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Abstract: In this paper, we develop and validate a numerical procedure

for solving a class of initial boundary value problems for the improved

Boussinesq equation. The finite element method with linear B-spline basis

functions is used to discretize the non-linear partial differential equation

in space and derive a second order system involving only ordinary deriva-

tives. It is shown that the coefficient matrix for the second order term

in this system is invertible. Consequently, for the first time, the initial

boundary value problem can be reduced to an explicit initial value problem

to which many accurate numerical methods are readily applicable. Vari-

ous examples are presented to validate this technique and demonstrate its
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capacity to simulate wave splitting, wave interaction and blow-up behavior.

Keywords: Improved Boussinesq equation; Galerkin method; Finite el-

ement method; Soliton solution.

1 Introduction

The Boussinesq equation was first introduced in the 1870s by Joseph Boussinesq to

model the propagation of shallow water waves in multiple directions. Subsequently, it

was applied to many other areas of mathematical physics dealing with wave phenomena

[13–16]. Applications to acoustic waves, ion-sound waves, plasma and non-linear lattice

waves, are described in references [8, 9, 17, 18].

A general form for the Boussinesq-type equations considered in these references is

utt(x, t) = uxx(x, t) + quxxxx(x, t) +
(

u2(x, t)
)

xx
, (1.1)

where q = 1 or −1. The original equation used by Boussinesq in [3] was (1.1) with

q = 1. In the literature, it is known as the “bad” Boussinesq equation. Equation (1.1)

with q = −1 is typically called the “good” Boussinesq equation.

Bogolubsky in [1, 2] has shown that the “bad” Boussinesq equation describes non-

realistic instability at short wavelengths. Consequently, the following so-called im-

proved Boussinesq equation (IBq) was proposed:

utt(x, t) = uxx(x, t) + uxxtt(x, t) +
(

u2(x, t)
)

xx
. (1.2)

Equation (1.2) is more effective for computer simulation than its predecessor. It has

been used to model ion-sound wave propagation [18], non-linear wave dynamics in

weakly dispersive media [19], and acoustic waves on elastic rods with a circular cross-

section [19]. Wazwaz [20] studied variants of the improved Boussinesq equation and
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showed that these non-linear variants give rise to compact and non-compact physical

structures.

It is shown in [2] that, on an unbounded region with boundary conditions u(x, t) → 0

as x → ±∞, the IBq admits analytical solutions of the form

u(x, t) = αsech2
( 1

β

√

α

6
(x− βt− x0)

)

, (1.3)

where x0 is the initial position of the solitary wave, α > 0 is the wave amplitude and

β = ±
√

1 + 2
3
α is the wave speed. The validity of (1.3) is expected to hold for bounded

regions which are sufficiently large.

Iskandar and Jain [12] were the first to investigate the IBq numerically. Using

a linearization technique and finite difference approximations, a three-level iterative

scheme with second order local truncation error was derived. The scheme was used

to investigate head-on collisions between solitary waves. Later, Zoheiry [10] developed

an improved scheme with a Crank-Nicolson modification. For this scheme, each time

step is accompanied by an iterative process that ensures the accuracy requirements are

satisfied. Hence, whilst accuracy is maintained, efficiency is compromised.

In [11], Adomian’s decomposition was applied to the IBq. Using this method, the

solution is expressed as a convergent series; an approximation is obtained by truncating

the series after a sufficient number of terms. However, the computation of each term in

this series is cumbersome, requiring the integration and differentiation of several com-

plex expressions. The symbolic manipulation package Maple was used and numerical

results were calculated and compared with the analytical solution, but only for a very

small value of t. It remains to be seen how this method performs for large values of t.

In fact, in order to maintain accuracy as t increases, it is expected that a large number

of more complicated terms will need to be calculated.

Bratsos [4] considered the IBq with boundary conditions imposed on the first spatial

derivative. Finite difference approximations were used to reduce the IBq to a system

of ordinary differential equations. Using a Padè approximation, a three level implicit
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time-step scheme was developed. Relevant stability bounds were also derived. In addi-

tion, Bratsos has employed an implicit finite-difference method to solve the improved

Boussinesq equation in [23].

In this paper, we develop a Galerkin-based finite element method for a class of

initial boundary value problems governed by the IBq. The spatial axis is partitioned

into a set of finite elements and the solution is expressed in terms of linear B-spline ba-

sis functions. On this basis, a system involving only ordinary derivatives is obtained.

Then, the structure of the system coefficient matrices is exploited to transform the

problem into an explicit initial value problem. Accordingly, many standard numerical

integration algorithms are applicable. In this manner, an approximate solution to the

problem can be generated. In contrast to existing methods, this method is simple to

implement and capable of handling the non-linearity in the governing equation. We

present the results of four numerical experiments to validate the method and demon-

strate its capability in simulating complex wave phenomena.

2 Problem Statement

Consider the initial boundary value problem consisting of the IBq (1.2), the initial

conditions

u(x, 0) = f(x), ut(x, 0) = g(x), for all x ∈ (a, b), (2.1)

and the boundary conditions

u(a, t) = 0, u(b, t) = 0, for all t ∈ (0,∞), (2.2)

where f : (a, b) → R and g : (a, b) → R are given functions.

For fixed t, we multiply (1.2) by a test function v ∈ H1
0 (a, b) = {w ∈ L2(a, b) : wx ∈

L2(a, b), w(a) = w(b) = 0}, integrate the product over [a, b] using integration by parts,
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and then apply the boundary conditions (2.2) to yield
∫ b

a

(

uttv + uxvx + uxttvx + (u2)xvx
)

dx = 0, (2.3)

where the function arguments are suppressed for clarity. Equation (2.3) is required to

hold for all admissible test functions. On this basis, we define the following variational

problem.

Problem 1. Find a u ∈ H1
0 (a, b) such that (2.1) is satisfied and, for each t > 0,

(utt, v) + (ux, vx) + (uxtt, vx) +
(

(u2)x, vx
)

= 0, for all v ∈ H1
0 (a, b), (2.4)

where

(u, v) =

∫ b

a

u(x)v(x)dx.

3 Numerical Method

We partition the x-axis into N finite elements by choosing a set of evenly-spaced

knots {xi}
N
i=0 such that a = x0 < x1 < · · · < xN−1 < xN = b and xi+1 − xi = h,

i = 0, . . . , N − 1. Consider an approximate solution of Problem 1 of the form:

UN (x, t) =

N
∑

i=0

ui(t)φi(x), (3.1)

where

φi(x) =























x− xi−1

xi − xi−1
, x ∈ [xi−1, xi],

xi+1 − x

xi+1 − xi

, x ∈ [xi, xi+1],

0, elsewhere.

According to (3.1), ui(t) = UN (xi, t), i = 0, . . . , N .

Applying the boundary conditions (2.2) gives u0(t) = 0 and uN(t) = 0 for all

t ∈ (0,∞). Hence, (3.1) can be simplified to

UN(x, t) =

N−1
∑

i=1

ui(t)φi(x). (3.2)
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We follow the standard Galerkin approach and choose test functions v = φi, i =

1, . . . , N−1. On this basis, (2.4) must hold with v = φi, i = 1, . . . , N−1. Substituting

(3.2) into (2.4) gives

N−1
∑

j=1

(

(φi, φj) üj +
(

φ′
i, φ

′
j

)

uj +
(

φ′
i, φ

′
j

)

üj + 2

N−1
∑

k=1

(φ′
iφ

′
k, φj) ukuj

)

= 0 (3.3)

for each i = 1, . . . , N − 1, where ′ and ˙ denote differentiation with respect to x and t,

respectively.

In matrix notation, the system of equations (3.3) can be written as

(A+B)Ü(t) +BU(t) + C
(

U(t)
)

U(t) = 0, (3.4)

where 0 ∈ R
N−1 is a zero vector and U(t) =

[

u1(t), u2(t), . . . , uN−1(t)
]T
. The (N −

1)× (N − 1) matrices A, B and C
(

U(t)
)

are given as follows:

A =
[

(φi, φj)
]

=
h
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4 1 0 · · · 0

1 4 1 · · · 0

0 1 4 · · · 0
...

...
...

. . .
...

0 0 0 · · · 4























,

B =
[

(φ′
i, φ

′
j)
]

=
1

h























2 −1 0 · · · 0

−1 2 −1 · · · 0

0 −1 2 · · · 0
...

...
...

. . .
...

0 0 0 · · · 2























,

and
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C
(

U(t)
)

=

[

2
N−1
∑

k=1

(φ′
iφ

′
k, φj)uk

]

=
1

h























2u1 − u2 u1 − u2 0 · · · 0

u2 − u1 −u1 + 2u2 − u3 u2 − u3 · · · 0

0 u3 − u2 −u2 + 2u3 − u4 · · · 0
...

...
...

. . .
...

0 0 0 · · · −uN−2 + 2uN−1























.

Note that C is a time dependent matrix, whilst A and B are constant. By virtue of

the structure of A and B, we have the following theorem.

Theorem 1. The matrix A +B is invertible.

Proof. Let y ∈ R
N−1 be a non-zero vector and define w(x) =

N−1
∑

i=1

yiφi(x). Then

we have

yTBy =
N−1
∑

i=1

N−1
∑

j=1

yibijyj

=
N−1
∑

i=1

N−1
∑

j=1

yi

(
∫ b

a

φ′
i(x)φ

′
j(x)dx

)

yj

=

∫ b

a

N−1
∑

i=1

N−1
∑

j=1

yiφ
′
i(x)φ

′
j(x)yjdx

=

∫ b

a

(

N−1
∑

i=1

yiφ
′
i(x)

)2

dx

=

∫ b

a

(w′(x))
2
dx

> 0.

Since w′ is piecewise continuous, equality holds if, and only if, w′(x) = 0 for all x ∈ [a, b].

Now, since w(a) = 0, w′(x) = 0 for all x ∈ [a, b] if, and only if, w ≡ 0. This, in turn,

requires y = 0, which contradicts the assumption that y is non-zero. Hence, yTBy > 0
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for all non-zero y and so B is positive definite. In a similar manner, one can ascertain

the positive definiteness of A. Since both A and B are positive definite, it readily

follows that A+B is positive definite and therefore invertible. �

From Theorem 1, it follows that we can invert the matrix A+B in (3.4) to isolate the

second derivative term. Since A+B is tridiagonal, this inversion can be performed ef-

ficiently using a special algorithm (see Section 6.6 of [5]). Introducing the new variable

V(t) = U̇(t), it is clear that the system (3.4) is equivalent to the following first order

system of ordinary differential equations:

U̇(t) = V(t), (3.5)

V̇(t) = −(A +B)−1
[

BU(t) + C
(

U(t)
)

U(t)
]

. (3.6)

Initial conditions for (3.5) and (3.6) are obtained by considering (2.1). As such, we

have

U(0) =
[

f(x1), . . . , f(xN−1)
]T

(3.7)

and

V(0) =
[

g(x1), . . . , g(xN−1)
]T
. (3.8)

The system of ordinary differential equations (3.5) and (3.6) with initial conditions (3.7)

and (3.8) defines a standard initial value problem. This problem can be solved using a

standard numerical integration algorithm (for example, a Runge-Kutta method).

4 Numerical Examples

In this section, we implement the procedure developed in Section 3 and solve some

concrete example problems. Firstly, in Example 1, we validate the procedure by com-

paring our numerical results with the exact solution. Then, in Examples 2, 3 and 4, we

demonstrate the capacity of this technique to simulate wave splitting, wave interaction

and blow-up behavior.

8



The differential equations (3.5) and (3.6) are solved using the Runge-Kutta-Verner

variable step-size method (see Section 5.5 of [5]). Thus, the time-step is actually dy-

namic and is modified within the preset maximum and minimum bounds to ensure that

the given error tolerances are satisfied. In Examples 1, 2 and 3, the error tolerance is

1.0 × 10−7; in Example 4, it is 1.0 × 10−4. All program codes for the examples below

were written in Fortran 95.

Example 1. (Numerical Validation)

We set α = 0.5, x0 = 0 and β =
√

1 + 2
3
α with

f(x) = αsech2

(

1

β

√

α

6
(x− x0)

)

and

g(x) = 2α

√

α

6
sech2

(

1

β

√

α

6
(x− x0)

)

tanh

(

1

β

√

α

6
(x− x0)

)

.

Under these conditions, the exact solution to Problem 1 is given by (1.3). In applying

the procedure of Section 3, we discretize the problem on x ∈ [−30, 150] using evenly-

spaced knots with a distance of h between consecutive nodes. In general, the numerical

error will depend on h and the time step size ∆t. Here, ∆t is chosen automatically

by the integration routine to satisfy bounds on the local truncation error, while h is

determined through a convergence analysis. The numerical solution is compared with

the exact solution at t = 10 for different values of h in Table 1. To examine the

influence of h on the numerical solutions, Figure 1 shows the convergence process. It is

clear that convergence is achieved at h = 0.1 (− ln(h) = 2.3) and thus this value for h

is used here and in Examples 2 and 3. To investigate the variation of numerical error

with time, we plot the error at two points against time in Figure 2. The time-step
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determined by the local truncation error is between 0.25 and 0.7.

Table 1. Comparison of the numerical results and exact solution for Example 1.

x

Numerical

h=1.000 h=0.500 h=0.250 h=0.100 h=0.05
Exact

5.0 0.073052 0.071010 0.070492 0.070347 0.070327 0.070320

6.0 0.111137 0.110728 0.110658 0.110641 0.110638 0.110637

7.0 0.165915 0.168348 0.169026 0.169220 0.169248 0.169258

8.0 0.240392 0.246098 0.247597 0.248021 0.248082 0.248102

9.0 0.331384 0.339093 0.341042 0.341589 0.341667 0.341694

10.0 0.423374 0.429964 0.431557 0.431999 0.432062 0.432083

11.0 0.487991 0.490172 0.490623 0.490742 0.490759 0.490765

12.0 0.497708 0.494722 0.493915 0.493686 0.493653 0.493642

13.0 0.447066 0.441326 0.439898 0.439499 0.439442 0.439423

14.0 0.357728 0.352426 0.351142 0.350786 0.350735 0.350718

15.0 0.260700 0.257474 0.256703 0.256489 0.256459 0.256448

E 0.010309 0.002601 0.000651 0.000105 0.000026

E= max
06m6N

{

|UN (xm, t) − u(xm, t)|
}

, where u(x, t) is the analytical solution to (1.3).

The wave profile of the numerical solution for t ∈ [0, 72] is shown in Figure 3. The

results are in good agreement with those presented in [2, 4, 10, 12]. The average

speed of this solitary wave is 1.1542, which is quite close to the theoretical value

of
√

1 + 2
3
α = 1.154701. We note that our numerical method is much more efficient

than those presented in the references. For example, using our method, an accuracy of

E = 3.96× 10−4 at t = 72 is achieved with 0.25 ≤ ∆t ≤ 0.7. In [4], ∆t needs to be in

the order of 0.001 to generate results of comparable accuracy.
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0 10 20 30 40 50 60 70
−4

−3

−2

−1

0

1

2

3

4
x 10

−4

t

e
rr

o
r=

n
u

m
e

ri
ca

l s
o

lu
tio

n
 −

 e
xa

ct
 s

o
lu

tio
n

. −−−−−−−−−  error at  x=10
* −−−−−−−−− error at x=50

Figure 2: Numerical errors versus time at x = 10 and x = 50 for Example 1.

11



−30
0

30
60

90
120

150150

0

10

20

30

40

50

60

70

0
0.1
0.2
0.3
0.4
0.50.5

x

t

u

Figure 3: Single soliton solution for Example 1.
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The results in Example 1 demonstrate that the method developed in Section 3 is highly

accurate for quite moderate time-steps and values of h. Having validated the proce-

dure, we will now present some simulations in the remaining examples.

Example 2. (Wave Break-up)

We consider Problem 1 with g(x) = 0 and f(x) defined as in Example 1, where now

x0 = 30. This problem is solved on −30 6 x 6 90 for 0 6 t 6 40 using the method of

Section 3 with ∆t ∈ [0.25, 0.7]. The initial stationary wave and the numerical solution

are displayed together in Figure 4. The diagram shows the initial stationary wave

of amplitude 0.5 breaking into two smaller diverging solitary waves. The break-up is

completed at approximately t = 10, and the amplitudes of these two solitary waves are

approximately equal to 0.26. It is also noted that the solution is symmetric about the

plane x = 30.
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Figure 4: Wave break-up solution for Example 2.
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Example 3. (Wave Collision)

As in [12], we investigate the interaction of two IBq soliton waves moving on a collision

course. Here, x ∈ [−60, 90] and t ∈ [0, 40] with

f(x) = α1sech
2

(

1

β1

√

α1

6
(x+ x0)

)

+ α2sech
2

(

1

β2

√

α2

6
(x− x0)

)

and

g(x) = 2α1

√

α1

6
sech2

(

1

β1

√

α1

6
(x+ x0)

)

tanh

(

1

β1

√

α1

6
(x+ x0)

)

−2α2

√

α2

6
sech2

(

1

β2

√

α2

6
(x− x0)

)

tanh

(

1

β2

√

α2

6
(x− x0)

)

,

where β1 =

√

1 +
2

3
α1, β2 =

√

1 +
2

3
α2, x0 = 20.0, α1 = 1.0, α2 = 0.5 and ∆t ∈

[0.15, 0.7]. Figure 5 displays the head-on collision. The collision starts at approximately

t = 5.29484. Before the collision of the two waves, the speed and amplitude of one of

the waves are 1.28431 and 0.99998, respectively; while the speed and amplitude of the

other wave are -1.1521 and 0.49999, respectively. A negative speed indicates that the

wave travels in the negative x−direction. When the two waves interact, they become

a single wave. At approximately t = 15.95779, the amplitude of the solitary wave

achieves its maximal value of 1.32705. When t = 22.32919, the collision is finished,

and the amplitude of the larger wave is 0.97714; while the amplitude of the smaller wave

becomes 0.49071. According to the contour map in Fig 5, the secondary solitons are

visable. Hence, the collision is inelastic. Figure 6 shows another example of inelastic

collision in which x0 = 20.0, α1 = 0.5, α2 = 2 and ∆t ∈ [0.09, 0.7].

Now, we give some examples of waves of equal magnitude colliding. When α1 =

α2 = 0.4, the collision, shown in Fig 7, is elastic. While α1 = α2 = 1, the interaction,

illustrated in Fig 8, is inelastic. The results are in good agreement with those reported

in [23]. However, according to the contour map in Fig 9, the collision with α1 =

α2 = 0.5 is still elastic. Hence, we can conclude that, for the case of equal magnitude
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colliding, if the amplitude is less than or equal to 0.5, the collision is elastic.
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Figure 5: Inelastic collision with α1 = 1.0 and α2 = 0.5 in Example 3. The contour line on the right

illustration starts from 0.01 and the level step is 0.2.
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Example 4. (Solution Blow-up)

In this example, we simulate the solution blow-up discussed in [21, 22]. The IBq

(1.2) is considered on x ∈ [0, 1] with the initial boundary conditions (2.1) and (2.2)

defined by f(x) = −3 sin(πx) and g(x) = − sin(πx). Under these assumptions, it

is known from [21] that there exists a T 0 > 0 such that a unique local solution

u ∈ C2([0, T 0);H2(0, 1) ∩H1
0 (0, 1)) exists, with

‖u(·, t)‖L2(0,1) → +∞, as t → T 0,

and

I(t) =

∫ 1

0

u(x, t) sin(πx)dx → −∞, as t → T 0.

To solve this problem numerically using the procedure developed in Section 3, we

discretize the space domain into evenly-spaced knots with h = 0.005. Note that in

this example, we had to set the minimum time-step very small (0.00001) to generate

reasonable results until t = 1.8. The numerical solution at various values of t is shown

in Figure 10. I(t) is tabulated for these values in Table 2.

Table 2. Numerical results for Example 4.

t=0.0 t=0.58 t=0.99 t=1.50 t=1.60 t=1.70 t=1.80

u(0.5,t) -3.00 -4.86 -9.97 -65.16 -146.64 -535.13 -131146.69

I(t) -7.50×10−3 -1.13×10−2 -2.06×10−2 -9.51×10−2 -0.18 -0.49 -30.81
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Figure 10: Solution blow-up in Example 4.

5 Conclusion

We have developed an efficient and practical finite element scheme for solving initial

boundary value problems for the improved Boussinesq equation. Our numerical results

were generated using an adaptive Runge-Kutta-Verner method. This method proved

highly accurate. Excellent agreement between the analytical and numerical solutions

was obtained in Example 1 for relatively large time-steps, and wave interaction and

wave break-up were successfully simulated in Examples 2 and 3. Additionally, we

verified numerically a type of solution blow-up that has been shown to exist theoreti-

cally. The advantage of our scheme is that it can be implemented easily using existing

ordinary differential equation solvers. Many such solvers of excellent quality are avail-

able. A special time-stepping scheme does not need to be developed to handle the

non-linearity inherent in the Ibq equation.
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