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Abstract 

 

A heuristic load management (H-LMA) algorithm is presented for coordination of Plug-in 

Electric Vehicles (PEVs) in distribution networks to minimize system losses and regulate bus 

voltages. The impacts of optimization period T (varied from 15 minutes to 24 hours) and 

optimization time interval   (varied 15 minutes to one hour) on the performance, accuracy and 

speed of the H-LMA is investigated through detailed simulations considering enormous 

scenarios. PEV coordination is performed   by considering substation transformer loading while 

taking PEV owner priorities into consideration. Starting with the highest priority consumers, H-

LMA will use time intervals   to distribute PEV charging within three designated high, medium 

and low priority time zones to minimize total system losses over period T while maintaining 

network operation criteria such as power generation and bus voltages within their permissible 

limits. Simulation results generated in MATLAB are presented for a 449 node distribution 

network populated with PEVs in residential feeders. 

 

Index Terms- Heuristic optimization, electric vehicles and load management. 

 

Introduction 

 

Preliminary studies by Amin et al. (2005), 

Amin (2008) and Lightner et al. (2010) 

indicate that Plug-In Electric Vehicles 

(PEVs) will dominate the market in the 

near future as pollution-free alternatives to 

the conventional petroleum- based 

transportation. However, according to 

Moses et al. (2010), Masoum et al. (2011) 

and Moses et al. (2012), uncoordinated PEV 

charging specially at high penetration 

levels during the peak load hours may 

cause undesirable impacts on the power 

grid such as unpredictable system peaks, 

unaccepted voltage deviations, significant 

increases in losses and poor power quality, 

as well as overloading of the distribution 

and substation transformers. This has 

motivated researchers to propose and 

implement different PEV coordination 

algorithms.  

 

In general, PEV chargers can be controlled 

to operate in charge or discharge modes 

with the energy being transferred from 

grid to vehicle (V2G) or from vehicle to grid 

(G2V), respectively. One of the first 

approaches for PEV coordination based 

deterministic and stochastic dynamic 
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programing was presented by Clement-

Nyns et al. (2010). Masoum et al. (2011) 

performed peak load saving with PEV 

coordination without considering the 

random nature of PEV arrivals and 

departures. A relatively fast PEV 

coordination algorithm suitable for online 

applications is proposed by Deilami et al 

(2011). Ashtari et al. (2012) predicted PEV 

charging profiles and electrical range 

reliability based on recorded vehicle usage 

data. Wu et al (2012) designed a minimum-

cost load scheduling algorithm based on 

the forecasted electricity price and PEV 

power demands. In a research study by 

Khodayar et al. (2012) and Zhao et al. 

(2012), the PEV coordination problem is 

performed considering the impact of wind 

power generation. Wen et al. (2012) and 

Ma et al. (2013) have presented 

decentralized charging control algorithms 

considering large populations of PEVs.  

There are also many documents 

investigating the operation of PEVs in V2G 

mode to support the grid by performing 

frequency regulation and/or energy 

storage including the research performed 

by Bashash et al. (2012), Han (2010) and 

Sortomme et al. (2011).  

  

This paper will first present a heuristic load 

management algorithm (H-LMA) to 

coordinate PEV charging activities while 

reducing system losses and regulating bus 

voltages over a 24 hour period. Then, 

simulation results will be presented for a 

449 node distribution network populated 

with PEVs in residential feeders. Finally, 

the impacts of heuristic optimization 

parameters including optimization period 

T and optimization time interval t∆  on the 

accuracy and speed of H-LMA will be 

investigated.  

 

Problem Formulation 

 

PEV charge coordination is a constrained 

optimization problem that could be solved 

by using online algorithms (i.e., PEV 

coordination is performed as soon as 

vehicles are randomly plugged-in) or 

offline schemes (i.e., all vehicles are 

assumed to be plugged-in according to 

their pre-known/forecasted charging 

patterns). This paper assumes the charging 

patterns of all PEVs are known or 

forecasted and utilizes a heuristic approach 

to solve the optimization problem. 

  

The optimization problem objective 

function is formulated based on the 

minimization of total system power losses: 
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Where t∆  and T are the optimization time 

interval and period used for loss 

minimization. 
loss
tP is the system power 

loss at time t (computed using the Newton-

based power flow), kV  is voltage of node k 

at time t, and n is total number of nodes 

while 1k,kR +  and 1k,ky +  are resistance and 

admittance of line section between nodes k 

and k+1.  

 

PEV coordination constraints are node 

voltage limits and system demand level at 

time t: 
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puV 9.0min = , puV 1.1max = , and 

t,demandmaxP  is the total power 

consumption at time t, 
load

t,kP is the power 

consumption of node k at time t and t,mD is 

the maximum demand level at time t that 

would normally occur without any PEVs.  

 

The load flow and proposed algorithm are 

coded using MATLAB software package. All 

parameters and variables are written in 

complex rectangular form. 
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Heuristic Load Management Algorithm 

(H-LMA) 

 

A MATLAB based algorithm has been 

developed to perform PEV scheduling 

based on H-LMA (Fig. 1). The algorithm will 

perform loss minimization over the 

optimization period T using time interval

t∆ based on Eqs. 1-2 while considering the 

system constraints (Eqs. 3-4). Three 

charging time zones are defined: 

 

• Red charging zone (18:00h-22:00h)  

coinciding with most of the on-peak 

period and is designated for high-

priority PEV owners willing to pay 

higher tariff rates in order to charge 

their vehicles as soon as possible. 

 

• Blue charging zone (18:00h-01:00h) 

intended for medium-priority 

consumers that prefer to charge their 

vehicles at partially off-peak periods 

and pay lower tariff rates.   

 

• Green charging zone (18:00h-08:00h) 

when most PEV charging will probably 

take place due to the cheapest tariff 

rates as most low-priority consumers 

will require their vehicles fully charged 

for the following day.  

 

The algorithm assumes all PEVs are 

plugged in at 18:00 (6pm). It begins by first 

reading the input parameters (e.g., bus and 

branch impedance data, nodes with PEVs, 

optimization period T, optimization time 

interval t∆ , designated priority time zones, 

load profiles for PEV chargers and 

residential loads as well as system 

constraints) and performing initialization 

(e.g., selecting the highest priority group, 

time zone and PEV).  

 

 

 

The main program loop is progressing from 

high to low PEV priority groups (e.g., red 

zone to green zone). Within the selected 

priority group, individual PEVs are 

temporarily activated to determine system 

performance at all possible PEV nodes and 

charging time combinations within that 

priority charging time zone. From these 

combinations, the algorithm selects the 

PEV within the group and the charging 

start time resulting in the minimum system 

losses, taking into consideration the 

charging duration and the current demand 

level.  The physical node location at which 

PEV charging occurs is an important factor 

as it impacts the load flow, power losses in 

the cables and system voltage profile.  

Therefore, the H-LMA determines the PEV 

node and charging time that will result in 

the least system losses (Eq. 2).  

 

If at any time the load flow indicates a 

constraint violation at any node (Eqs. 3-4), 

the algorithm will try the next possible 

charging start time such that the 

constraints are satisfied. Therefore, it may 

not be possible for all PEV owners to be 

accommodated in their preferred charging 

zones and must be deferred to the next 

possible hour. Once it has been determined 

which PEV node in that priority group can 

begin charging and at what time resulting 

in minimum system losses, the selected 

PEV scheduling is permanently assigned 

and the system load curve updated ready 

for the next iteration. This process is 

repeated for all nodes in that priority group 

before advancing to the next priority-

charging zone (e.g., blue zone subscribers). 

At the end of this process, the H-LMA 

arrives at individual schedules assigned to 

all PEV chargers. The program then exits 

the main loop and computes the 24 hour 

load flow to print new system 

performances (e.g., all node voltage profiles 

and power losses). 
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Fig. 1: Proposed H-LMA for Coordination of Pevs to Minimize Total System Losses over 

Period T Using Optimization Time Interval t∆ Considering Node Voltage Profiles and 

Maximum Demand Level 

 

Smart Grid Test System 

 

The selected test system is a modification 

of the IEEE 31 bus 23 kV distribution 

systems (Deilami et al (2011)) combined 

with 22 residential 19 nodes LV 415 V 

networks populated with PEVs. The 

resulting 449 node system is supplied from 

the HV main bus via a 23kV/415V 100 kVA 

distribution transformer as shown in Fig. 2. 

System data are listed in the Appendix. 

 

The peak power consumption of a house is 

assumed to be on average 2 kW with a 

power factor of 0.9. Four PEV penetration 

levels are selected including 16% (with 

nodes “o”, “b” and “q” randomly designated 

with red, blue and green priorities, 

respectively),  32% (with nodes “o”, “b, r” 

and “f, h, q” randomly designated with red, 

blue and green priorities, respectively), 

47% (with nodes “o”, “b, j, r” and “f, g, h, m, 

q” randomly designated with red, blue and 

green priorities, respectively) and 63% 

(with nodes “o, s”, “b, d, j, r” and “f, g, h, k, 

m, q” randomly designated with red, blue 

and green priorities, respectively). 

 

For this study, a 10 kWh battery capacity 

per PEV with a depth of discharge (DOD) of 

70% and battery charger efficiency of 88% 

is assumed (Deilami et al (2011)) which 

will require a total of 8 kWh of energy from 

the grid to charge a single PEV. A standard 

single-phase 240V outlet (Australia) can 

typically supply a maximum of 2.4 kW. 

There are also 15A and 20A outlets (single-

phase and three-phase) which can supply 

approximately 4 kW and 14.4 kW, 

respectively. In this paper, a fixed charging 

power of 4 kW is used. 
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Simulation Results and Discussion 

 

Simulation results for uncoordinated and 

coordinated (using H-LMA of Fig. 1) PEV 

charging for the smart grid system of Fig. 2 

are presented in Figs. 3-5 and Tables 1 

and2. 

 

Table 1: Comparison of Simulation Results for Uncoordinated and Coordinated (H-Lma, 

=15 Min, T=24 Hours) Pev Charging for the Smart Grid Test System of Fig. 3: Pevs are 

Assumed to be Randomly Arriving at Each Time Interval. For Comparison, Consumer 

Priorities are not considered and the Same Gaussian Random Distributions are Used in 

the Simulations. 

 

Case Study PEV 

Penetration 

level 

CASE A: UNCOORDINATED PEV 

CHARGING 

(RANDOM CHARGING) 

CASE B: COORDINATED PEV 

CHARGING 

(USING H-LMA OF  FIG. 1) 

∆loss* 

[%] 
∆V** [%] 

I MAX*** 

[%] 
∆loss 

[%] 
∆V  [%] I MAX [%] 

NO PRIORITY,  

CHARGING 

PERIOD:  

6PM-10PM 

16% 2.3553 7.8499 0.5546 2.3332 7.646 0.47243 

32% 2.5312 9.2298 0.64324 2.4048 7.646 0.47243 

47% 2.9263 15.8182 0.77095 2.5849 10 0.51682 

63%  3.089 17.1467 0.88626 2.5963  9.9996 0.54002 

NO PRIORITY,  

CHARGING 

PERIOD:  

6PM-1AM  

16% 2.3401 7.6984 0.52591 2.3149 7.646 0.44071 

32% 2.4712 8.5243 0.57259 2.4172 7.7832 0.45499 

47% 2.7659 13.9102 0.64256 2.5737 9.7039 0.45872 

63% 2.8706 14.7455 0.68842 2.6217 9.7946 0.49038 

NO PRIORITY,  

CHARGING 

PERIOD:  

6PM-8AM   

16% 2.3141 7.7242 0.47831 2.2939 7.646 0.44071 

32% 2.3818 8.3553 0.52900 2.3411 7.646 0.44071 

47% 2.6188 13.6146 0.60348 2.4936 8.7893 0.44071 

63% 2.6184 14.3304 0.58385 2.4921 9.1211 0.44071 
  *) Ratio of system losses over 24 hours compared to total power consumption over 24 hours.                 

  **) Voltage devataion at the worst bus. 

  ***) Maximum of all distribution transformer load current. 

 

A.  Case A: Random PEV Charging 

 

Simulation results of Fig. 3 and Table 1 

highlight the detrimental impacts of 

uncoordinated PEV charging at four 

penetration levels. As expected and well 

documented, random charging, especially 

during the peak residential load hours 

(18:00-22:00), results in unpredictable 

power consumption peaks (Fig. 3(a), at 

19:45 for 63% PEV penetration), 

unaccepted voltage deviations (Fig. 3(b), at 

node 15-i for 63% and 47% PEV 

penetrations at 19:45) and significant 

increase in losses (Fig. 3(c), 110kW, 85kW, 

47kW and 30kW for PEV penetration levels 

of 63%, 47%, 32% and 16%, respectively, 

at 19:45). Detailed simulation results for 

this case study are presented in Table 1 

(columns 3-5). 
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Fig. 2:  The 449 Node Smart Grid Test System Consisting of the IEEE 31 Node 23 Kv 

System with Several 415 V Residential Feeders. Each Low Voltage Residential Network 

Has 19 Nodes Representing Customer Households Populated with Pevs Randomly 

Arriving within 24 Hours. 

 

 
(a) 

Maximum demand level  

A highly likely scenario of 
random uncoordinated 
charging over 1800h-2200h 
with 63% PEV penetration 
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  (b)  

 

 
(c) 

 

Fig. 3: Simulation Results ( t∆ =15 Min, T=24 Hours) for Random Uncoordinated PEV 

Charging Across the Red Zone (Case A1: 18:00h-22:00h); (A) System Power Consumption 

for 63% PEV Penetration, (B) Voltage Profile (For the Worst Affected Nodes), (C) Total 

System Power Losses. 

High PEV penetrations and 
large cable distances in far 
away PEV nodes causing 
excessive voltage drops 

Regulatory voltage limit 
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(a) 

 

 
(b) 

 

 
(c) 

 

Fig. 4: Simulation Results ( t∆ =15 Min, T=24 Hours) for Coordinated PEV Charging Using 

the Proposed H-LMA of Fig. 1; (A) System Power Consumption for 63% PEV Penetration, 

(B) Voltage Profile (For the Worst Affected Nodes), (C) Total System Power Losses. 

For worst nodes, H-LMA is 
coordinating PEVs while 
keeping all node voltages 
within regulation limits 

Regulatory voltage limit 

A few red and blue zone 
subscribers are forced down to 
blue and green charging zones 
due to voltage constraint violations 

H-LMA coordinating PEVs 
while limiting system peak 

Maximum demand level  
Lucky green 
subscribers served 
earlier due to 
available capacity 

Coordinated (H-LMA) PEV charging 
with owner preferred priority time zones 
(63% PEV penetration) 
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B.  Case B: H-LMA Coordinated PEV 

Charging 

  

Coordinated PEV charging is performed 

with (Fig. 4-5) and without (Table 1) PEV 

owner preferred time zone priorities. 

Compared to Case A, a significant 

improvement in smart grid performance is 

achieved. Most notably, the system demand 

peak has been reduced (Figs. 3(a) and 4(a)) 

which is more favorable from a standpoint 

of generation dispatch and preventing 

overloads.  

 

Comparison of results also indicate the 

significant impacts of coordinated (H-LMA) 

PEV charging on voltage profile where the 

unacceptable voltage deviations of about 

17% (Fig. 3(b)) at the worst bus for 

uncoordinated PEV charging is 

compensated to less than 10%  (Fig. 4(b)) 

which is within the regulation limits.  

However, there is a trade off in that a few 

PEV subscribers who designated a 

preferred priority charging time zone were 

not accommodated in their requested 

charging zone (Fig. 4(a)) because the 

system reached a point where PEV loading 

caused voltage regulation to be violated. H-

LMA handled these cases by attempting to 

schedule the PEV owners causing the 

violations to a charging time where the 

system is not under strain, thereby 

satisfying constraints.  

 

The improvements in system efficiency 

with H-LMA coordination strategy are also 

evident in Table 1. Energy losses for the 

high penetration (63%) with H-LMA are 

limited to 2.59% of system consumption 

versus the worst uncoordinated charging 

scenario with losses of 3.09%.   

 

Furthermore, peak power losses are 

limited to less than a third of the worst case 

random uncoordinated charging (Fig. 4(c)). 

The H-LMA charging also has positive 

impacts on peak transformer load currents. 

For many of the uncoordinated random 

charging scenarios (Table 1), distribution 

transformers are experiencing load 

currents of up to 0.88 pu, while with H-

LMA coordination, transformer currents 

are reduced to levels of approximately 0.54 

pu (Table 1). 

 

C.  Case C: Impacts of t∆ and T on PEV 

Coordination  

 

Detailed simulations are presented and 

compared in Table 2 to highlight impacts of

t∆ and T (Eq. 1) on the performance of H-

LMA. In general, the speed and accuracy of 

the PEV coordination algorithms will 

depend on the selection of optimization 

time interval ( t∆ ) and period (T).   

 

The accuracy can be improved by using 

shorter time intervals (e.g., checking the 

status of PEVs and network as quickly as 

possible based on online information and 

measurements available through smart 

meters) and performing loss minimization 

over a long period (e.g., 24 hours). 

However, the drawback is the computing 

time will dramatically increase, especially 

in realistic large smart grids with many 

nodes and high penetration levels of PEVs. 

Therefore, a compromise should be made 

between the solution accuracy and 

computation time considering system size 

and the anticipated PEV penetration level. 

 

Based on the results of Table 2, the 

practical options may be to use moderate 

time intervals with large optimization 

periods for offline PEV coordination (e.g.,

t∆ =60 min and T=24 hours for 

applications where all vehicles are 

plugged-in or their charging patterns are 

known/forecasted before the start of 

optimization) and select small values for 

online PEV coordination (e.g., t∆ =T=15 

min to start charging batteries as  soon as 

vehicles are randomly plugged-in). 
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Table 2: Impact of Coordinated (H-Lma) Pev Charging with Diffident Optimization Time 

Interval ∆T And Period T (Eq. 1) Values on the Power Quality and Performance of Smart 

Grids Test System of Fig. 2. 

 

Penetration 

of PEV [%] 

COORDINATED PEV CHARGING (H-LMA) BASED ON LOSS MINIMIZATION (EQS. 1-4) 

∆loss [%] ∆V [%] I MAX [%] Eloss
* [kWh] Computing time** 

CASE B: t∆ =15 MIN, LOSS MINIMIZATION OVER T= 24 HOURS 

16 2.336 7.646 0.443 326.4 15.7 mins 

32 2.373 7.646 0.444 344.1 2.02 hrs 

47 2.530 9.999 0.444 380.2 5.53 hrs 

63 2.551 9.999 0.4801 396.9 6.29 hrs 

CASE C: t∆ = 60 MIN, LOSS MINIMIZATION OVER T= 24 HOURS 

16 2.319 7.646 0.440 321.2 5.2 mins 

32 2.372 7.646 0.455 340.9 26.9 mins 

47 2.520 9.996 0.441 375.6 1.14 hrs 

63 2.530 9.562 0.450 390.4 1.55 hrs 

CASE D: t∆ = 15 MIN, LOSS MINIMIZATION OVER T= t∆ = 15 MIN 

16 2.338 7.646 0.442 326.7 2.33 mins 

32 2.375 7.646 0.462 344.4 17.67 mins 

47 2.517 9.999 0.462 378.3 48.4 mins 

63 2.529 9.999 0.458 399.4 56.9 mins 
*) Total energy consumption over T.        

**) Intel Core 2 Quad 3.0 GHz processor, 8 GB RAM, using MatLab ver. 7 
 

 
  (a) 

 

Maximum demand level  

Coordinated (H-LMA) PEV charging 
with owner preferred priority time zones 
(47% PEV penetration) 
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   (b) 

 

 
   (c) 

 

Fig. 5: System Power Consumption with Coordinated PEV Charging using the Proposed H-

LMA ( t∆ =15 Min, T=24 Hours) for PEV Penetration Levels of; (A) 47%, (B) 32%, (C) 16%. 

 

Conclusion 

 

This paper investigates the impacts of 

optimization parameters including 

optimization period T and optimization 

time interval t∆  on the accuracy and the 

speed of a heuristic load management 

algorithm (H-LMA) that coordinates PEV 

charging activities while reducing system 

losses and regulating bus voltages over a 

24 hour period. Main conclusions are: 

 

• H-LMA will limit overall system 

overloads and voltage fluctuations while 

reducing stress on distribution circuits 

such as cables and transformers.  

  

• The speed and accuracy of H-LMA 

depend on the selected values for T and

t∆ .  

 

• It is showed that optimization accuracy 

can be improved by using shorter time 

intervals and performing loss 

minimization over long periods (e.g,. 24 

hours). This will however, require long 

computing times. Therefore, a 

compromise should be made between 

the solution accuracy and the associated 

computation time considering system 

size and the anticipated PEV 

penetration levels. 

 

 

Maximum demand level  

Coordinated (H-LMA) PEV charging 
with owner preferred priority time zones 
(32% PEV penetration) 

Maximum demand level 

Coordinated (H-LMA) PEV charging 
with owner preferred priority time zones 
(16% PEV penetration) 
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• For online PEV coordination, small time 

interval and optimization period should 

be selected to start charging vehicles as 

quickly as possible; otherwise moderate 

time intervals with a large optimization 

period should be selected for offline 

coordination where all vehicles are 

plugged-in or their charging patterns 

are known/forecasted ahead of time.   
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Appendix 

 

Parameters of the 19 bus low voltage and 

31 bus distribution system are provided in 

Tables D1-D2 and Deilami et al (2011), 

respectively. 

 

Table D1:  Linear and Nonlinear (Pev) Loads of the Typical Low Voltage Residential 

System (Fig. 2) 

 

Linear and PEV Load Power 

Bus Name kW kVAR 

1 to 19 

Linear  

loads 2.0 1.7 

Selected 

buses 

PEV  

charger 
4.0 0 

 

Table D2: Line Parameters of the Low Voltage Residential System (Fig. 2) 

 

LINE Line 

resistance 

R [Ω] 

Line 

reactance 

X [Ω] 

LINE Line 

resistance 

R [Ω] 

Line 

reactance 

X [Ω] 
From 

bus 

To 

bus 

From 

bus 

To  

bus 

a b 0.0415 0.0145 f l 1.3605 0.1357 

b c 0.0424 0.0189 d m 0.140 0.0140 

c d 0.0444 0.0198 c n 0.7763 0.0774 

d e 0.0369 0.0165 b o 0.5977 0.0596 

e f 0.0520 0.0232 a p 0.1423 0.0496 

f g 0.0524 0.0234 p q 0.0837 0.0292 

g h 0.0005 0.0002 q r 0.3123 0.0311 

g i 0.2002 0.0199 a s 0.0163 0.0062 

g j 1.7340 0.1729 Distribution transformer 

reactance 
0.0654 

f k 0.2607 0.0260 
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