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Abstract. This paper presents the effects of cooling methods on residual compressive strength 

and cracking behaviour of concretes containing four different class F fly ash contents of 10, 

20, 30 and 40% as partial replacement of cement at various elevated temperatures.  The 

residual compressive strength of above fly ash concretes are measured after exposed to 200, 

400, 600 and 8000C temperatures and two different cooling methods e.g. slow cooling and 

rapid water cooling. Results show that the residual compressive strengths of all fly ash 

concretes decrease with increase in temperatures irrespective of cooling regimes, which is 

similar to that of ordinary concrete. Generally, control ordinary concrete and all fly ash 

concretes exhibited between 10% and 35% more reduction in residual compressive strength 

due to rapid cooling than slow cooling except few cases. Cracks are observed over concrete 

specimens after being exposed to temperatures ranging from 400˚C to 800˚C.  Samples that 

are slowly cooled developed smaller cracks than those rapidly cooled.  At 800˚C, all fly ash 

concretes that are exposed to rapid cooling showed the most severe cracking. X-ray 

diffraction (XRD) analysis shows reduction of Ca(OH)2 peak and formation of new calcium 

silicate peak in concretes containing 20% and 40% fly ash when subjected to 800oC in both 

cooling methods. Thermo gravimetric analysis (TGA) and differential thermal analysis (DTA)  

results show increase in thermal stability of concrete with increase in fly ash contents. The 

existing Eurocode also predicted the compressive strength of fly ash concretes with 

reasonable accuracy when subjected to above elevated temperatures and cooling methods.  
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1 INTRODUCTION 

The use of fly ash as partial replacement of cement in structural concrete is now a 

common practice around the world due to environmental concerns. Extensive research on 

different engineering properties of fly ash concretes have been conducted and still going on. 

Generally, fly ash concrete shows slow pozzolanic reaction at early ages and has significant 

improvements of long-term mechanical and durability properties. As a result, engineers and 

concrete producers have gained confidence in its use in construction. 

Fire can result from anything ranging from a natural event to human error.  Many civil 

engineering structures particularly those made of reinforced concrete experience fire during 

their lifetime. When designing and implementing structural materials it is important to 

understand all of its mechanical properties to ensure safe design.  Due to the unpredictability 

of fire, the residual mechanical properties become very important in the design process. 

Despite extensive research on fly ash concretes, results on its behaviour at elevated 

temperatures during fire are not widely reported. 

The early study of fly ash concretes at elevated temperatures dates back to late 

seventies, where Nasser and Marzouk [1] tested concrete containing 25% fly ash by weight at 

various elevated temperatures up to 232oC. They observed an increase in compressive 

strength in the temperature range between 121 and 149oC. Sarshar and Khoury [2] tested 

OPC-fly ash paste containing 30% fly ash by weight at different temperatures up to 650oC 

and reported 12% and 27% reduction of ambient compressive strength at 450oC and 600oC, 

respectively. Nasser and his co-researcher [3] also investigated the combined effects of 

elevated temperature (21–232oC) and pressure (5.2-13.8 MPa) on compressive strength of 

concrete containing 20 and 60% fly ash and 10% silica fume by mass of the total binder. A 

gradual decrease in the compressive strength was observed with increasing temperature in 

their study. Xu et al. [4] studied the effects of 25% and 55% fly ash as replacement on the 

residual compressive strength of concrete at elevated temperatures. An increase in strength 

was observed at 200oC. Poon et al. [5] investigated the residual compressive strength of 

normal-strength concrete incorporating 30 and 40% fly ash at elevated temperatures up to 

800 ◦C for 1 h duration. It was found that the compressive strength marginally increased only 

at 200oC and beyond that temperature the compressive strength decreased gradually. The 

effects of different elevated temperatures on the residual mechanical properties of concretes 

containing natural pozzolan and fly ash are also evaluated at different holding periods after 

heating [6]. Significant loss of mechanical properties of concrete containing fly ash and 



natural pozzolan than ordinary concrete at 2000C are observed. However, at higher elevated 

temperatures the differences are reduced. It can be seen in above studies that different fly ash 

contents are used by different researchers. Moreover, in all the above studies a slow cooling 

method was applied to evaluate the residual strength.  

It is important to note that in real situation fire is often extinguished rapidly by 

spraying water, which causes rapid cooling of the concrete structures. Therefore, the effect of 

rapid cooling in terms of water spray on degradation of strength and cracking behaviour of 

ordinary concrete and fly ash concretes and its comparison with slow cooling will provide 

useful information in the design of structures. The effect of cooling on residual mechanical 

properties of concrete after exposed to elevated temperatures is, however, received relatively 

little attention. Kowalski [7] reported the residual compressive strength of ordinary concrete 

due to different cooling periods in water after exposed to elevated temperatures. Results show 

that the residual compressive strength reduced with increase in cooling periods in water. In 

another study Lee et al. [8] also reported reduction of residual compressive strength of 

ordinary concrete due to cooling after exposure to elevated temperatures. However, no study 

so far reported the effect of different cooling methods on the residual mechanical properties 

of concretes containing different fly ash contents.  

This paper presents the residual compressive strength of concretes containing four 

different contents of class F fly ash such as 10, 20, 30 and 40% as partial replacement of 

cement at various elevated temperatures of 200, 400, 600 and 8000C.  The residual 

compressive strength of above fly ash concretes are measured after two different cooling 

methods namely slow and rapid cooling. This study also evaluated the physical changes in 

terms of surface cracking of above fly ash concretes due to two cooling methods. Existing 

Eurocode method to predict the residual compressive strength of fly ash concretes is also 

evaluated in this study. X-ray diffraction (XRD) analysis of mortar samples of above fly ash 

concretes were also used to identify any changes of different phases of fly ash concretes and 

interpret the observed behaviour. Thermogravimetric analysis (TGA) and differential thermal 

analysis (DTA) of mortar sample of above fly ash concretes was also conducted to study their 

thermal stability.  

    



2 EXPERIMENTAL DETAILS 

A total of five series of mixes were considered in this study. In the first series a 

control mix was used which contained no fly ash. In other four series 10, 20, 30 and 40% fly 

ash were used as partial replacement of cement. For each series twenty seven cylinder 

specimens were cast. Three were used to measure the compressive strength at ambient 

temperature, while the rest were exposed to elevated temperatures. At each temperature three 

cylinders were used for slow cooling and the other three for rapid cooling. Thus, all together 

135 cylinder specimens were cast and tested in this study.  

2.1 Materials 

The cement used in this study was general purpose Portland cement which 

corresponds to ASTM type I. The class F fly ash used in this study was obtained from Collie 

Power Station in Western Australia. The chemical compositions of cement and fly ash are 

shown in Table 1.  The coarse aggregates used in this study were 10 and 20mm in size. Both 

aggregates were crushed granite rock and prepared to saturated surface dry (SSD) condition.   

2.2 Mix proportions, mixing and curing 

Mix proportion of all mixes is shown in Table 2. The mixing of control and fly ash 

concretes was carried out in a pan mixer.  First, the aggregates and cement and fly ash  were 

dry mixed for approximately 5 minutes and then water was slowly added into the mix and 

continued to mix for another 5 minutes. The cylinders were then filled with concretes and 

compacted on a vibrating table.  The concrete cylinders were demoulded after 24 hours and 

stored in the curing tanks where they were subjected to standard wet curing for 56 days. 

Longer curing time was chosen due to slow pozzolanic reaction of fly ash in concrete. Before 

putting the specimens in the kiln, they were dried in an oven at 1050C for 24 hours to remove 

any free water from the concrete.  This is to prevent the specimens from exploding in the kiln 

during the heating process, as a result of extremely high pore water pressure from the 

superheated water.   

To cast the concretes, cylinders of 200mm in height and 100mm in diameter were 

prepared.  Some cylinders were modified in order to install 20mm long and 2mm diameter 

removable pins so that holes would be cast into the specimens for the thermocouples to be 

installed. 



2.3 Heating regime 

The kiln used to heat the cylinders was a locally manufactured Kiln with a maximum 

temperature rating of 1200˚C. It was a small capacity kiln capable of fitting a maximum of 6 

cylinders at any one time. Details regarding the kiln can be found in another paper [9]. The 

heating rate of 8˚C per minute was applied as this was the  maximum rate that could be 

achieved in the kiln. To monitor the temperatures four “type K” thermocouples shown in Fig. 

1 were set up in different positions inside the kiln (Fig. 1) and in the cylinders (Fig. 2). Two 

thermocouples were set up to monitor the ambient temperature inside the kiln (see Fig. 2). 

One was positioned 50mm from the top of the interior and another was set 50mm from the 

bottom of the kiln. The other two thermocouples were inserted in to a sacrificial cylinder to 

monitor the core temperature of the sample. All four thermocouples were then connected to a 

data logger to monitor the temperatures inside the kiln and cylinder. Irrespective of the target 

temperature the testing method remained the same throughout. Oven dried samples were put 

into the kiln and immediately exposed to an 8˚C per minute heating rate. This heating rate 

was continued until the ambient temperatures inside the kiln reached the target temperature. 

At this point the target temperature was maintained and the concrete was held in the kiln for a 

further two hours before being subject to different cooling methods.  

 

 

 

2.4 Cooling regime 

Two cooling methods were chosen, namely rapid cooling achieved from water 

quenching and slow cooling at ambient air. After the samples had been in the kiln for the 

correct duration of time the kiln was then turned off and the door kept open. The area around 

the kiln was roped off for safety and then left overnight giving ample time for the heat to 

slowly permeate out of the kiln and allow the concrete to gradually return to ambient 

temperature.  

A 50L plastic bucket was prepared for water quenching. Firstly, the base of the bucket 

was filled approximately 100mm deep with 20mm aggregates to prevent melting of bucket’s 

base. Secondly, unlike other studies, a 20mm diameter hole was punched through the side of 

the bucket approximately 1/3 of the way up. The purpose of this hole was to allow a 

continuous flow of hot water out of the bucket. The reasoning behind this is that during a fire, 

water is sprayed onto the concrete surface and it drain quickly due to gravity; this means that 



fresh cold water is continuously being sprayed onto the concrete. After the full heat treatment 

process was complete, the concrete samples were immediately removed from the kiln using a 

long pair of crucible tongs, and placed into the bottom of the bucket. A large hose was then 

used to rapidly spray water on cylinder into the bucket for 15 minutes. During this time the 

bucket completely filled up and there was a continuous flow of water out of the hole (see Fig 

3).  The samples were then removed from the water and left in ambient laboratory conditions 

overnight to allow the core temperature to return back to ambient temperature. 

 

2.5 Testing details 

The compressive strength of concretes were determined according to ASTM C39 [10] 

using a loading rate of 0.33 MPa/s. For each temperature and cooling method three specimens 

were tested and the mean value of these measurements was reported. 

To study the strength change due to various temperatures and cooling regimes, X-ray 

diffraction (XRD) analysis were performed on powder mortar samples obtained from selected 

series. Mortar samples from individual specimen were collected using a pestle making sure to 

remove course aggregates as they appeared. They were then manually grinded until all that 

remained was 15mg of powder that could pass through a 0.15mm sieve. The power samples 

were then individually bagged and sent to the labs for analysis. The XRD analysis was 

performed on a D8 Advance Diffractometer (Bruker-AXS) using copper radiation and a Lynx 

eye position sensitive detector. The diffractometer were scanned from 3 to 70 (2h) in steps of 

0.02using a scanning rate of 0.5/ min. XRD patterns were obtained by using Cu Ka lines (k = 

1.5406 A). A knife edge collimator was fitted to reduce air scatter. 

A Mettler Toledo TGA 1 star system analyser was used for TGA analysis. Samples of 

25 mg were placed in an alumina crucible and tests were carried out in Argon atmosphere 

with a heating rate of 10oC/min from 25 to 1000oC. 

 

3 RESULTS AND DISCUSSION 

3.1 Temperature profile of cylinders at different target temperatures 

The rate of temperature increase in the kiln and in the cylinder is shown in Fig. 4. The two 

dotted lines are for the thermocouples measuring the air temperature inside the kiln, while the 

two solid lines are the readings for the concrete cylinder. For both pairs of thermocouples in 

the concrete and in the kiln air there was no more than a 30°C temperature difference within 



the pairs on average. As can be seen in the figure, that there is some difference between the 

core temperature of concrete cylinder and air temperature inside the kiln, particularly for the 

2000C and 4000C temperature profiles. This is due to the heat capacity of the concrete 

specimens and the rate at which they are able to absorb heat. However, the difference 

between kiln temperature and cylinder at 600oC and 800oC gradually reduced.  The difference 

between the temperatures in the kiln air and in the concretes were to ensure rapid heating 

which would better reflect the heating within a house fire.  Up until 500°C, the kiln was able 

to maintain a reasonably constant heating rate, there after the heating rate decreased.   

3.2 Residual compressive strength 

The effects of different elevated temperatures on residual compressive strength of fly ash 

concretes are shown in Fig. 5. The effects of different cooling regimes on the residual 

compressive strength of above concretes are also shown in the same figure. It can be seen that 

in the case of slow cooling, the residual compressive strength of all concretes increased at 

200oC except concretes containing 10% and 30% fly ash (Fig. 5a). With further increase in 

elevated temperatures, the residual compressive strength of all concretes decreased at all 

elevated temperatures. However, in the case of rapid cooling the scenario is different, where 

no such increase in residual compressive strength is observed at 200oC and even at other 

elevated temperatures the residual compressive strengths are lower than those of slow cooling 

(Fig. 5b).   

 3.2.1 Residual compressive strength at 200oC 

It can be seen in Figs. 6-7 that the residual compressive strength of most fly ash 

concretes due to slow cooling is higher than that of rapid cooling. The possible reasoning 

behind the strength gain at this temperature range is the formation of tobermorite. 

Tobermorite is a calcium silicate hydrate mineral that is formed from a reaction between 

unhydrated fly ash particles and lime at elevated temperatures [11]. Tobermorite improves 

the adhesion between the aggregates and the paste.  

There was considerable difference between concrete samples that were slowly and 

rapidly cooled. As can be seen in Fig. 7, samples that were rapidly cooled exhibited higher 

strength losses than slow cooling process. One justification as to why such a difference 

occurred in this temperature range is thermal shock. Thermal shock is caused by a sudden 

fluctuation in temperature due to quenching of water on concrete specimens [12]. Thermal 

shock induces tensile stress inside the concrete promoting cracking, and as clearly shown in 

Fig. 7, results in a fairly significant reduction in strength. 



 

 3.2.2 Residual compressive strength at 400oC, 600oC and 800oC temperatures 

As presented earlier, the concrete specimens experienced significant drop in 

compressive strength between 400oC and 800oC for both cooling methods. However, rapid 

cooling is more severe than slow cooling, where residual compressive strength is reduced 

between 26 and 34% at 400oC, between 48 and 59% at 600oC and between 80 and 87% at 

800oC (see Fig. 7). As discussed, the thermal shock due to sudden fluctuation in temperatures 

due to rapid cooling could be a cause for such significant drop in the residual strength 

capacity.  

Thermal shock is not the sole reason for the strength loss in those temperatures, the 

development of thermal incompatibilities is also a contributing factor. Thermal 

incompatibilities refer to the different rates that a concrete’s constituent either expand or 

contract from the exposure to different elevated temperatures [5]. When subject to 200˚C, the 

10mm and 20mm aggregates expand at a slow rate and similarly so does the fly ash paste. As 

both constituents are expanding at a similar rate there is no real stress from thermal 

incompatibilities. And due to this reason no significant reduction in residual compressive 

strength of fly ash concretes are observed at 200oC for both cooling methods. At 400˚C and 

beyond, the 10mm and 20mm aggregates continue to expand at a similar rate, but the fly ash 

paste, however, stops expanding and starts rapidly contracting due to further evaporation of 

moisture. This difference in volumetric changes creates an incompatibility between 

aggregates and paste causing micro cracking between the two. The formation of this micro 

cracking damages the cementitious bonds between paste and aggregate and reduces 

compressive strength.  

The suspected reasoning behind this sharp drop in residual compressive strength is 

also due to the dehydration of calcium hydroxide (Ca(OH)₂). Ca(OH)₂, although not found in 

fly ash, is abundant in cement and as the cementitious paste is comprised of mostly OPC its 

dehydration will be a likely contributing factor. As found in research by Mendes, et al. [10], 

when concrete passes the critical temperature level of 400˚C Ca(OH)₂, which is the main 

hydrate in cementitious paste, dehydrates into calcium oxide (CaO). This change of phase 

causes the paste to shrink and crack. Furthermore, when subject to rapid cooling, CaO 

rehydrates rapidly back into Ca(OH)₂ which causes Dissociation due to re-expansion of OPC 

paste. Dissociation is essentially the splitting of one ionic compound into smaller particles 

reducing strength even further [13]. 



Total evaporation of free water occurs as exposure temperatures increases. Further 

loss of chemically bound water also occurs and this bound water evaporates when concrete is 

exposed to extreme high temperatures [7]. The evaporation of the remaining water in the 

concrete not only induces more micro cracking but it is also the potential reason why, during 

testing, the concrete subject to 800˚C crumbled into powder. In order to ensure the 

repeatability of the measured calculated strengths standard deviations (SD) are also 

calculated and listed in Table 3. Generally a smaller SD represents that the results are very 

close to the mean. The larger the SD the more variance in the results. By looking into the SD 

values of all concretes it can be seen that they are generally low in the range of 0.43 to 2.77 

and hence, ensure their repeatability.  

 

3.3 Cracking behaviour 

Figs. 8 and 9 show the effects of different cooling methods on cracking behaviour of 

ordinary concrete and fly ash concretes containing 10% and 20% fly ash at various elevated 

temperatures. When subjected to 200˚C, irrespective of cooling rate and fly ash content, there 

was no apparent sign of cracking in any of the concrete samples. When exposed to 

temperatures of 400˚C, tiny hairline cracks no greater than 20mm long began to appear. 

These hairline cracks were inconsistent throughout the specimen making a common trend 

unpredictable. At 600˚C exposure temperature, obvious cracking formed on the surfaces of 

all three concrete specimens. It was at this temperature range where the effect of cooling rate 

on cracking started to become evident. Concrete samples that were slow cooled produced 

hairline cracking similar to that produced in the 400˚C range, whereas concrete that was 

subject to rapid cooling experienced cracking that appeared to not only be wider but have an 

increased length, 30-40mm. Consistent with the results found by Arioz [14], concrete 

exposed to 800˚C was noted to experience a further increase of cracking compared to that 

exposed to only 600˚C. The degree of cracking was so much more significant that the cracks 

started to join up and completely span around the entire surface area of the cylinder. 

Although control samples containing no fly ash exhibited large amounts of cracking, they 

were visibly smaller than cracking patterns formed on the surface of concrete containing fly 

ash. It was noted that the 800˚C temperature was the only range that showed a variance in the 

level of cracking between the control and fly ash concrete. When comparing Figs. 8 and 9 

one can see that cooling rate did have an effect on the severity of cracking at 800˚C. Slow 



cooling, although inducing a large amount of cracking, did not induce the size of cracking 

exhibited by the rapidly cooled samples. It was noted that the cracking formed on the surface 

of the rapidly cooled samples was approximately 1mm wide, significantly wider then that 

formed on the slow cooled concrete. 

 

3.4 Thermal and microstructural analysis 

TGA/DTA and XRD analysis were performed to study the thermal stability and 

changes in hydration phases of mortar matrix of different fly ash concretes when exposed to 

elevated temperatures. Figs. 10 and 11 show the TGA and DTA analysis results of mortar 

samples of fly ash concretes, respectively. Results show that all fly ash matrixes exhibited 

sharp decrease in mass (about 10-12%) before about 150oC and the lower the fly ash contents 

the more is the mass loss. The decrease in mass is peaked at around 100oC as indicated by the 

DTA curve in Fig. 11. This is attributed to the dehydration of chemically bound water from 

the CSH gel. The result is quite similar with that of pure cement matrix where researchers 

reported about 6-8% mass loss around that temperature [14, 15]. The slightly high mass loss 

in fly ash matrix can be attributed to the formation of more CSH gel due to pozzolanic 

reaction of fly ash in those concretes during 56 days wet curing. At other higher 

temperatures, such after 400oC and 800oC mass loss is also observed, however, not at that 

high rate, which is also evident from the peaks in DTA curves in Fig. 11. The drop in mass at 

those two temperatures can be attributed to the decomposition of Ca(OH)2 and CaCO3 in the 

matrix [16].  

XRD results of concretes containing 20% and 40% fly ash after exposure to 800oC are 

shown in Fig. 12. The effects of slow and rapid cooling are also shown in the same figure. 

The quantitative phase abundance analysis of XRD results is also shown in Table 4.  A 

number of potential crystalline phases are identified in the samples. The results show that 

after exposing to 800oC temperature Portlandite [Ca(OH)2] and Quartz [SiO2] phases in both 

concretes are decreased at both cooling methods. The reduction of those phases is high for 

concrete containing 40% fly ash. This indirectly indicates that SiO2 reacted with Ca(OH)2 and 

formed additional CSH hydration products in fly ash concretes. However, the measured 

compressive strength results do not agree with this observation. Moreover, new peak of 

calcium silicate (Ca2SiO4) is formed in both concretes at around 2 angle of 32o after exposed 

to 800oC for both cooling. This intensity is slightly higher in slow cooling than rapid cooling. 



The formation of calcium silicate phase indicates the decomposition of CSH at elevated 

temperatures. 

 

3.5 Comparison of experimental results with prediction 

 

Eurocode EN1994:2005 [17] provides guideline to predict the compressive strength of 

OPC concretes at different elevated temperatures when they are exposed to fire. In this study, 

the measured compressive strength of fly ash concretes and OPC concrete at various elevated 

temperatures are compared with that predicted by the Eurocode EN1994:2005  and are shown 

in Fig. 13. It can be seen in the figure that the measured compressive strengths of OPC 

concrete at various elevated temperatures are very close to the predicted values except at 200 

and 400oC due to slow cooling. In the case of fly ash concretes, it is observed that the 

prediction by Eurocode EN1994:2005 is valid for all temperatures and cooling regimes, 

where the reduction of experimentally measured strength follows the same trend to that 

predicted by the code.  Based on this present study, it can be concluded that the Eurocode 

EN1994:2005 can be used to predict the compressive strength of fly ash concretes with 

reasonable accuracy for all temperatures upto 800oC.  

 

4 CONCLUSION 

This paper presents the results on the effects of slow and rapid water cooling on the 

residual compressive strength of ordinary concrete and fly ash concretes when subjected to 

various elevated temperatures. Based on experimental results the following conclusions can 

be drawn: 

 

 Concrete containing 10% fly ash exhibited similar reduction (about 8-9%) to its ambient 

compressive strength when subjected to both slow and rapid cooling after exposure to 

2000C. However, at other elevated temperatures, the residual compressive strength of 

10% fly ash concrete is lower due to rapid cooling than slow cooling. The concrete 

containing 20% fly ash exhibited about 9% and 30% less residual compressive strength at 

2000C and 4000C, respectively, when subjected to rapid cooling than slow cooling. 

Surprisingly, at 6000C and 8000C this concrete showed about 5% and 12% higher residual 

compressive strength due to rapid cooling than slow cooling. The concretes containing 



high fly ash contents, such as 30% and 40%, showed higher reduction in residual 

compressive strengths at all elevated temperatures for rapid cooling compared to slow 

cooling.  It was also observed that at all elevated temperatures the difference in residual 

compressive strengths between rapid and slow cooling decreased with increase in fly ash 

contents.  

 Cracks were occurred sporadically over concrete samples after being exposed to 

temperatures ranging from 400˚C to 800˚C.  Samples that were slowly cooled developed 

smaller cracks than those rapidly cooled.  At 800˚C, all fly ash concretes that were 

exposed to rapid cooling showed the most severe cracking. Results also showed that 

existing Eurocode methods to predict the compressive strength of ordinary concrete 

subjected to elevated temperatures can still be applied for concretes containing fly ash. 

 XRD results revealed new calcium silicate peaks in concretes containing 20% and 40% 

fly ash after exposure to 800oC and different cooling indicating the decomposition of 

CSH due to heating. The reduction of Ca(OH)2 and SiO2 peaks in XRD results indicates 

the decomposition of above two compounds in hydration products and unreacted fly ash 

particle, respectively. The TGA/DTA results show that the thermal stability of concrete 

containing high fly ash content is higher than that containing low fly ash.   
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