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Abstract       

Normalized oil content (NOC) is an important geochemical factor for identifying 

potential pay zones in hydrocarbon source rocks. The present study proposes an optimal 

and improved model to make a quantitative and qualitative correlation between NOC and 

well log responses by integration of neural network training algorithms and the 

committee machine concept. This committee machine with training algorithms (CMTA) 

combines Levenberg-Marquardt (LM), Bayesian regularization (BR), gradient descent 

(GD), one step secant (OSS), and resilient back-propagation (RP) algorithms. Each of 

these algorithms has a weight factor showing its contribution in overall prediction. The 

optimal combination of the weights is derived by a genetic algorithm. The method is 

illustrated using a case study. For this purpose, 231 data composed of well log data and 

measured NOC from three wells of South Pars Gas Field were clustered into 194 

modeling dataset and 37 testing samples for evaluating reliability of the models. The 

results of this study show that the CMTA provides more reliable and acceptable results 

than each of the individual neural networks differing in training algorithms. Also CMTA 

can accurately identify production pay zones (PPZs) from well logs. 
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Normalized oil content (NOC) which is a measure of oil (in mg) produced from 

one gram of total organic carbon (TOC) at 300 ºC, is a useful parameter for identifying 

potential pay zones in organic matter bearing intervals. This parameter is measured by 

Rock-Eval pyrolysis which is a time consuming and expensive method. To date, 

numerous researchers have tried to make a qualitative and quantitative correlation 

between well log responses and organic richness of rocks. Among them Beers (1945), 

Swanson (1960), Fertle (1988), Schmoker (1981), and Hertzog et al. (1989) used gamma-

ray spectral log to identifying organic rich rocks. Schmoker and Hester (1983) proposed 

the use of the density log for estimating organic matter content. Meyer and Nederlof 

(1984) used a combination of resistivity, density, and sonic logs to discriminate 

qualitatively between source and non-source rocks. Passey et al. (1990) invented ΔlogR 

method which employs the separation between sonic and resistivity logs for identifying 

and calculating total organic carbon. Huang and Williamson (1996) applied neural 

network modeling for source rock characterization. Kamali and Mirshady (2004) used the 

ΔlogR and neuro-fuzzy techniques for determination of total organic carbon from well 

log data.  

Committee machine approach which is a new type of neural network can be used to 

approximate NOC data from well logs. It has a parallel structure that produces a final 

output by combining the results of individual experts using an optimization technique 

(Haykin, 1991; Sharkey, 1996; Chen and Lin, 2006). The experts can be empirical 

formula, neural network, a decision tree, or another type of algorithm (Sharkey, 1996). 

Genetic algorithm (GA) is an effective optimization technique based on the principles of 

natural selection and genetics (Holland, 1975). They are often described in biological 

terms. Potential solutions are called chromosomes. A set of chromosomes is called a 

population and a problem to be solved is represented by a fitness function. Genetic 

operators such as crossover and mutation are operators used to create a new population. 

(Reformat, 1997). More details about GAs can be found in Lucasius and Kateman (1993, 

1994), Goldberg (1989) and Huang et al. (2001).  

In this research, GA will be applied in construction of a committee for predicting 

normalized oil content (NOC) from well log data and identifying potential pay zones in 
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Upper Permian to Lower Triassic Dalan and Kangan Formations (Kadkhodaie-Ilkhchi  

et al, 2006), South Pars Gas Field, Persian Gulf.  

 

2. The methodology: Committee machine with training algorithms (CMTA) 

The proposed methodology, CMTA, consists of four steps: (1) selection of 

appropriate inputs among the available well log data; (2) Designing back-propagation 

networks with different training algorithms; (3) Construction of CMTA; and (4) 

Generalization of the constructed CMTA. The methodology described in this study 

provides an improved and novel model for predicting NOC parameter in two ways. They 

are, in use of committee machine concept for predicting NOC parameter and thus reaping 

the benefit of all of the work, and in use of genetic algorithms for determining the 

contributions (weights) of individual algorithms used in constructing CMTA. It is clear 

that many components of the method described in this study are based on other 

researcher’s works which are not novel in their own right. For example, neural network 

training algorithms or GAs are well known techniques. Overall, the integrated technique 

described in this study can be considered as an efficient and instrumental way for 

predicting NOC parameter from well log responses. 

 

2.1. Selection of appropriate inputs 

This step of the work plays an important role in model construction.  Normally, 

the inputs with stronger relationships with output can provide more accurate predictions 

than weaker ones. Relationships between available well log data and NOC are shown in 

figures 1a-h. Comparisons show that thermal neutron porosity (TNPHI), bulk density 

(FDC), sonic transit time (DT), and the ratio of true resistivity to flushed zone resistivity 

(RT/Rxo) have a stronger relationship with NOC, whereas, this relationship is weaker for 

RT, Rxo, GR, and PEF data. The used well log data are displayed in figure 2. 

In order to selection of the appropriate inputs for designing neural networks with 

different training algorithms, a simple three layered neural network with default 

parameters was designed for NOC estimation using Matlab software. In input layer, 

several groups of well log data were considered (152 data points for training and 42 data 

points for validation). In each run, performance of constructed model in the test data (37 
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data points) was measured. Results show that selecting DT, TNPHI, FDC, and RT/Rxo 

data in input layer will be associated with the minimum MSE (Table 1).   

The justification based on physical relationships between input used and output data can 

be stated as below: 

Normally, hydrogen index in organic matter is high due to high hydrogen content. Thus, 

neutron porosity increases in the organic rich intervals. The sonic transit time (DT) is a 

function of formation lithology, porosity and distribution models of fluids (water, gas, oil, 

kerogen, etc.). NOC tends to increase the apparent DT value. Organic matters have a low 

density (about 1 gr/cm3) and their concentration tends to decrease the bulk density of the 

rock. Generally, organic rich rocks have high true resistivity than other rocks. Specially, 

once kerogen becomes mature and generates hydrocarbon filling in voids and fractures.  

 

2.2. Designing networks with different training algorithms 

A back-propagation neural network is a supervised training technique that sends 

the input values forward through the network then computes the difference between 

calculated output and corresponding desired output from the training dataset. The error is 

then propagated backward through the net, and the weights are adjusted during a number 

of iterations named epochs. The training stops when the calculated output values best 

approximate the desired values (Bhatt and Helle, 2002). Depending on the method used 

for updating weights and bias values, several training algorithms have been developed. In 

this study, five of the most common training algorithms are used. A very brief description 

and some references to each training algorithms are provided in this section.  

Levenberg-Marquardt (LM) is a network training function that updates weight and bias 

values according to Levenberg-Marquardt optimization whose details of computation and 

process can be find in Boadu (1997, 1998), Bishop (1995) and Burney et al. (2004). It is 

very fast, but it requires a lot of memory to run. 

Bayesian regularization (BR) is a network training function that updates the weight and 

bias values according to Levenberg-Marquardt optimization. It minimizes a combination 

of squared errors and weights, and then determines the correct combination so as to 

produce a network that generalizes well. More details about Bayesian regularization are 

given in MacKay (1992), Demuth and Beale (2002), and Aggarwal et al. (2005). 
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Gradient descent (GD) is a network training function that updates weight and bias 

values according to gradient descent. More description can be found in Baird and Moore 

(1999) and Kononen (2005).  

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

One step secant (OSS) is a network training function that updates weight and bias values 

according to the one step secant method. More details are given in Battiti (1992). 

Resilient back-propagation (RP) is a network training function that updates weight and 

bias values according to the resilient back-propagation algorithm (Riedmiller and Braun, 

1993). 

 

2.3. Construction of CMTA  

Generally, a committee machine consists of a group of experts which combines 

the outputs of each system and thus reaps the benefits of all of the work, with little 

additional computation. So, performance of the model can be better than best single 

network (Haykin, 1991; Sharkey, 1996; Chen and Lin, 2006). A schematic diagram of a 

committee machine is shown in figure 3. There are different ways of combining the 

experts in the combiner. The simple ensemble averaging method is most popular (Naftaly 

et al., 1997, Chen and Lin, 2006). Proper combination of contribution (weight) of 

individual experts in a committee machine can be obtained by a GA.  

In this study, experts of committee machine are different training algorithms of back 

propagation neural network (CMTA). The section below describes the fundaments of our 

CMTA with regard to the works of Bates and Granger (1969), Haykin (1991), Geman et 

al. (1992), Naftaly et al. (1997), Huang et al. (2001), Ligtenberg and Wansink (2001), 

Bhatt and Helle (2002), Lim (2005), and Chen and Lin (2006). 

Assumption is that there are N training algorithms with output vector oi which are used to 

predict target vector T. The prediction error can be written as 

Toe ii −= ,                                                                                   (1)  

The sum of the squared error for the ith network  is io

][])[( 22
iii eToE ξξ =−= ,                                                                                                  (2) 

29 

30 

in which [.]ξ  is the expectation. The average error for each of the algorithms acting alone 

is  
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Considering Cauchy’s inequality: 
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which indicates that the CMTA gives more accurate and reliable estimations than that of  

any one of the individual training algorithms. 

 

2.4. Generalization of the constructed CMTA 

In this part of research, a CMTA was used for overall prediction of NOC by 

combination of the results obtained from different training algorithms of neural network. 

As the inputs of the mentioned CMTA are individual neural networks so, at the first 

stage, several neural networks were designed to learn the relationships between NOC 

data and well log responses. Afterward, the CMTA were constructed using two methods 

including simple averaging and weighted averaging. In the simple averaging method, the 

outputs estimated from individual neural networks were simply averaged to produce final 

estimation of NOC data. In weighted averaging method, the results estimated from 

individual neural network experts were multiplied by a weight factor showing its 

contribution in overall prediction. The GA was used to obtain weight coefficients from 

training data. Then, they were applied to the test data (Eq. 8).  

Following is the equation used for final estimation of NOC by CMTA: 

i

N

i
iCMTA CNOwNOC ∑

=

=
1

.                                       (8) 
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where N is the total number of the algorithms used,  is the weight coefficient of 

algorithm i and NOCi  is the estimated NOC from algorithm  i .  
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3. Case study 

3.1. Data preparation and processing 

The data sets used in this study for models construction and evaluation came from 

three wells of South Pars Gas Field. Two hundred thirty-one data composed of well log 

data and NOC (from Rock-Eval pyrolysis) were used. One hundred ninety-four training 

data points were used for models construction and 37 samples from the third well for 

testing the developed models. Well log data were processed and bad hole intervals were 

removed. FDC values ranged from 2.04 to 2.83 g/cm3 (average: 2.46). DT varied from 

51.18 to 79.30 μs/ft (average: 64.17). TNPHI was between 0.021 and 0.158 pu (average: 

0.098), and RT/Rxo varied from 1.25 from 69.78 (average: 21.02). The target parameter, 

NOC, was between 8.0 and 517 mg Oil/g TOC (average: 159.44). 

 

3.2. Predicting NOC by CMTA 

As the experts of our CMTA are various training algorithms, first a back 

propagation neural network was designed in Matlab software environment. In order to 

design the networks with different training algorithms it was necessary to set optimal 

parameters of each one including number of hidden layers, number of neurons in hidden 

layers, training epochs, and transfer functions. These parameters were determined by trial 

and error. Specifying inadequate number of training epochs or training data may lead to 

under-training. For example, stopping too early means the ANN has not yet learnt all the 

information from the training data. Another major pitfall of neural network is over-

training in which the network only memorizes the training set and loses its ability to 

generalize to new data. The result is a network that performs well on the training set but 

performs poorly on out-of-sample test data and later during actual trading (Tetko et al., 

1995). Adding more hidden layers involves adding activation (using the outputs of the 

previous hidden layer) and error correction calculations (using the derivative of the 

transfer function) for each layer. Both situations are likely to result in sub-optimal 

operational performance of an ANN model. It is for this reason that the available data 
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were divided in three separate data sets: a: training set (194 data points, b: cross-

validation set (42 data point), and c: validation set (37 data point). The minimization of 

the training error is stopped as soon as the cross-validation error starts to increase. This 

point is considered to lie between under-training and over-training an ANN. An example 

of over-training and under-training problems is shown in figure 4. Followings are the 

optimum parameters of the networks designed:  

Four neurons corresponding to well log data including DT, TNPHI, FDC, and RT/Rxo 

were considered in input layer, respectively. The network included one hidden layer. The 

output layer included one neuron for NOC data. Number of neurons in hidden layers is 7 

for LM, 9 for BR and OSS, 4 for GD, and 8 for RP algorithm. Tansigmoid transfer 

function was selected from layer one to two and Purelin transfer function from layer two 

to three for all of the networks. The mean squared errors (MSE) of training and validation 

data for algorithms used are shown graphically in figure 5. According to figure 5, RP has 

the minimum MSE for both training and validation data.  

Adjusted weight and bias values, after a specific number of epochs, for different training 

algorithms including bias from layer 1 to layer 2 (b{1}), weights from layer 1 to layer 2 

(W{1}), bias from layer 2 to layer 3 (b{2}), weights from layer 2 to layer 3 (W{2}) and 

MSE are shown in Table 2. The architecture of the constructed networks is shown in 

figure 6.  

After training procedure, the CMTA was constructed. Determining the number of the 

algorithms to be combined in the committee machine is necessary for obtaining accurate 

results. For this purpose, numerous cases of the algorithms combination were considered 

in constructing CMTA. The combinations ranged from two to the entire training 

algorithms. The mentioned CMTAs were first constructed by applying simple averaging 

method. In this approach, any one of the training algorithms has equal contribution in 

constructing CMTA.  

In the next step, a genetic algorithm was used to obtain appropriate weight coefficients of 

CMTA in training data. The fitness function which should be minimized by GA was 

defined as MSE of training data predictions (Eq. 9): 

2

1 1

)).((/1∑ ∑
= =

−=
m

i
measuredi

N

i
iCMTA NOCCNOwmMSE                                                                      (9)          
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where  is the number of training data (152 samples), wi , N, and NOCi  are same as 

those of Eq. (8). Parameter settings for GA are described in below. 
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Initial population size is 30 which specifies number of individuals in each generation and 

initial range is [0, 1] which specifies the range of the vectors in the initial population. The 

crossover function is scattered and its fraction is 0.88. Mutation function is Gaussian that 

adds a random number, or mutation, from a Gaussian distribution, to each entry of the 

parent vector. Parameters controlling the mutation are specified as the scale value of 0.9 

and shrink value of 1. The scale value controls the standard deviation of the mutation at 

the first generation. Shrink value controls the rate at which the average amount of 

mutation decreases. The standard deviation decreases linearly so that its final value 

equals 1.  

After running the GA, optimized weight coefficients were applied in CMTA to produce 

the final output.  

 

3.3. Results and discussion 

The performance of the simple averaging and the weighted averaging CMTA 

constructed from combining two, three, four, and all of the training algorithms are shown 

in Table 3. According to Table 3, the simple averaging CMTA using LM, BR, RP, and 

OSS methods has produced the minimum error whereas, combination of the all the 

algorithms used (LM, BR, GD, OSS, and RP) in weighted averaging CMTA is associated 

with the minimum error. So, the GA optimized case was selected for overall estimation of 

NOC. According to figure 7a, after 80 generations the mean and best fitness values were 

fixed in 0.024 and 0.022, respectively. Figure 7b shows best, worst and mean scores 

within mentioned 80 generations. The GA derived values for , , , , and  

corresponding to LM, BR, GD, OSS, and RP estimations are 0.187, 0.241, 0.082, 0.076, 

and 0.413, respectively. Figure 8 shows the diagram of CMTA designed in this study. 

Overall estimation of NOC by CMTA for testing data (37 samples) was calculated as 

below: 

1w 2w 3w 4w 5w

RPOSSGDBRLMCMTA NOCNOCNOCNOCNOCNOC ×+×+×+×+×= 413.0076.0082.0241.0187.029 

30 (10).                 
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Table 4 shows the comparison of MSE for 37 testing data points from well C using 

different algorithms including LM, BR, GD, OSS, RP, simple averaging CMTA (all 

algorithms), and GA optimized CMTA (all algorithms). Considering crossplots of figure 

9a-e and Table 4, among the five neural network algorithms used, RP has provided the 

smallest error (MSE=2.078) and R2 value of 0.703 for the test samples. In the meanwhile, 

GD is associated with highest error (MSE=2.291). Applying averaging method for 

construction of CMTA using all algorithms has provided MSE of 1.981 and R2 value of 

0.725 (figure 9f) which shows some improvement in comparison with individual training 

algorithms. MSE of the GA optimized CMTA using all algorithms for the test data is 

1.860 which corresponds to the R2 value of 0.751 (figure 10). This indicates that CMTA 

has had a significant improvement for the estimation of NOC from well log data. 

Namely, CMTA performs better than any one of the individual training algorithms acting 

alone for NOC predicting problem. Also it has provided better results than constructed 

CMTA by simple averaging method. It might be noticed that in our case study the 

weighted averaging committee machine performed better than simple averaging method 

whereas; in some cases it may not be so. For example, if the weighted averaging CM in 

the best possible conditions provides the equal weights for all of the experts used, then 

the simple averaging committee machine will be preferred. However, as a general rule it 

can be said that CMs provide better results than simple averaging methods to solve a 

problems (Cauchy’s inequality, Eq. (6)).  

Generally, the zones with NOC>100 are considered as potential pay zone (PPZ). Figure 

11 is a graphical illustration showing a comparison between PPZs determined from 

measured (11b) and CMTA predicted NOC (11c) (zones in black color). According to 

figure 11, irrespective of the interval between 2819.50 and 2816.60, there is a good 

agreement between measured and predicted PPZs. Specially, once the NOC is around the 

value of 100, CMTA can identify PPZs successfully. In figure 12a, the results of 

generalization of CMTA for the forth well of the South Pars Gas Field which has no core 

data is shown.  Predicted PPZs based on CMTA in this well are shown in figure 9b (black 

zones). 
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1 

2 

Table 1 Performance of the neural network for predicting NOC in the test data using several sets of input 

well log data (in this table only 9 of top sets is shown). 

Inputs MSE 
 

DT 14.53 

DT, TNPHI 8.01 

DT, FDC, TNPHI 6.39 

DT, FDC, TNPHI, GR 7.80 

DT, FDC, TNPHI, PEF 7.25 

DT, FDC, TNPHI, RT 4.81 

DT, FDC, TNPHI, Rxo 4.97 

DT, FDC, TNPHI, RT/Rxo 4.60 

DT, FDC, TNPHI, RT/Rxo, PEF, GR 7.11 

3 

4 

 

Table 2 Adjusted network parameters for different training algorithms 

Algorithm No. of neurons in  
layers  1, 2, 3 W {1} b {1} W {2} b {2} Epochs MSE 

LM 
 
 
 
 
 
 
 

BR 
 
 
 
 
 
 
 
 

GD 
 
 
 
 

OSS 
 
 
 
 
 
 
 
 

4, 7, 1 
 
 
 
 
 
 
 

4, 9, 1 
 
 
 
 
 
 
 
 
 

4, 4, 1 
 
 
 
 

4, 9, 1 
 
 
 
 
 
 
 
 

  0.113   -12.925   -0.710    0.039 
  0.005    29.640     0.901    0.028 
  0.087   -12.722    1.574   -0.046 
 -0.025    12.240   -4.577   -0.030 
  0.097   -19.379    3.012    0.011 
 -0.133     -9.173    2.839    0.004 
  0.016     -0.106    3.178   -0.055 
 
  0.064    27.099   -0.707   -0.033 
 -0.125   -15.021    2.761    0.029 
  0.011    23.109    0.778    0.050 
  0.097    29.102    0.261    0.006 
  0.041   -19.495   -3.398    0.041 
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Table 3 Performance of the constructed CMTA (simple averaging and weighted averaging) by combining 

different number of the training algorithms. In this table, the best results obtained from combining  

two, three, four, and all of algorithms are shown 

Performance of CMTA (MSE) and corresponding weights to  
their algorithms used Algorithms used 

(Best combinations) 
Simple averaging Weighted averaging  (GA optimized) 

 BR, RP 
2.034 
(w1=w2=0.50) 

2.016 
(w1=0.431; w2=0.569) 

LM, BR, RP 
1.975 
(w1=w2=w3=0.333) 

1.932 
(w1=0.211; w2=0.385; w3=0.403) 

LM, BR, RP, OSS 
1.958 
(w1=w2=w3=w4=0.25) 

1.927 
(w1=0.126; w2=0.321; w3=0.480; w4=0.073) 

LM, BR, GD, OSS, RP 
1.981 
(w1=w2=w3=w4=w5=0.20) 

1.860 
(w1=0.187; w2=0.241; w3=0.082; w4=0.076; w5=0.413) 

5 

6 

 

Table 4 Comparison of MSE for test well data using different algorithms. 

Algorithm MSE Rank 

LM 2.160 5 

BR 2.148 4 

GD 2.291 7 

OSS  2.255 6 

RP 2.078 3 

CMTA (simple averaging) 1.981 2 

CMTA (GA optimized) 1.860 1 

 7 

8 

9 

10 

11 

12 

13 

14 

4. Conclusions 

In this paper, a committee machine with training algorithms (CMTA) of back 

propagation neural network were developed for the estimation of NOC from well log data 

in South Pars Gas Field. Among the different algorithms used resilient back propagation 

(RP) is associated with the smallest error (MSE=2.078). In CMTA, each algorithm has a 

weight coefficient which was obtained by simple averaging method and genetic 

algorithm. In simple averaging method, combination of RP, BR, LM, and OSS 
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algorithms was produced the minimum MSE (1.958) whereas, in weighted averaging 

method, combination of all the training algorithms including LM, BR, GD, OSS, and RP 

was the best case (MSE=1.086). The GA derived weights for (LM),  (BR),  

(GD),  (OSS), and  (RP) are 0.187, 0.241, 0.082, 0.076, and 0.413, respectively. 
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28 

29 

30 

31 

1w 2w 3w

4w 5w

The CMTA is expected to provide improved and more accurate results when there are 

multiple ways to solve a problem, as our research demonstrated it. Similarly, CMTA was 

successful to identify potential pay zones from well logs. 
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Figure 1 Crossplots showing the relationship between NOC and TNPHI (a), FDC (b), 

DT (c), RT/Rxo (d), RT (e), Rxo (f), GR (g), and PEF (h) in the well A (Kangan 

Formation). 

Figure 2 Display of the used well log data in the well A. 

Figure 3 A schematic diagram of a committee machine (Haykin, 1991). 

Figure 4 Graph showing MSE for training and validation data against training epochs for 

a complex network trained by BR algorithm (this does not indicate optimum 

network for BR). According to the figure, after 10 epochs, MSE decreases for 

training data and increases for validation data. This epoch is a boundary 

between over-training and under-training. Stopping earlier means that a network 

does not take full advantage of the information content of the input signals, and 

stopping later means that the networks loses its capability to generalize.  

Figure 5 Graphs showing the mean squared error (MSE) of training and validation data 

predictions by training algorithms. 

Figure 6 A schematic diagram showing architecture of the constructed networks with 

different training algorithms.  

Figure 7 (a) Plot showing mean and best fitness values for fitness function after 80 

generations. (b) Best, worst and mean scores within 80 generations. 

Figure 8 Diagram showing the CMTA designed in this study. 

Figure 9 Crossplots showing the correlation coefficient between measured and predicted 

NOC from LM (a), BR (b), GD (c), OSS (d), RP (e), and averaging on based 

CMTA (f).  

Figure 10 (a) Crossplots showing the correlation coefficient between measured and 

predicted NOC from genetic algorithm optimized CMTA at the test well. (b) 

Graph showing a comparison between measured and CMTA predicted NOC at 

the test well.   

Figure 11 Graphical illustrations showing stair diagram of measured NOC at the test well 

(a), PPZs determined from measured data (b), and PPZs predicted from CMTA 

(c), PPZs are displayed by black colors.  
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Figure 12 (a) Stair diagram showing the predicted NOC from CMTA at the forth well of 

the study field. (b) A graphical illustration showing PPZs determined from 

generalization of CMTA to the forth well, PPZs are displayed by black colors.  
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Figure 1 Cross-plots showing the relationship between NOC and TNPHI (a), FDC 
(b), DT (c), RT/Rxo (d), RT (e), Rxo (f), GR (g), and PEF (h) in the well A (Kangan 
Formation). 
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Figure 2 Display of the used well log data in the well A. 
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Figure 3 A schematic diagram of a committee machine (Haykin, 1991). 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
A Committee Neural Network for Prediction of Normalized Oil Content…                            Kadkhodaie et al., 
 

 

 
 
 
 
Figure 4 A graph showing MSE for training and validation data against training 
epochs for a complex network trained by BR algorithm (this does not indicate 
optimum network for BR). According to the figure, after 10 epochs, MSE decreases 
for training data and increases for validation data. This epoch is a boundary between 
over-training and under-training. Stopping earlier means that a network does not take 
full advantage of the information content of the input signals, and stopping later 
means that the networks loses its capability to generalize.  
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Figure 5 Graphs showing the mean squared error (MSE) of training and validation 
data predictions by training algorithms. 
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Figure 6 A schematic diagram showing architecture of the constructed networks with 
different training algorithms.  
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Figure 7 (a) Plot showing mean and best fitness values for fitness function after 80 
generations. (b) Best, worst and mean scores within 80 generations. 
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Figure 8 Diagram showing the CMTA designed in this study. 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
A Committee Neural Network for Prediction of Normalized Oil Content…                            Kadkhodaie et al., 
 

 

 
 
 
 
Figure 9 Cross-plots showing the correlation coefficient between measured and 
predicted NOC from LM (a), BR (b), GD (c), OSS (d), RP (e), and averaging on 
based CMTA (f).  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
A Committee Neural Network for Prediction of Normalized Oil Content…                            Kadkhodaie et al., 
 

 
 
 
 
Figure 10 (a) Cross-plots showing the correlation coefficient between measured and 
predicted NOC from genetic algorithm optimized CMTA at the test well. (b) Graph 
showing a comparison between measured and CMTA predicted NOC at the test well.   
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Figure 11 Graphical illustrations showing stair diagram of measured NOC at the test 
well (a), PPZs determined from measured data (b), and PPZs predicted from CMTA 
(c), PPZs are displayed by black colors.  
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Figure 12 (a) Diagram showing the predicted NOC from CMTA at the forth well of 
the study field. (b) A graphical illustration showing PPZs determined from 
generalization of CMTA to the forth well, PPZs are displayed by black colors.  
 
 


