction is ignored. This is because to 769 

achieve mathematical convenience as the stochastic solution of 3D variability is very complex 770 
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and computationally too intensive, particularly for the multi-drain system. Considering 3D 771 

soil variability is beyond the scope this paper and will be investigated in future development 772 

of the current work. 773 

 774 

APPENDIX A. DETERMINATION OF VARIANCE REDUCTION FACTOR 775 

 776 

The amount by which the variance is reduced from the point variance as a result of the local 777 

averaging can be estimated from the corresponding variance function of the 2D Markov 778 

correlation function shown in Equation (1), as follows [29]: 779 

 780 

( ) ( ) ( )∫ ∫ ∫ ∫ −−×== X X Y Y dddd
YX

YXD 0 0 0 0 2211221122 ,1, ηζηζηζηζργγ                                   (A.1) 781 

 782 

where: X and Y are the dimensions of the averaging domain, D, in the x and y directions, 783 

respectively (i.e. D = X × Y). The fourfold integration in Equation (A.1) can be condensed to 784 

twofold integration by taking advantage of the quadrant symmetry (ρ(τ1, τ2)= ρ(−τ1, τ2)= 785 

ρ(τ1,−τ2)= ρ(−τ1,−τ2)) of the correlation function in Equation (1) and can be expressed as: 786 

( ) ( ) 210 0 212122 ,))((4, ττττρττγ ddYX
YX

YX
X Y

∫ ∫ −−×=                                                      (A.2) 787 

 788 

Equation (A.2) can be computed numerically with reasonable accuracy using the sixteen-point 789 

Gaussian quadrature integration scheme, as follows: 790 

 791 

( ) ∑∑
==

−−=
16

1

16

1
),()1()1(

4
1,

j
iijj

i
iiYX ηζρϑωϑωγ                                                                     (A.3) 792 

 793 
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)1(
2 ii
X ϑζ += , )1(

2 ji
Y ϑη +=                                                                                              (A.4) 794 

 795 

where: ωi and ϑi, are the weights and Gauss points respectively. 796 
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Table 1 887 

Random field parameters assigned to single-drain (both for Approach-1 and Approach-2) analyses for providing the same local average statistics 888 

as that of the multi-drain cases. 889 

16 drains in square 
Local average 

statistics 

(same for both 

single and 16 

drains) 

Single drain 

Approach-1 Approach-2 

Point statistics SOF 

Point statistics 

(same as 16 

drains) 

Adjusted SOF  
Adjusted point 

statistics 

SOF 

(same as 16 drains) 

hcµ  

(m2/yr) 

hcσ  

(m2/yr) 

hclnθ
 

(m) 

Θ 

( )d16ln / D
hcθ

 

Dμ  

(m2/yr) 

Dσ  

(m2/yr) 

hcµ  

(m2/yr) 

hcσ  

(m2/yr) 

hclnθ (= 

Θ×D1d) 
(m) 

hcµ  

(m2/yr) 

hcσ  

(m2/yr) 

hclnθ
 

(m) 

15.0 15.0 

0.5 0.1315 
10.69 1.355 

15.0 15.0 

0.125 
11.025 3.127 

0.5 
( Dυ = 12.67%) (

hcυ = 28.36%) 

1.0 0.263 
10.89 2.533 

0.25 
11.305 4.17 

1.0 
( Dυ = 23.26%) (

hcυ = 36.88%) 

4.0 1.05 
12.24 7.046 

1.0 
12.725 8.435 

4.0 
(

hcυ = 100%) 

 

( Dυ = 57.56%) (
hcυ = 100%) (

hcυ = 66.28%) 

16.0 4.21 
13.93 11.853 

4.0 
14.171 12.555 

16.0 
( Dυ = 85.1%) (

hcυ = 88.6%) 

100.0 26.31 14.8 14.403 25 14.85 14.55 100.0 
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890 ( Dυ = 97.32%) (
hcυ = 97.98%) 
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Table 2 891 

Estimated point mean and standard deviation computed from the given local average 892 

statistics. 893 

SOF 
16 drains  

in square domain 

16 drains  

in rectangular domain 
Single-drain 

hclnθ  
hcµ  

hcσ  
hcµ  

hcσ  
hcµ  

hcσ  

0.5 34.50 73.20 36.27 81.74 16.18 7.41 

1.0 19.04 15.65 19.62 17.34 15.40 4.87 

4.0 15.42 4.87 15.57 5.40 15.08 3.41 

16.0 15.08 3.41 15.11 3.55 15.02 3.10 

100.0 15.01 3.06 15.02 3.08 15.003 3.01 

 894 

 895 

 896 

 897 

 898 

 899 

 900 

 901 

 902 

 903 

 904 

 905 

 906 

 907 
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Table 3 908 

Estimated point mean and standard deviation in the smear zone computed from the given 909 

local average statistics. 910 

SOF Single-drain 
16 drains  

in square domain 

hc′lnθ  
hc′µ  

hc′σ  
hc′µ  

hc′σ  

0.5 5.39 2.47 11.5 24.4 

1.0 5.14 1.62 6.346 5.215 

4.0 5.026 1.137 5.14 1.62 

16.0 5.006 1.033 5.026 1.137 

100.0 5.001 1.005 5.004 1.02 

 911 

 912 

 913 

 914 

 915 

 916 

 917 

 918 

 919 

 920 

 921 

 922 

 923 

 924 
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Figure Captions: 925 

 926 

Figure 1. Local average subdivision in two dimensions (after [29]) 927 

Figure 2. Realizations of PVD-improved ground: (a) 16 drains in a square grid pattern; (b) 928 

single-drain in a square geometry 929 

Figure 3. Effect of Nsim on (a) μU (b) σU and (c) COV(P) at P = 90% for 
hcυ = 100% and 930 

hclnθ = 4.0m 931 

Figure 4. Comparison between µU computed from the same point statistics for: (a) various932 

hcυ at 
hclnθ = 0.5m; (b) various

hclnθ  at 
hcυ = 50% 933 

Figure 5. Comparison between σU computed from the same point statistics for: (a) various934 

hcυ at 
hclnθ = 0.5m; (b) various

hclnθ  at 
hcυ = 50% 935 

Figure 6. Comparison between single (under Approaches 1 and 2) and multi-drain analyses 936 

with respect to µU over a range of same local average statistics 937 

Figure 7. Comparison between single (under approaches 1 and 2) and multi-drain analyses 938 

with respect to σU over a range of same local average statistics 939 

Figure 8. Comparison between single (under approaches 1 and 2) and multi-drain analyses 940 

with respect to P[U ≥ U90] over a range of same local average statistics 941 

Figure 9. Effect of random field generation method on (a) µU; (b) σU and (c) P[U ≥ U90] 942 

obtained from the multi-drain (16 drains in square domain) analyses for various 
hclnθ  943 

Figure 10. Effect of domain shape on the equivalence of (a) µU; (b) σU and (c) P[U ≥ U90] 944 

obtained from the single and multi-drain analyses (16 drains in rectangular domain) for 945 

various 
hclnθ  946 
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Figure 11. Effect of smear on the equivalence of (a) µU; (b) σU and (c) P[U ≥ U90] obtained 947 

from the single and multi-drain analyses for various 
hclnθ  948 
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 955 

Figure 1. Local average subdivision in two dimensions (after [29]) 956 
 957 
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 960 
(a)                                                                           (b) 961 

 962 
Figure 2. Realizations of PVD-improved ground: (a) 16 drains in a square grid pattern; (b) 963 

single-drain in a square geometry 964 
 965 
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 968 

Figure 3. Effect of Nsim on (a) μU (b) σU and (c) COV(P) at P = 90% for 
hcυ = 100% and 969 

hclnθ = 4.0m  970 
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 974 
 975 

Figure 4. Comparison between µU computed from the same point statistics for: (a) various976 

hcυ at 
hclnθ = 0.5m; (b) various

hclnθ  at 
hcυ = 50% 977 
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 983 
 984 

Figure 5. Comparison between σU computed from the same point statistics for: (a) various985 

hcυ at 
hclnθ = 0.5m; (b) various

hclnθ  at 
hcυ = 50% 986 
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 991 
 992 

Figure 6. Comparison between single (under Approaches 1 and 2) and multi-drain analyses 993 
with respect to µU over a range of same local average statistics 994 
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 999 
 1000 

Figure 7. Comparison between single (under approaches 1 and 2) and multi-drain analyses 1001 
with respect to σU over a range of same local average statistics  1002 
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 1008 
 1009 

Figure 8. Comparison between single (under approaches 1 and 2) and multi-drain analyses 1010 
with respect to P[U ≥ U90] over a range of same local average statistics 1011 
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 1018 
Figure 9. Effect of random field generation method on (a) µU; (b) σU and (c) P[U ≥ U90] 1019 

obtained from the multi-drain (16 drains in square domain) analyses for various 
hclnθ  1020 
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 1026 
Figure 10. Effect of domain shape on the equivalence of (a) µU; (b) σU and (c) P[U ≥ U90] 1027 

obtained from the single and multi-drain analyses (16 drains in rectangular domain) for 1028 

various 
hclnθ  1029 
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 1035 
Figure 11. Effect of smear on the equivalence of (a) µU; (b) σU and (c) P[U ≥ U90] obtained 1036 

from the single and multi-drain analyses for various 
hclnθ  1037 
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