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Abstract
We investigate the existence of twin iterative solutions for a fractional p-Laplacian
equation with nonlocal boundary conditions. Using the monotone iterative
technique, we establish a new existence result on the maximal and minimal solutions
under suitable nonlinear growth conditions. We also consider some interesting
particular cases and give an example to illustrate our main results.
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1 Introduction
In this paper, we are concerned with the existence of twin iterative solutions for the fol-
lowing nonlocal fractional differential equation with a p-Laplacian operator:

{
–Dβ

t (ϕp(–Dα
t x))(t) = h(t)f (x(t)),  < t < ,

x() = , Dα
t x() = Dα

t x() = , x() =
∫ 

 x(t) dA(t),
(.)

where Dα
t , Dβ

t are the standard Riemann-Liouville derivatives with  < α,β ≤ ,∫ 
 x(s) dA(s) is the Riemann-Stieltjes integral with respect to a function A of bounded

variation, and ϕp is the p-Laplacian operator defined by ϕp(s) = |s|p–s, p > . Obviously,
ϕp(s) is invertible, and its inverse operator is ϕq(s), where q >  is the constant such that

p + 

q = .
It is well known that the p-Laplacian equation can describe a fundamental mechanics

problem arising from turbulent flow in a porous medium; see []. Based on this back-
ground, some interesting results relative to the equation (ϕp(x′(t)))′ = f (t, x(t)) subject to
certain boundary value conditions have been obtained in [–] and references therein.
On the other hand, fractional calculus has been greatly developed in recent years. In par-
ticular, fractional-order models have been proved to be more accurate than integer-order
models for the description of many physical phenomena with long memory, such as vis-
coelasticity, electrochemistry control, porous media, electromagnetic, polymer rheology,
and some hereditary properties of various materials and processes (for the reseach of frac-
tional models and relative problems, we refer readers to [–]). Thus, fractional-order
differential equations with p-Laplacian operator have attracted great interest from the
mathematical research community.

© 2016 Wu et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

http://dx.doi.org/10.1186/s13661-016-0604-9
http://crossmark.crossref.org/dialog/?doi=10.1186/s13661-016-0604-9&domain=pdf
mailto:zxg123242@163.com


Wu et al. Boundary Value Problems  (2016) 2016:98 Page 2 of 13

Recently, Wang et al. [] investigated the existence of multiple positive solutions for
nonlocal fractional p-Laplacian equation

{
Dβ

t (ϕp(Dα
t x))(t) + f (t, x(t)) = , t ∈ (, ),

x() = , x() = ax(ξ ), Dα
t x() = ,

(.)

where  < α ≤ ,  < β ≤ ,  ≤ a ≤ ,  < ξ < . By using Krasnosel’skii’s fixed point the-
orem and the Leggett-Williams theorem, some results on the existence of positive solu-
tions are obtained. And then, by means of the upper and lower solutions method, Wang
et al. [] studied the existence of positive solutions for the following nonlocal fractional
p-Laplacian equation:

{
Dβ

t (ϕp(Dα
t x))(t) + f (t, x(t)) = , t ∈ (, ),

x() = , x() = ax(ξ ), Dα
t x() = , Dα

t x() = bDα
t x(η),

(.)

where  < α,β ≤ ,  ≤ a, b ≤ ,  < ξ ,η < . More recently, Zhang et al. [] considered
the following fractional-order model for turbulent flow in a porous medium:

{
–Dβ

t (ϕp(–Dα
t x))(t) = f (x(t),Dγ

t x(t)), t ∈ (, ),
Dα

t x() = Dα+
t x() = Dα

t x() = , Dγ
t x() = , Dγ

t x() =
∫ 

 Dγ
t x(s) dA(s),

where Dα
t , Dβ

t , Dγ
t are the standard Riemann-Liouville derivatives,

∫ 
 x(s) dA(s) is the

Riemann-Stieltjes integral,  < γ ≤  < α ≤  < β < , α – γ > , A is a function of bounded
variation, and dA can be a signed measure. In the case where the nonlinearity f (u, v) may
be singular at both u =  and v = , the uniqueness of a positive solution for a fractional
model of turbulent flow in a porous medium was established via the fixed point theorem
of the mixed monotone operator.

Motivated by the mentioned works, in this paper, we consider the twin iterative solu-
tions of fractional-order model for turbulent flow in a porous medium. Differently from
the mentioned works, we not only obtain the minimal and maximal solutions of the nonlo-
cal boundary value problem of the fractional p-Laplacian equation (.), but we also derive
estimates of the lower and upper bounds of the extremal solutions and construct a conver-
gent iterative scheme for finding these solutions. In addition, we consider some particular
cases and give an example to illustrate our main results.

2 Preliminaries and lemmas
Our work is carried out based on various definitions and semigroup properties of the
Riemann-Liouville fractional calculus. We give some preliminaries and lemmas for con-
venience of the reader.

Definition . (see [–]) The Riemann-Liouville fractional integral of order α >  of
a function x : (, +∞) →R is given by

Iαx(t) =


�(α)

∫ t


(t – s)α–x(s) ds,

provided that the right-hand side is pointwise defined on (, +∞).
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Definition . (see [–]) The Riemann-Liouville fractional derivative of order α > 
of a function x : (, +∞) →R is given by

Dα
t x(t) =


�(n – α)

(
d
dt

)n ∫ t


(t – s)n–α–x(s) ds,

where n = [α] +  with [α] denoting the integer part of a number α, provided that the
right-hand side is pointwise defined on (, +∞).

Proposition . (see [–])
() If x ∈ L(, ) and α > β > , then

IαIβx(t) = Iα+βx(t), Dβ
t Iαx(t) = Iα–βx(t), Dβ

t Iβx(t) = x(t).

() If α > , β > , then

Dα
t tβ– =

�(β)
�(β – α)

tβ–α–.

Proposition . (see [–]) For α > , if f (x) is integrable, then

IαDα
t x(t) = f (x) + cxα– + cxα– + · · · + cnxα–n,

where ci ∈R (i = , , . . . , n), and n = [α].

Now consider the following linear fractional differential equation with nonlocal bound-
ary condition:

{
–Dα

t x(t) = r(t), t ∈ (, ),
x() = , x() =

∫ 
 x(t) dA(t).

(.)

Let

Gα(t, s) =


�(α)

{
[t( – s)]α–,  ≤ t ≤ s ≤ ,
[t( – s)]α– – (t – s)α–,  ≤ s ≤ t ≤ .

(.)

Lemma . (see []) Given r ∈ L(, ), the boundary value problem

{
–Dα

t x(t) = r(t),  < t < ,
x() = x() = ,

(.)

has the unique solution

x(t) =
∫ 


Gα(t, s)r(s) ds.

On the other hand, it follows from Proposition . that the unique solution of the prob-
lem {

–Dα
t x(t) = ,  < t < ,

x() = , x() = ,
(.)
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is tα–. Let

A =
∫ 


tα– dA(t), GA(s) =

∫ 


Gα(t, s) dA(t).

According to the strategy of [] and [], we have the following lemmas.

Lemma . (see []) If  < α ≤  and r ∈ L(, ), then the boundary value problem (.)
has the unique solution

x(t) =
∫ 


H(t, s)r(s) ds, (.)

where

H(t, s) =
tα–

 – AGA(s) + Gα(t, s). (.)

Lemma . (see []) Let  ≤ A <  and GA(s) ≥  for s ∈ [, ]. Then Gα(t, s) and H(t, s)
have the following properties:

() Gα(t, s) and H(t, s) are nonnegative and continuous for (t, s) ∈ [, ] × [, ].
() Gα(t, s) satisfies

tα–( – t)s( – s)α–

�(α)
≤ Gα(t, s) ≤ α – 

�(α)
s( – s)α– for t, s ∈ [, ]. (.)

() There exist two constants a, b such that

atα–GA(s) ≤ H(t, s) ≤ btα–, s, t ∈ [, ]. (.)

Let 
q + 

p = , where p is given by (.). We consider the associated linear boundary value
problem

{
–Dβ

t (ϕp(–Dα
t x))(t) = r(t), t ∈ (, ),

x() = , Dα
t x() = Dα

t x() = , x() =
∫ 

 x(t) dA(t)
(.)

for r ∈ L(, ) and r ≥ .

Lemma . The associated linear BVP (.) has the unique positive solution

x(t) =
∫ 


H(t, s)

(∫ 


Gβ (s, τ )r(τ ) dτ

)q–

ds.

Proof Let w = –Dα
t x and v = ϕp(w). Consider the boundary value problem

{
–Dβ

t v(t) = r(t), t ∈ (, ),
v() = v() = .

By Lemma . we have

v(t) =
∫ 


Gβ (t, s)r(s) ds, t ∈ [, ]. (.)
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Noting that –Dα
t x = w, w = ϕ–

p (v), we get from (.) and (.) that the solution of (.)
satisfies{

–Dα
t x(t) = ϕ–

p (
∫ 

 Gβ (t, s)r(s) ds), t ∈ (, ),
x() = , x() =

∫ 
 x(t) dA(t).

By Lemma . the solution of the BVP (.) can be written as

x(t) =
∫ 


H(t, s)ϕ–

p

(∫ 


Gβ (s, τ )r(τ ) dτ

)
ds, t ∈ [, ].

Since r(s) ≥ , s ∈ [, ], the solution of equation (.) is

x(t) =
∫ 


H(t, s)

(∫ 


Gβ (s, τ )r(τ ) dτ

)q–

ds, t ∈ [, ]. �

For convenience of presentation, we list some assumptions to be used throughout the
rest of the paper.

(H) A is a function of bounded variation satisfying GA(s) ≥  for s ∈ [, ] and
 ≤A < .

(H) f : [, +∞) → [, +∞) is continuous and nondecreasing, and there exists a
constant ε >  such that, for any x ∈ [, +∞),

f (μx) ≥ με f (x), ∀ < μ ≤ . (.)

(H) h ≥  satisfies

 <
∫ 


s( – s)β–h(s) ds < +∞. (.)

Remark . By (H), for any ν > , it is easy to get

f (νx) ≤ νε f (x). (.)

Remark . There are a large number of functions that satisfy (H). In particular, (H)
can cover mixed cases of the superlinear and sublinear cases. Some basic examples of f
that satisfy (H) are:

(i) f (s) =
∑m

i= aisγi , where ai,γi > , i = , , . . . , m.
(ii) If  < γi, di < +∞ (i = , , . . . , m) and δ, c > , then

f (s) =

[
c +

m∑
i=

di(t)xγi

]δ

.

(iii) f (s) = sγ
+sδ + sl , γ , δ, l > , γ > δ.

(iv) f (s) = (a+sγ )sl

b+sδ , a, b,γ , δ, l > , l > δ.

Proof (i) and (ii) are obvious. For (iii) and (iv), obviously, f : [, +∞) → [, +∞) is contin-
uous and nondecreasing, and for any  < μ ≤ , noticing that γ , δ, l > , we have

f (μs) =
μαsγ

 + μδsδ
+ μlsl ≥ μαsγ

 + sδ
+ μlsl ≥ μmax{γ ,l}

(
sγ

 + sδ
+ sl

)
= μmax{γ ,l}f (s)
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and

f (μs) =
(a + μγ sγ )μlsl

b + μδsδ
≥ (a + μγ sγ )μlsl

b + sδ
≥ μγ +l (a + sγ )sl

b + sδ
= μγ +lf (s). �

Let N be the set of all positive integers, R be the set of all real numbers, and R+ be the
set of all nonnegative real numbers. Let C([, ],R) be the Banach space of all continuous
functions from [, ] into R with the norm

‖x‖ = max
{

x(t) : t ∈ [, ]
}

.

Define the cone P in C([, ],R+) by

P =
{

x ∈ C
(
[, ],R+

)
: there exist two nonnegative numbers lx <  < Lx such that

lxtα– ≤ x(t) ≤ Lxtα–, t ∈ [, ]
}

and the operator T by

(Tx)(t) =
∫ 


H(t, s)

(∫ 


Gβ (s, τ )h(τ )f

(
x(τ )

)
dτ

)q–

ds.

Then each fixed point of the operator T on P is a positive solution of the BVP (.).

Lemma . Assume that (H)-(H) hold. Then T : P → P is continuous, compact, and
nondecreasing.

Proof For any x ∈ P, we can find two positive numbers Lx > lx ≥  such that

lxtα– ≤ x(t) ≤ Lxtα–, t ∈ [, ]. (.)

It follows from (H) that T is increasing with respect to x, and thus by (.) we have

(Tx)(t) ≤ btα–
∫ 



(∫ 


Gβ (s, τ )h(τ )f

(
x(τ )

)
dτ

)q–

ds

≤ btα–
∫ 



(∫ 



β – 
�(β)

τ ( – τ )β–h(τ )f
(
Lxτ

α–)dτ

)q–

ds

≤ btα–
∫ 



(∫ 



β – 
�(β)

τ ( – τ )β–h(τ )Lε
xf

(
τα–)dτ

)q–

ds

≤ b
(

β – 
�(β)

Lε
xf ()

∫ 


τ ( – τ )β–h(τ ) dτ

)q–

tα–

= L∗
xtα–

and

(Tx)(t) ≥ atα–
∫ 


GA(s)

(∫ 


Gβ (s, τ )h(τ )f

(
x(τ )

)
dτ

)q–

ds

≥ atα–
∫ 


GA(s)

(∫ 



sβ–( – s)τ ( – τ )β–

�(β)
h(τ )f

(
lxτ

α–)dτ

)q–

ds
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≥ atα–
∫ 


GA(s)

(∫ 



sβ–( – s)τ ( – τ )β–

�(β)
h(τ )lεxτ

ε(α–)f () dτ

)q–

ds

= a
(

lεx
�(β)

)q– ∫ 


GA(s)s(β–)(q–)( – s)q– ds

×
(∫ 


τ (α–)ε+( – τ )β–h(τ ) dτ

)q–

tα–,

where

l∗x = a
(

lεx
�(β)

)q– ∫ 


GA(s)s(β–)(q–)( – s)q– ds

(∫ 


τ (α–)ε+( – τ )β–h(τ ) dτ

)q–

,

L∗
x = b

(
β – 
�(β)

Lε
xf ()

∫ 


τ ( – τ )β–h(τ ) dτ

)q–

,

which implies that T is well defined and T(P) ⊂ P. Moreover, T is also uniformly bounded
for any bounded set of P. In fact, let D ⊂ P be any bounded set. Then there exists a constant
L >  such that ‖x‖ ≤ L for any x ∈ D. Moreover, for any x ∈ D, s ∈ [, ], from ‖x‖ ≤ L <
L +  and (.) we have

f
(
x(s)

) ≤ f (L + ) ≤ (L + )ε f ().

Consequently,

∣∣(Tx)(t)
∣∣ ≤ btα–

∫ 



(∫ 


Gβ (s, τ )h(τ )f

(
x(τ )

)
dτ

)q–

ds

≤ btα–
∫ 



(∫ 



β – 
�(β)

τ ( – τ )β–h(τ )f (L + ) dτ

)q–

ds

≤ btα–
∫ 



(∫ 



β – 
�(β)

τ ( – τ )β–h(τ )(L + )ε f () dτ

)q–

ds

≤ b
(

β – 
�(β)

(L + )ε f ()
∫ 


τ ( – τ )β–h(τ ) dτ

)q–

< +∞.

Therefore, T(D) is uniformly bounded.
On the other hand, according to the Arezelà-Ascoli theorem and the Lebesgue domi-

nated convergence theorem, it is easy to get that T : P → P is completely continuous. It
follows from (H) that the operator T is nondecreasing. �

3 Main results
Define the constant

A = b
[

(β – )f ()
�(β)

∫ 


τ ( – τ )β–h(τ ) dτ

]q–

. (.)

Theorem . Suppose that conditions (H)-(H) hold. If there exists a constant c >  such
that

(c + )ε(q–)– ≤ A–, (.)
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where A is defined by (.), then the BVP (.) has the minimal and maximal solutions x∗

and y∗, which are positive, and there exist some nonnegative constants mi ≤ ni, i = , , such
that

mtα– ≤ x∗(t) ≤ ntα–, mtα– ≤ y∗(t) ≤ ntα–, t ∈ [, ]. (.)

Moreover, for initial values x = , y = c + , let {xn} and {yn} be the iterative sequences
generated by

xn(t) = (Txn–)(t) = Tnx(t), yn(t) = (Tyn–)(t) = Tny(t). (.)

Then

lim
n→+∞ xn = x∗, lim

n→+∞ yn = y∗

uniformly for t ∈ [, ].

Proof Let P[, c] = {x ∈ P :  ≤ ‖x‖ ≤ c + }. We first prove that T(P[, c]) ⊂ P[, c].
In fact, for any x ∈ P[, c], since

 ≤ x(t) ≤ max
t∈[,]

x(t) = ‖x‖ ≤ c + , (.)

from (H) and (.) we have

‖Tx‖ = max
t∈[,]

{∫ 


H(t, s)

(∫ 


Gβ (s, τ )h(τ )f

(
x(τ )

)
dτ

)q–

ds
}

≤ b
∫ 



(∫ 



β – 
�(β)

τ ( – τ )β–h(τ )f (c + ) dτ

)q–

ds

≤ b
[

(β – )f ()
�(β)

∫ 


τ ( – τ )β–h(τ ) dτ

]q–

(c + )ε(q–)

= A(c + )ε(q–) ≤ c + ,

which implies that T(P[, c]) ⊂ P[, c].
Let x(t) =  and x(t) = (Tx)(t), t ∈ [, ]. Since x(t) ∈ P[, c], we have x ∈ P[, c].

Denote

xn+ = Txn = Tn+x, n = , , . . . .

It follows from T(P[, c]) ⊂ P[, c] that xn ∈ P[, c]. Noticing that T is compact, we get that
{xn} is a sequentially compact set.

Since x = Tx = T ∈ P[, c], we have

x(t) = (Tx)(t) = (T)(t) ≥  = x(t), t ∈ [, ].

By induction we get

xn+ ≥ xn, n = , , , . . . .
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Consequently, there exists x∗ ∈ P[, c] such that xn → x∗. Letting n → +∞, from the con-
tinuity of T and Txn = xn– we obtain Tx∗ = x∗, which implies that x∗ is a nonnegative solu-
tion of the nonlinear integral equation (.). Since x∗ ∈ P, there exist constants  ≤ m < n

such that

 < mtα– ≤ x∗(t) ≤ ntα–, t ∈ (, ),

and consequently x∗ is a positive solution of the boundary value problem (.), and (.)
holds.

On the other hand, let y(t) = c+, y = Ty, t ∈ [, ]. Then y(t) ∈ P[, c] and y ∈ P[, c].
Let

yn+ = Tyn = Tn+y, n = , , . . . .

It follows from T(P[, c]) ⊂ P[, c] that

yn ∈ P[, c], n = , , , . . . .

By Lemma ., T is compact, and consequently {yn} is a sequentially compact set.
Now, since y ∈ P[, c], we get

 ≤ y(t) ≤ ‖y‖ ≤ c +  = y(t).

It follows from Lemma . that y = Ty ≤ Ty = y. By induction we obtain

yn+ ≤ yn, n = , , , . . . .

Consequently, there exists y∗ ∈ P[, c] such that yn → y∗. Letting n → +∞, from the con-
tinuity of T and Tyn = yn– we have Ty∗ = y∗, which implies that y∗ is another nonnegative
solution of the boundary value problem (.) and y∗ also satisfies (.) since y∗ ∈ P.

Now we prove that x∗ and y∗ are extremal solutions for a fractional differential equation
(.). Let x̃ be any positive solution of the boundary value problem (.). Then x =  ≤
x̃ ≤ c +  = y, and x = Tx ≤ Tx̃ = x̃ ≤ T(c + ) = w. By induction we have xn ≤ x̃ ≤ yn,
n = , , , . . . . Taking the limit, we have x∗ ≤ x̃ ≤ y∗. This implies that x∗ and y∗ are the
maximal and minimal solutions of the BVP (.), respectively. The proof is completed.

�

Corollary . Suppose that conditions (H)-(H) hold. If

 < ε <


q – 
, (.)

then the BVP (.) has the minimal and maximal solutions x∗ and y∗, which are positive,
and there exist some constants  ≤ mi ≤ ni, i = , , such that

mtα– ≤ x∗(t) ≤ ntα–, mtα– ≤ y∗(t) ≤ ntα–, t ∈ [, ]. (.)
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Moreover, there exists a positive constant c such that for initial values x = , y = c + , the
iterative sequences generated by

xn(t) = (Txn–)(t) = Tnx(t), yn(t) = (Tyn–)(t) = Tny(t) (.)

converge uniformly to x∗ and y∗ for t ∈ [, ], namely,

lim
n→+∞ xn = x∗, lim

n→+∞ yn = y∗.

Proof From (.) we have

lim
x→+∞

xε(q–)

x
= ,

which implies that we can find a constant c >  large enough such that

(c + )ε(q–)– < A–.

By Theorem . the conclusion of Corollary . holds. �

Remark . Corollary . is an interesting case of the boundary value problem (.). Be-
cause of the independence of ε and q, condition (.) is easy to be satisfied. For example,
for q =  and ε = 

 , the BVP (.) has the minimal and maximal solutions if (H)-(H) are
satisfied.

In addition, note that, when p = , the nonlinear operator Dβ
t (ϕp(Dα

t )) reduces to the
linear operator Dβ

t (Dα
t ), and if  < ε < 

 , then (.) naturally holds, and so we have the
following corollary.

Corollary . Suppose that p =  and (H), (H) hold. Moreover, suppose that f satisfies
(h) f : [, +∞) → (, +∞) is continuous and nondecreasing, and there exists a constant

 < ε < 
 such that, for any x ∈ [, +∞),

f (cx) ≥ cε f (x), ∀ < c ≤ .

Then the BVP (.) has the minimal and maximal solutions x∗ and y∗, which are positive,
and there exist constants  ≤ mi ≤ ni, i = , , such that

mtα– ≤ x∗(t) ≤ ntα–, mtα– ≤ y∗(t) ≤ ntα–, t ∈ [, ]. (.)

Moreover, there exists a positive constant c such that for initial values x = , y = c + , the
iterative sequences generated by

xn(t) = (Txn–)(t) = Tnx(t), yn(t) = (Tyn–)(t) = Tny(t) (.)

converge uniformly to x∗ and y∗ for t ∈ [, ], namely,

lim
n→+∞ xn = x∗, lim

n→+∞ yn = y∗.
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4 Example
Consider the following nonlocal boundary value problem of the fractional p-Laplacian
equation:

⎧⎨
⎩

–D



t (ϕ(–D



t x))(t) = (+xγ )xl

t(–t)

 (+xδ )

, t ∈ (, ),

x() = , D



t x() = D



t x() = , x() =
∫ 

 x(s) dA(s),
(.)

where γ , δ, l are positive constants satisfying l > δ, γ + l < , A is a bounded-variation
function satisfying

A(t) =

⎧⎪⎨
⎪⎩

, t ∈ [, 
 ),

, t ∈ [ 
 , 

 ),
, t ∈ [ 

 , ].

Then the BVP (.) has the minimal and maximal solutions x∗ and y∗, which are positive,
and there exist constants  ≤ mi < ni, i = , , such that

mt

 ≤ x∗(t) ≤ nt


 , mt


 ≤ y∗(t) ≤ nt


 , t ∈ [, ]. (.)

Moreover, there exists a positive constant c such that for initial values x = , y = c + ,
the iterative sequences generated by

xn(t) = (Txn–)(t) = Tnx(t), yn(t) = (Tyn–)(t) = Tny(t) (.)

converge uniformly to x∗ and y∗ for t ∈ [, ], namely,

lim
n→+∞ xn = x∗, lim

n→+∞ yn = y∗.

Let

α =



, β =



, p = , f (x) =
( + xγ )xl

( + xδ)
, h(t) =


t

( – t)

 .

Then by simple computation problem (.) is equivalent to the following multipoint
boundary value problem:

⎧⎨
⎩

–D



t (ϕ(–D



t x))(t) = (+xγ )xl

t(–t)

 (+xδ )

, t ∈ (, ),

x() = , D



t x() = D



t x() = , x() = x( 
 ) – x( 

 ).

First, we have

A =
∫ 


tα– dA(t) =  ×

(



) 


–
(




) 


= . < ,

and by simple computation we have GA(s) ≥ , and so (H) holds.
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Next, from Remark ., for any  < μ ≤ , we have

f (μx) ≤ μγ +lf (x),

and thus (H) holds. Now we compute

∫ 


s( – s)β–h(s) ds =

∫ 


s( – s)


 h(s) ds = ,

so (H) is satisfied.
Thus, by Corollary . the BVP (.) has maximal and minimal solutions that satisfy

(.) and (.).
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