
 
 

1

 

Alignment parameter calibration for IMU using the 
Taguchi method for image deblurring 

 

*1Kit Yan Chan, 1Nimali Rajakaruna, 2Ulrich Engelke, 1Iain Murray, and 1Nimsiri Abhayasinghe 
 

1Department of Electrical and Computer Engineering, Curtin University, Australia.  
2 Digital Productivity Flagship of the Commonwealth Scientific and Industrial Research Organisation 

(CSIRO), Australia.  
*Kit Yan Chan is the corresponding author. e-mail: kit.chan@curtin.edu.au 

 
 
Abstract — Inertial measurement units (IMUs) utilized in smartphones can be used to detect camera 

motion during exposure, in order to improve image quality degraded with blur through long 

hand-held exposure. Based on the captured camera motion, blur in images can be removed when an 

appropriate deblurring filter is used. However, two research issues have not been addressed: (a) the 

calibration of alignment parameters for the IMU has not been addressed. When inappropriate 

alignment parameters are used for the IMU, the camera motion would not be captured accurately and 

the deblurring effectiveness can be downgraded. (b) Also selection of an appropriate deblurring filter 

correlated with the image quality has still not been addressed. Without the use of an appropriate 

deblurring filter, the image quality could not be optimal. This paper proposes a systematic method, 

namely the Taguchi method, which is a robust and systematic approach for designing reliable and 

high-precision devices, in order to perform the alignment parameter calibration for the IMU and filter 

selection. The Taguchi method conducts a small number of systematic experiments based on 

orthogonal arrays. It studies the impact of the alignment parameters and appropriate deblurring 

filter, which attempts to perform an effective deblurring. Several widely adopted image quality 

metrics are used to evaluate the deblurred images generated by the proposed Taguchi method. 

Experimental results show that the quality of deblurred images achieved by the proposed Taguchi 

method is better than those obtained by deblurring methods which are not involved with the alignment 
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parameter calibration and filter selection. Also, much less computational effort is required by the 

Taguchi method when comparing with the commonly used optimization methods for determining 

alignment parameters and deblurring filter.  

Index terms: Inertial measurement unit (IMU), Taguchi method, image deblurring, orthogonal array, 

alignment parameters 

 
 
1. INTRODUCTION 

The use of smartphones to capture digital photographs is becoming increasingly popular. Based on the 

financial report issued by Gartner [9], 968 million smartphones were sold worldwide in 2013, compared to 

680 million Smart Phones for a year ago. Every day, numerous digital photographs are captured by Smart 

Phones, and those digital photographs are being posted daily on online social networks such as Facebook and 

twitter. We want the images to be a faithful representation of the scene that we wish to capture. However, 

these images are never perfect because image blurring can be caused by camera motion through long 

hand-held exposure. Depending on the camera, this can be one of the prime causes of poor image quality in 

image acquisition and can significantly degrade the structure of sharp images. 

 Deblurring is usually performed offline using mathematical algorithms in order to improve image quality. 

Deblurring algorithms [30, 44] use two captured images, the correlation between which is used for 

determining the deblurring kernel. More recently, Fergus et al. [8] developed a method using a single image 

for handling slight blurring such as camera tremble. It attempts to determine the camera motion based on the 

initial blur kernel, which is estimated by the heuristic information of camera motion. Another deblurring 

method was proposed by Shan et al. [35] based on a unified probabilistic model consisting of both blur kernel 

estimation and deblurred image restoration. However, they have the common limitations that they work only 

under specified blur patterns. Also, they have high computational costs and are therefore not suitable for 

implementing on real-time systems, which have limited computational power. Although recent blind 

deblurring algorithms have been developed with good results on evaluating with a huge number of images 
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[42,43], camera motion information during image exposure which is available on smartphones have not been 

used on the deblurring.  

Manufacturers are desperate to find ways to improve the image quality by removing image blur. Thanks 

to the advanced sensor technologies, inertial measurement units (IMUs) [15] have commonly been used in 

modern smartphones and tablets to capture the motion of the camera path [19], as they are small in size, 

inexpensive, reliable, and have low power consumption. They can be used to capture the camera motion 

precisely. Based on the captured motion information, navigation [20], orientation determination [4], and 

human motion tracking [47] can be implemented. Also, deblurring can be performed based on the captured 

camera motion, in order to remove image blur caused by camera motion [15]. Hence, image quality can be 

improved. 

In spite of the smaller size and cost effectiveness of IMU, the error behaviour of IMU must be 

appropriately treated in order to turn the raw sensor measurements into reliable and useful data for motion 

tracking [40], as both deterministic and stochastic errors exist in IMU. These errors affect the precision on 

capturing the camera motion which is the key to perform an effective deblurring. The deterministic error is 

caused by zero-offset bias, scale factor and misalignment; the stochastic error is caused by random noise of 

the IMU. Calibration approaches have been developed by tuning the inbuilt parameters of the IMU in order to 

reduce those errors [40]. However, the IMU is often purchased commercially and has been implemented in 

the Smartphone for capturing camera motion, making changes to any inbuilt parameters in the IMU 

impractical. Hence, it is impractical to open the IMU to address the zero-offset bias, scale factor, and random 

noise. As the camera moves, the alignment parameters correlating the origins of the camera and the frame of 

interest must be calibrated in order to achieve good image quality. It is necessary to align the motion 

trajectory with the captured source of interest. Appropriate deblurring can be done only when the alignment 

parameters are correctly calibrated. These alignment parameters are more practical to be tuned than tuning the 

inbuilt parameters, as the alignment parameters can be tuned without opening the IMU implemented in the 

smartphone. 
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However, recent research has not addressed misalignment between the camera and the captured source 

of interest, although Sindelar and Sroubek [36] have implemented the IMU on the smartphone for real-time 

deblurring. Also, Bae et al. [3], Horstmeyer [12] and Sindelar and Sroubek [36] assumed that there is no 

misalignment between the camera and the frame of interest. The deblurring is developed with the assumption 

that no misalignment exists. Although Joshi et al. [15] developed a drift compensator in order to reduce drift 

caused by the randomly noisy measure present in the sensor reading, misalignment is still not addressed. The 

deblurring effectiveness can be downgraded, when inappropriate alignment parameters are used. Apart from 

not addressing misalignment, this research has used only a state-of-art filter for deblurring images. Although 

there has been a considerable amount of work on filter design, selection of appropriate filters is essential as 

the effectiveness of deblurring is correlated with the filter. Without the appropriate filter, the effectiveness of 

deblurring cannot be optimized. 

In this paper, a systematic method, namely the Taguchi method, which is commonly used for the design 

of reliable and high-precision devices [38], is proposed for calibrating alignment parameters and selecting the 

appropriate filter, in order to perform effective image deblurring. In quality optimization, the Taguchi method 

has been successfully used to design reliable processes and high-quality products at low cost for various items 

[2, 7, 11, 29, 34, 37]. Here, we consider the deblurring design to be the design of a high quality product [22]. 

Similar to the design of high quality products, which aim to produce the functionality by approximating the 

ideal function as closely as possible, the effective deblurring mechanism design aims to process blurred 

images so that they are faithful representations of the original scene. In accordance with the Taguchi method, 

the alignment parameters and deblurring filter are calibrated and selected in an inner orthogonal array. The 

Taguchi method conducts a small but systematic number of experiments based on orthogonal arrays to study 

the impact of each alignment parameter and the deblurring filter. It attempts to determine the alignment 

parameter setting and the filter in order to achieve effective image deblurring. 

The calibrated results obtained by the Taguchi method were evaluated through two phases. First, the 

results were compared with several commonly-used deblurring methods, where the alignment parameters 

defaulted by the camera manufacturer were engaged with those deblurring methods. Several commonly used 
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image quality metrics [41] were used to evaluate whether significantly better results can be obtained by the 

calibrated parameters and the defaulted parameters. Second, several commonly-used optimization methods 

namely, genetic algorithm [10], simulated annealing algorithm [16] and particle swarm optimization 

algorithm [28] were used to determine the alignment parameters and the deblurring filter. These optimization 

methods were used, as they are effective for solving difficult optimization problems without gradient 

information which is the case of this deblurring problem. We attempt to evaluate whether the Taguchi method 

can obtain better results than those optimization methods, when similar computational time is used. The 

results show that the calibrated parameters can achieve a more effective deblurring than the defaulted 

parameters. Also the experimental results show that the image quality achieved by the proposed Taguchi 

method is better than those obtained by the commonly used optimization methods, and much less 

computational effort is required by the proposed method. 

The remainder of the paper is organized as follows. Section 2 provides a brief description of using the 

Taguchi method for quality optimization. Section 3 defines and describes the formulation and mechanisms 

for image deblurring design. In Section 4, the main operations of the Taguchi method for image deblurring 

design, which involve the parameter calibration and filter selection, are discussed. In Section 5, comparison 

results with the defaulted parameters and the commonly-used optimization methods are presented. Finally, a 

conclusion, regarding the results obtained by the Taguchi method and the advantages of the Taguchi method, 

are presented in Section 5. 

 

2. QUALITY OPTIMIZATION USING TAGUCHI METHOD  

Before developing the Taguchi method for calibrating the IMU, this section briefly describes the Taguchi 

method which has been widely used for quality optimization of industrial systems [11, 37]. The first step of 

quality optimization is to initiate the basic functional prototype design based on the knowledge of the 

industrial system. It attempts to configure the system attributes undergoing analysis. As the quality of the 

initial design is usually far from the optimal design quality, it is necessary to determine an appropriate set of 

design factors in order to maximize the system quality. 
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The appropriate set of design factors can be established by means of a "full factorial" design, where all 

possible levels of all design factors are considered. When a system has n design factors and each of them has 

k levels, the total number of combinations for the "full factorial" approach is nk . When the number of design 

factors is large, it is almost impossible to test all possible permutations for all design factors. For example, 

given an industrial system with 10 design factors with each design factor having three levels, a full factorial 

approach requires examining 59049 (i.e. 310) experiments. Alternatively, the trial and error method can be 

used by trialing the design factors with different levels one at a time until a reasonable design with certain 

quality is found. However, numerous experiments are required in order to arrive at a reasonable design. To 

keep the number of experiments low, the Taguchi method is commonly used for quality optimization [11, 37]. 

It studies the effect of design factors simultaneously by planning matrix experiments using an orthogonal 

array, which studies a design factor domain with the smallest number of experiments [38]. Based on the 

orthogonal array, the domain of the design factors can be studied systematically and efficiently. 

As an example, we consider an epoxy dispensing system with four design factors which include three 

operational parameters and 1 component parameter [17]. The three operational parameters are the values of 

the injection pressure (ranging from 1 to 4 psi), the motor speed (ranging from 400 to 1000 rotations per 

minute), and the distance between the nozzle and the dispensing target (ranging from 500 to 1500 steps), 

which represent the first three Design Factors A, B and C respectively. Here, three levels with respect to the 

ranges of the operational parameters are considered. The component parameter includes three kinds of epoxy 

material namely epoxy I, epoxy II and epoxy III; these three kinds of epoxy material correspond to the three 

levels. Epoxy I, epoxy II and epoxy III are with respect to level 1, level 2 and level 3 for the Design Factor D 

respectively. Table I illustrates the three operational parameters (i.e. Design Factors A, B and C) with respect 

to the three levels and it also illustrates the component parameter (i.e. Design Factor D) with respect to the 

three levels. We attempt to control the epoxy size of the epoxy dispensing system by determining the 

appropriate setting of the four Design Factors.  
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Table 1 Design Factors for the epoxy dispensing system. 

 Operational parameters Component 

parameter 

Design Factor A 

(injection pressure) 

Design Factor B 

(motor speed) 

Design Factor C 

(distance between 

nozzle and dispensing 

target) 

Design Factor D 

(epoxy material) 

Level 1 1 psi 400 r/min 500 steps Epoxy I 

Level 2 2.5 psi 700 r/min 1000 steps Epoxy II 

Level 3 4 psi 1000 r/min 1500 steps Epoxy III 

 

   For the epoxy dispensing system with four Design Factors with each Design Factor having three levels, a 

full factorial design with 81  4i.e.:  3  experiments is required. However, only nine experiments are required, 

when an orthogonal array,  4
9 3L  (shown in Table 2), is used. In  4

9 3L , there are four columns representing 

the Design Factors A, B, C and D, each of which has three levels. The number of rows represents the system 

configurations to be tested with respect to the experimental level defined by the row, and the number of 

columns represents the number of design factors which are studied. Compared with the full factorial design, 

72 (i.e. 81-9) experiments are saved when the orthogonal array,  4
9 3L  is used. In this design problem, 

assuming that approximately two hours are required for each experiment, 162 hours are required for full 

factorial design to be conducted. Hereby, only 18 hours are required when the orthogonal array,  4
9 3L , is 

used. Comparing this with the full factorial design, 144 hours can be saved in this design problem. Therefore, 

a significant amount of experimental time can be saved when  4
9 3L  is used. Also, the nine experiments in 

 4
9 3L  have the pairwise balancing property, whereby every experiment of a Design Factor is conducted the 

same number of times. Hence, the experimental levels defined by the columns are mutually orthogonal. It 
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minimizes the number of required experiments, while retaining the pairwise balancing property. Only nine 

experiments are sufficient to evaluate the main effect of each Design Factor in order to determine the 

appropriate setting of the epoxy dispensing system. 

Table 2 Orthogonal array (  4
9 3L ). 

Experiments Design Factor A Design Factor B Design Factor C Design Factor D 

1 Level 1 Level 1 Level 1 Level 1 

2 Level 1 Level 2 Level 2 Level 2 

3 Level 1 Level 3 Level 3 Level 3 

4 Level 2 Level 1 Level 2 Level 3 

5 Level 2 Level 2 Level 3 Level 1 

6 Level 2 Level 3 Level 1 Level 2 

7 Level 3 Level 1 Level 3 Level 2 

8 Level 3 Level 2 Level 1 Level 3 

9 Level 3 Level 3 Level 2 Level 1 

 

3. IMU FOR IMAGE DEBLURRING 

Two steps are involved in deblurring images using the camera motion captured by the IMU. First, the IMU is 

used to measuring a sequence of angular and linear velocities for the camera motion when capturing the 

image. Second, a blur kernel is developed using the captured data of the camera motion. It is determined with 

respect to the image quality by tuning the alignment parameters in order to improve the deblurring 

effectiveness. 

3.1 Capture of camera motion 

Figure 1 shows the scene plane of the image captured by the camera. It illustrates the alignment parameters, 

 ,  ,  a b l  , which consists of the coordinate of the aligned focus, namely a and b, and the aligned distance 
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between the scene plane and the camera, namely l. The angular and the linear velocities of the camera motion 

are captured by the IMU when the image is being captured.  
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Figure 1 Illustration of the alignment parameters. 

 

The angular velocities captured by the IMU are denoted by  x t ,  y t , and  z t , with respect to 

the x, y, and z axes respectively, where t is the caption time with t = 0, Ts, 2 Ts, … , Ns·Ts; Ts is the sampling 

period; and Ns samples of angular velocities are captured. The linear velocities captured by the IMU are 

denoted by  xV t ,  yV t , and  zV t , with respect to the x, y, and z axes respectively. The linear velocities at 

the alignment points, namely  xv t ,  yv t , and  zv t  are determined based on (1a), (1b) and (1c) with 

respect to the x, y, z axes respectively as, 

           x x y zv V l t at t t ,                            (1a) 

       y y x zt t tV tv l b       ,                           (1b) 

             z z x zt t tv V a b t .                          (1c) 
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As people usually stand on taking photos, the linear velocities,  xV t ,  yV t , and  zV t , are generally 

small. The camera motion is mostly caused from hand shake. Hence, the angular velocities,  x t ,  y t , 

and  z t , usually exist. Also based on the motion data captured by the IMU, it confirmed that the linear 

velocities are generally near zero and the angular velocities usually exist. As  xV t ,  yV t , and  zV t ,  are very 

small compared to the  x t ,  y t , and  z t  with respect to the velocity of the point on the scene,  xV t , 

 yV t , and  zV t  can be omitted from (1a), (1b) and (1c). Hence,  xv t ,  yv t , and  zv t  can be computed 

based on (2a), (2b) and (2c) respectively as: 

      x y zv t l t a t     ,                             (2a) 

     y x zv t l t b t      ,                             (2b) 

     z x zv t a t b t      .                             (2c) 

The displacement of the motion blur can be determined by iterating the three linear velocity 

components,  xv t ,  yv t , and  zv t , given in (2a), (2b) and (2c) using the trapezoid rule. Hence, 

determination of the displacement of the motion blur, namely Dx(t), Dy(t) and Dz(t), with respect to x, y and z, 

is given as: 

        1x x s x x sD t D t T v t v t T      ,                          (3a) 

        1y y s y y sD t D t T v t v t T      ,                      (3b) 

        1z z s z z sD t D t T v t v t T      .                       (3c) 

 

3.2 Tuning of the alignment parameters 

Based on the mechanism developed by Jiang et al. [14], the blur kernel can be determined using the energy 

level of each pixel of the motion blur. The blur kernel,  , is determined with respect to the motion blur given 

in (3a), (3b) and (3c), where the dimensions of   with the matrix size of x yn n are given as 
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sp is the pixel size of the image; and each element in  is denoted as ,i j  with i=1,2,.., xn  and j=1,2,…, yn  

and ,i j  is given by, 
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,i j is correlated with the displacement of the motion blur given in (3a), (3b) and (3c), and the 

displacement of the motion blur is correlated with the alignment parameters  ,  ,  a b l   and the captured 

angular velocities         , ,x y zt t t t     with t = 0, Ts, 2 Ts, …, Ns·Ts. Hence, a correlation function, 

namely  , is defined in order to correlate the blur kernel,  , with the alignment parameters   and the 

sequence of captured angular velocities  , where       0 , , 2 ,...s sT T      s sN T  .   is given 

as: 

      ,     ,                               (6) 

 When a blurred image, bI , is captured by the camera, a deblurring filter, namely F , engaged with 

 can be used to generate an enhanced image, eI , which is given as: 

         , , ,  e b b
F FI I I                          (7) 
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After eI  has been generated, a specified image quality measure, namely,  J  , given in (8), can be 

evaluated based on a perceptual image quality model, P , which is ideally independent of the content of the 

visual scene. As the angular velocity,  , for the camera motion is captured by the IMU, it cannot be adjusted. 

Also, the blurred image, bI , cannot be changed as this is captured by the camera. We can only adjust the 

alignment parameters,  , in order to fine-tune the image quality for the enhanced image. The alignment 

parameters,  , can be fine-tuned with respect to  J   as: 

         , ,  b
P FJ I                              (8) 

 Assume that the image quality is better when  J   is smaller. Determination of the appropriate  and 

F  is the minimization problem. When the image quality with a larger  J   is better, determination of the 

appropriate   and F  is a maximization problem. For example, the image quality regarding the degree of 

blur is the-smaller-the-better performance characteristic [21]. The image quality regarding the gradients and 

edges of the objects in the image is the-larger-the-better performance characteristic [33]. Based on the 

formulation of (8), different image quality measures, P , can be used in order to evaluate the deblurring 

performance and also the deblurring performance can be optimized with respect to different deblurring filters, 

F . It overcomes the limitation of the formulation developed in [12] where only a single deblurring filter and 

a single image quality measure are used to develop the blur kernel. 

Solving  J   is difficult, as the deblurring filter, F , and perceptual image quality model, P , are 

generally nonlinear. Also, the computational cost of evaluating  J   is high, as it needs to compute through 

the three functions,  , F , to P . In Section IV, the Taguchi method is proposed to determine an 

appropriate   and the deblurring filter, F , by conducting systematic trials. It attempts to determine an 

appropriate   and F  with little computational effort. 
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4. TAGUCHI METHOD FOR IMU CALIBRATION 

This section demonstrates how the Taguchi method is used to calibrate the IMU for deblurring images. The 

Taguchi method can be divided into two main tasks. Firstly, the design factors of the IMU are quantized into 

certain levels and the orthogonal array is selected with respect to the number of design factors and the 

quantized levels. Based on the combinations of the selected orthogonal array, the experiments are conducted 

with respect to the design factors. Secondly, the main effects of each design factor are analyzed based on the 

experimental results. The most appropriate levels for each design factor are determined based on the level 

with the best main effect. Hence, the design factors of the IMU can be recommended. 

4.1 Orthogonal array and systematic experiments 

In this research, the Sony Xperia TX smartphone equipped with a camera and an IMU was used to capture the 

blurred image and the angular velocities associated with the camera motion respectively, where  the sampling 

time of capturing the angular velocities was 5ms and 14 samples of angular velocities are captured. We 

consider three alignment parameters of the IMU  ,  ,  a b l  as the first three Design Factors of the Taguchi 

Method, where the alignment ranges are provided by the IMU manufacturer i.e.,  1.5..1.5 a , 

 1.5..1.5 b  and  3.1..4.9l . The three state-of-art deblurring filters [13] namely Wiener filter, 

Lucy-Richardon filter and regularized filter, are considered as the fourth Design Factor, where the regularized 

filter [13] is an enhanced version of the Wiener filter. 

  The number of levels of the design factors in the Taguchi method affects the efficiency of the 

calibration. For calibrating a system with only linear design factors, two levels are used since two points 

define a line. For calibrating a system involving quadratic design factors, three levels are used since the two 

extremes and the midpoint can represent the quadratic nature. For calibrating a system involving cubic design 

factors, four levels are used since two extremes and two points in between can represent the cubic nature. 

Extra levels allow for the examination of complicated nonlinear systems, but more experimental time is 

required. As the number of design factors that need to be calibrated is not high, we start to use a small 
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orthogonal array namely,  4
9 3L , which involves four design factors with each design factor having three 

levels. We divide the three alignment parameters of the IMU  ,  ,  a b l  into three levels as shown in Table 3, 

with each of the three levels being divided equally with respect to the alignment ranges i.e.,  1.5..1.5 a , 

 1.5..1.5 b  and  3.1..4.9l . As an instance, Levels 1, 2 and 3 for parameter a are with respect to -1.5, 

0.0 and 1.5 respectively. For the filter, Levels 1, 2 and 3 are with respect to the Wiener filter, Lucy-Richardon 

filter and regularized filter respectively. Each experiment involves one of the three filters and a particular set 

of alignment parameters. 

 

Table 3 The three levels for the alignment parameters and the filters. 

 Alignment parameters Filter 

a  b  l  

Level 1 -1.5 -1.5 3.1 Wiener 

Level 2 0.0 0.0 4 Lucy-Richardson (L-R) 

Level 3 1.5 1.5 4.9 Regularized 

 

Based on the configurations of the orthogonal array,  4
9 3L , the first five columns in Table 4 are used to 

study the impact of each alignment parameter and the filter. Based on  4
9 3L , only nine experiments need to 

be conducted while full factorial design requires 81 (i.e. 43 ) experiments of which there are four parameters 

with each parameter having three levels. Hence, 72 experiments can be saved. For the 1st experiment 

configured in  4
9 3L , the alignment parameters, a, b, and l, with Level 1 (i.e. a=0.1, b=0.1 and l=3.1) and the 

filter in Level 1 (i.e. Wiener filter) were used for the calibration and the image quality of the deblurred image 

was evaluated. For the 2nd experiment configured in  4
9 3L , a with level 1, b with level 2, and l with level 2, 

(i.e. a=0.1, b=1.5 and l=4) and the filter in level 2 (i.e. Lucy-Richardson filter) were used.  
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Table 4 The three levels for the alignment parameters.  

Trials Alignment parameters Filter Image quality scores 

a  b  l  

1st -1.5 -1.5 3.1 Wiener 17.634 

2nd -1.5 0.0 4 Lucy-Richardson 16.218 

3rd -1.5 1.5 4.9 Regularized 15.295 

4th 0.0 -1.5 4 Regularized 17.080 

5th 0.0 0.0 4.9 Wiener 16.341 

6th 0.0 1.5 3.1 Lucy-Richardson 16.836 

7th 1.5 -1.5 4.9 Lucy-Richardson 17.616 

8th 1.5 0.0 3.1 Regularized 17.633 

9th 1.5 1.5 4 Wiener 16.931 

 

In this research, an image quality analyzer recently developed by Mittal et al. [23] is used to determine 

the image quality denoted by P  in (8), as it can assess image quality without prior knowledge of distortions. 

This approach is developed based on a collection of statistical features from a corpus of natural and 

undistorted images. This approach overcomes the limitation of the existing methods which either require 

learning from human judgments of image quality from human-rated distorted images [24, 32] or require 

knowledge of expected image distortions [42]. Also, this approach delivers performance comparable to 

several commonly-used image quality models which require training on large databases of human opinions of 

distorted images. Due to its reference free nature, this approach does not require a pristine, undistorted image, 

which would not be available in our application. Therefore, we use this approach to evaluate the quality of the 

deblurred image. 
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Here, the computation for the nine experiments configured in  4
9 3L  were conducted using Matlab 7.7 

in a PC which has a CPU of Intel(R) Core(TM)2 Duo 2.66GHz and a memory of 8GB. The image quality 

scores with respect to the settings of the alignment parameters and the filters are shown in the fifth column of 

Table 4 respectively. 

4.2 Determination of design factors 

After the image quality scores of the nine experiments have been evaluated, the main effect of each design 

factor (i.e. the three alignment parameter and the filter type) can be separated, since the combinations of the 

alignment parameters of each experiment are orthogonal [38]. Table 5 shows the main effects of the 

alignment parameters and the filters. Each main effect was calculated using the average of a design factor at a 

given level. As an example, level 2 of the alignment parameter, l, is in the 2nd, 4th and 9th experiments and their 

corresponding image quality scores are 16.218, 17.080 and 16.931 respectively.  The main effect of the 

alignment parameter, l, with level 2 is the average of the image quality scores of these experiments which is 

given by 16.743 (i.e.  16.218+17.080+16.931 / 3). 

Table 5 Main effects of the Design Factors. 

Parameter levels Alignment parameters Filter 

a  b  l  

Level 1 16.382 17.443 17.368 16.969 

Level 2 16.752 16.731 16.743 16.89 

Level 3 17.394 16.354 16.417 16.67 

Sensitivity 1.0113 1.089 0.95033 0.299 

 

The smallest main effect of each alignment parameter are highlighted in bold and underlined in Table 5, i.e. 

a with level 1 (or a=-1.5), b with level 3 (or b=1.5), l with level 3 (or l=4.9) and the filter with level 3 (or 

Regularized filter) is same than that obtained by the 3rd experiment on L9(3). Hence, the appropriate setting is 

given by the 3rd experiment on L9(3) i.e.: a with level 1 (or a=-1.5), b with level 3 (or b=1.5), l with level 3 (or 
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l=4.9), and the filter with level 3 (or Regularized filter). With the setting of the 3st experiment, the image score 

is given as 15.295. Slightly better image quality is obtained with L9(3) than that obtained based on the main 

effects. Hence, nonlinearity between the alignment parameters and the filter is not high. Although further 

calibration can be conducted by dividing the design factors with more levels, only a much smaller 

improvement can be expected, as it is found that a small difference exists between the result obtained based 

on the main effects and that obtained by the experiments of the L9(3). Therefore, we terminate the calibration 

and use the determined levels of design factors obtained based on L9(3) as the calibration result. 

The sensitivity of each design factor is computed by taking the difference between the largest and smallest 

main effect for a given design factor. It reveals that the alignment parameter, a, shows the greatest sensitivity. 

Hence, the alignment parameter, a, has the greatest effect on the image quality by varying its value. The other 

Design Factors (i.e. alignment parameters b and l, and the filter) has the least sensitivity to the image quality. 

Hence, there is little effect on the image quality when we tune these design factors. The main effects of the 

design factors are also shown graphically in Figure 2. Graphing the main effects of all design factors can 

provide more insight at a glance, and it clearly shows that the alignment parameter, a, has much greater 

sensitivity than those of the other design factors. 

Figure 3 depicts the original image and Figure 4 depicts the deblurred image generated using the calibrated 

alignment parameters and the selected filter. The deblurred image shows that the blurred effect is removed 

from the original image and the object’s edges are clearer.  



 
 

18

0 1.5
16.2

16.4

16.6

16.8

17

17.2

17.4

17.6

Alignment parameter (a)

Im
ag

e 
qu

al
ity

Main effects for a

0 1.5
16.2

16.4

16.6

16.8

17

17.2

17.4

17.6

Alignment parameter (b)

Im
ag

e 
qu

al
ity

Main effects for b

3 4 5
16.2

16.4

16.6

16.8

17

17.2

17.4

17.6

Alignment parameter (l)

Im
ag

e 
qu

al
ity

Main effects for l

Wiener   L-R  Reg. 
16.2

16.4

16.6

16.8

17

17.2

17.4

17.6

Filter

Im
ag

e 
qu

al
ity

Main effects for the three filters

 

Figure 2 Illustration of the main effects of the Design Factors. 

 
                               Figure 3 Original image.                               Figure 4 Deblurred image. 

 

 

5. RESULT EVALUATION 

The result obtained by the Taguchi method was evaluated through two phases. In the first phase, the obtained 

result was evaluated with those obtained by the commonly-used deblurring methods, where the alignment 

parameters defaulted by the camera manufacturer were engaged with those deblurring methods. The 

deblurring performance was evaluated by several deblurring metrics. We attempt to evaluate whether 
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significantly better results can be obtained by the Taguchi method than the commonly-used deblurring 

methods engaged with the defaulted parameters. In the second phase, several commonly-used optimization 

methods were used to determine the alignment parameters and the deblurring filter. We attempt to evaluate 

whether the Taguchi method can obtain better results than those optimization methods, when similar 

computational time is used. 

5.1 Comparison with defaulted alignment parameters 

Four commonly used deblurring methods [12] namely Blind Deconvolution filter, Wiener filter, 

Lucy-Richardson filter, and regularized filter, were used to deblur the original image. The alignment 

parameters defaulted by the camera manufacturer were used to develop the blur kernel, where  0a  , 0b  , 

and 4l  . Apart from Mittal et al’s image quality measure, three commonly used metrics namely 

no-reference blur [21], gradients based measure [33] and edges based measure [33] were used to evaluate the 

effectiveness of the deblurring filters. 

Figure 5a shows the original image score, and the deblurred image scores obtained by the four 

deblurring methods and the proposed Taguchi method. The image quality is better when the degree of Mittal 

et al’s score is smaller. It shows that the score obtained by the proposed Taguchi method is the best comparing 

to the original image and the other tested deblurring methods. To further illustrate the performance of the 

proposed Taguchi method, Figure 5b shows the relative improvements when each of the tested methods is 

compared with the proposed method. The relative improvement is the difference between the scores obtained 

by the proposed method and the each of the other tested method. The proposed method obtained the 

improvement with more than 20% relatively to the original image, and also it obtained the improvements with 

more than 8% relatively to the other tested methods. 
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Figure 5a Mittel et al’s score Figure 5b Improvement of Mittal et al’s score 

A supplemental metric, no-reference blur [21], was used to evaluate the amount of blur in the original 

image and the images obtained by the five deblurring methods. It accounts the smoothing effect of blur by 

measuring the distance between edges on the image. For pixels that correspond to an edge point, the local 

extrema in the corresponding image are used to compute the edge width. The edge width then defines a local 

measure of blur. The global blur measure is determined based on the average of the local blur values over all 

edge locations. Therefore this metric accounts in-block blur but rather contributes a global blur measure. 

Figure 6a shows the blur degrees of the original image and the images obtained by the deblurring methods.  It 

shows that blur degree obtained by the proposed Taguchi method is the smallest compared with the other 

tested methods and the original image. Figure 6b also shows that improvements with more than 20% can be 

obtained by the proposed Taguchi method relatively to the original image, blind deconvolution filter, Wiener 

filter, and Lucy-Richardson method. Also an improvement with about 4% can be obtained relatively to the 

regularized filter. 
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Figure 6a no-reference measure Figure 6b Improvement of no-reference measure 

Also, two image activity measures based on gradients and edges [33] were used to quantify the amount 

of blur on the images. These measures have already been successfully used to measure blur artifacts without 

reference [41]. These measures relate to the amount of local changes in the images caused by strong local 

contrasts and noise. The more changes, the greater is the activity. Blur typically reduces the amount of image 

activity as the image is smoothed and has lesser changes. Hence, more blur exists on the image, when smaller 

activities are detected. The measures based on gradients and edges are shown in Figures 7 and 8 respectively. 

They shows the image activity obtained by the proposed Taguchi method is the highest compared with the 

original image and the other tested methods.  As the blur has the opposite effect to the amount of image 

activity, the two activity measurements are in full agreement with visual inspection which is the highest for 

the deblurred image obtained by the Taguchi method. They further validate the effectiveness of the 

deblurring, when the Taguchi method is used to determine the alignment parameters. Therefore, the measures 

for these four image quality metrics show that better image quality can be obtained by the proposed Taguchi 

method than the other deblurring filters which is engaged with the defaulted alignment parameters. 
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Figure 7a Degrees of gradient measure Figure 7b Improvement of gradient measure 
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Figure 8a Degrees of edge measure Figure 8b Improvement of edge measure 
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5.2 Comparison with commonly-used optimization methods 

Several commonly-used methods including genetic algorithm (GA) [10], particle swarm optimization 

algorithm (PSO) [28] and simulated annealing (SA) [16] have been applied to determine the four appropriate 

design factors (i.e. the three alignment parameters and the deblurring filter). These optimization methods 

were tested, as they are usually applied to solve difficult optimization problems and have been used on 

solving many instrument design problems [1, 6, 18, 26, 31, 48]. Based on these comparisons, the effective of 

the proposed Taguchi method can be further evaluated. The following parameters and operations were used in 

the three heuristic methods: 

1. Genetic algorithm (GA): Two genetic algorithms namely GA-3-3 and GA-3-9 have been used to 

determine the four Design Factors of the calibration problem, where GA-3-3 involves 3 

chromosomes and 3 generations and GA-3-9 involves 3 chromosomes and 9 generations. Hence, the 

same numbers of computational evaluations are used for both the GA-3-3 and the Taguchi method, 

and three times the number of computational evaluations are used for the GA-3-9 than those used for 

the Taguchi method. 

 In both GA-3-3 and GA-3-9, the chromosomes are coded as parametrical representations with four 

genes, the first three of which represent the three alignment parameters (i.e. a, b, and 1). The fourth 

gene represents the three filters (i.e. Wiener filter, Lucy-Richardson filter and regularized filter) 

whereby the gene is divided into three domains. The first domain represents the Wiener filter. The 

second and third domains represent the Lucy-Richardson filter and regularized filter respectively. In 

the two GAs, each chromosome is evaluated based on the image quality analyzer [23] which is used 

here in the Taguchi method. The detailed evolutionary operations can be found in [25]. The 

following parameters were used in both GA-3-3 and GA-3-9: crossover rate =0.8; and mutation rate 

= 0.1. 

2. Particle swarm optimization (PSO): The two particle swarm optimization algorithms, namely PSO-3-3 

and PSO-3-9, have been used to determine the four design factors of the calibration problem. The 

PSO-3-3 involves 3 particles and 3 iterations and PSO-3-9 involves 3 particles and 9 iterations. 
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Hence, the same numbers of computational evaluations are used for both PSO-3-3 and the Taguchi 

method. This allows us to determine whether the PSO algorithm can outperform the Taguchi 

method, when the same computational effort is involved. PSO-3-9 required three times the 

computational evaluations compared with the Taguchi method. This can determine whether the 

Taguchi method can still outperform the PSO algorithm when much more computational effort is 

used in the PSO. 

The particle representation of both PSO-3-3 and PSO-3-9 is same as that coded in the two GAs. In 

the two PSO algorithms, each particle is evaluated based on the image quality analyzer [23]. The 

following PSO parameters were used: the maximum and minimum inertia weights are set to 0.9 and 

0.2, respectively; the initial acceleration coefficients are set to 2.0. 

3. Simulated annealing (SA) algorithm: The two simulated annealing methods [16] namely SA-9 and 

SA-27 have been used to determine the four Design Factors of the calibration problem. The SA-9 

and the SA-27 were involved with 9 and 27 iterations respectively, where SA-9 needed the same 

computational effort as the Taguchi method and SA-27 needed three times the computational effort 

of the Taguchi method. Both methods attempted to evaluate whether Taguchi method can 

outperform the SA algorithms when same and more computational efforts were used. In the two SA 

algorithms, each iterative solution is evaluated based on the image quality analyzer [23]. 

All these methods were implemented using Matlab 7.7 in a PC which has a CPU of Intel(R) Core(TM) 

2 Duo 2.66GHz and a memory of 8GB. As the GA, PSO and SA, are heuristic methods, different results are 

generated under different runs. Therefore, all the tested methods, GA-3-3, GA-3-9, PSO-3-3, PSO-3-9, 

SA-1-9 and SA-1-27, were run 30 times, and the results of the 30 runs were recorded. The computational 

evaluations and computational time used in all the tested methods are given in Table 6. Results in terms of 

image quality scores obtained by all the tested methods are shown in the boxplot given in Figure 9. It shows 

that the image quality obtained by GA-3-3, PSO-3-3 and SA-1-9 are worse than those for the Taguchi 

method, where the computational evaluations used by the four methods were the same. Figure 9 also shows 

that the image quality obtained by the Taguchi method are slightly worse than those for GA-3-9, PSO-3-9, 
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and SA-1-27, while the computational evaluations used by the GA-3-9, PSO-3-9, and SA-1-27 were three 

times more than those used by the Taguchi method. Also, the heuristic methods, GA-3-9, PSO-3-9 and 

SA-1-27, used more than three times the computational time than that used by the Taguchi method, as the two 

methods required more computational operations than those required by the Taguchi method.  Therefore, 

much more computational time and effects are required by GA-3-9, PSO-3-9 and SA-1-27 in comparison 

with the Taguchi method, although slightly better image quality can be obtained by the two methods. 

Table 6 Computational evaluations and computational time used on the 7 tested methods. 

Methods Computational evaluations Computational time (seconds) 

Original image N/A N/A 

GA-3-3 9 174.03 

PSO-3-3 9 167.03 

SA-1-9 9 165.54 

GA-3-9 27 500.72 

PSO-3-9 27 491.47 

SA-1-27 27 487.68 

Taguchi method 9 163.75 
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Figure 9 Evaluation results for the tested optimization methods. 

 

Table 7 shows the averages of the image quality scores for the 30 runs of the tested methods. It shows that 

better image quality can be obtained by the Taguchi method which achieves an improvement of 20% 

compared with the original image  based on the image quality analyzer [23]. It also shows that the average 

image quality scores obtained by all the tested methods are very similar. It is difficult to claim the significance 

of the image quality differences between the Taguchi method and the other tested methods (i.e. GA-3-3, 

GA-3-9, PSO-3-3, PSO-3-9, SA-1-9 and SA-1-27), although we can see that the image quality obtained by 

the Taguchi method is better than those obtained by GA-3-3, PSO-3-3 and SA-1-9 which require the same 

computational efforts as the Taguchi method. Therefore, the t-test [5] was used to evaluate the significance of 

the hypothesis that the sample means of the image quality scores obtained by the proposed Taguchi method 

are better than those obtained by the other tested methods. Based on the t-distribution table, if the t-value is 

higher than 1.96, the image quality obtained by the Taguchi method is better than those of the other methods 

at a 97.5% confidence level.  
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The t-value for statistical significance testing between the Taguchi method and any of the other methods is 

given by: 

       2 1

2 2
2 2 1 1

-value
/ /

t
N N

 
 





, 

where 1  and 2  denote the respective mean image quality, 2
1  and 2

2  the image quality variance, and 1N  

and 2N  the number of tests. Here both 1N  and 2N  are equal to 30. As the Taguchi Method is a deterministic 

method, an identical solution can be obtained with different runs. Hence, the variance for the Taguchi method 

is zero. 

 For example, we consider the t-value between Taguchi method to GA-3-3 is calculated as 

 
16.440 15.295

-value 15.122
0.172 / 30 0 / 30


 


t  

where the mean image quality obtained by GA-3-3 is 16.440; the mean image quality obtained by the Taguchi 

method is 15.295; the variance of the image quality obtained by GA-3-3 is 0.172; as mentioned, the variance 

obtained by the Taguchi method is 0 since the Taguchi method is the deterministic method. 

If the t-value is higher than 1.699, the significance is 95% confidence level, which means that the image 

quality obtained by the Taguchi method are different with those obtained by the GA-3-3 with 95% confidence 

level. In general, the results indicate that t-values between the Taguchi method to the GA-3-3, PSO-3-3 and 

SA-1-9 are greater than 1.96, where these methods involved the same computation evaluations as the Taguchi 

method. This means the Taguchi Method can obtain difference image qualities with 95% confidence level 

compared with those generated by the three tested methods, GA-3-3, PSO-3-3 and SA-1-9. The image quality 

is better, when the small image quality is obtained. Hence, the image quality obtained by the Taguchi method 

is significantly better with 95% conference level than those obtained by GA-3-3, PSO-3-3 and SA-1-9. 

Although the other three tested methods, GA-3-9, PSO-3-9 and SA-1-27, used more than three times the 

computational effort that was required by the Taguchi method, these three tested methods cannot achieve 

image quality difference with 95% confidence level compared with the Taguchi method, as the absolute 

t-values achieved by these three methods are less than the 1.96. Therefore, although GA-3-9, PSO-3-9 and 
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SA-1-27, can obtained better image qualities than those obtained by the Taguchi method, there is no 

significant difference between the image quality obtained between either GA-3-9, PSO-3-9 or SA-1-27 to the 

Taguchi method. Also based on Table 6, much longer computational time was required by GA-3-9, PSO-3-9 

and SA-1-27 compared with the Taguchi method. Based on the t-test, the effectiveness of the Taguchi method 

can be further demonstrated based on the t-tests.  

 Table 7 Averages of image quality scores obtained by the 7 tested methods. 

Methods Image quality scores 

Means Variances t-test 

Original image 19.878 0 N/A 

GA-3-3 16.440 0.172 15.122 

PSO-3-3 16.381 0.296 10.933 

SA-1-9 16.287 0.276 31.906 

GA-3-9 15.331 0.029 1.158 

PSO-3-9 15.253 0.028 -1.351 

SA-1-27 15.264 0.020 -1.201 

Taguchi Method 15.295 0 N/A 

 

6. CONCLUSIONS 

This paper proposed the Taguchi method as a means of calibrating the alignment parameters for IMUs and 

determining the appropriate filter for image deblurring. The proposed Taguchi method first conducts a small 

but systematic number of experiments based on the orthogonal array, and then it studies the impact of each 

alignment parameter and the deblurring filter, in order to determine the appropriate levels for the alignment 

parameters and the deblurring filter. Several widely adopted image quality metrics were used to evaluate the 

deblurred images generated by the proposed Taguchi method. The results show that the quality of deblurred 

images achieved by the proposed Taguchi method is better than that obtained by deblurring method, which 
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has not addressed the alignment parameter calibration and filter selection. The results were also compared 

with those obtained by the commonly-used heuristic methods which are effective in solving hard 

optimization problems with no gradient information. The results show that the Taguchi method obtains better 

image quality than the tested optimization methods, while maintaining similar computational complexity.. 

 This paper has demonstrated how the alignment parameters can be calibrated based on the Taguchi method. 

In future work, the Taguchi method can be investigated by incorporating with the IMU built-in functionality 

in order to calibrate the alignment parameters automatically. To do this, the Taguchi method and the image 

quality metric will be embedded on the smartphone processor. Apart from evaluating the image quality, 

computational time used on the smartphone processor will be measured. 

  

REFERENCES 

[1] V. Akbarzadeh, C. Gagne, M. Parizeau, M. Argany and M.A. Mostafavi, Probabilistic Sensing Model for 

Sensor Placement Optimization Based on Line-of-Sight Coverage, IEEE Transactions on Instrumentation 

and Measurement 62(2) (2013) 293-303. 

[2] I. Asilturk and S. Neseli, Multi response optimization of CNC turning parameters via Taguchi method 

based response surface analysis, Measurement 45 (2013) 785-794. 

[3] H. Bae and C. Fowlkes, Accurate motion deblurring using camera motion tracking and scene depth, 

Proceedings of IEEE Workshop on Applied Computer Vision (2013). 

[4] T. Beravs, J. Podobnik and M. Munih, Three axial accelerometer calibration using Kalman filter 

covariance matrix for online estimation of optimal sensor orientation, IEEE Transactions on 

Instrumentation and Measurement  61 (9) (2012): 2501-2511. 

[5] G. E.-P. Box, J. S. Hunter, and W. G. Hunter, Statistics for Experiments: Design, Innovation, and 

Discovery, 2nd ed. New York: Wiley 2005. 

[6] M.Z. Daud, A. Mohamed, A.A. Ibrahim and M.A. Hannan, Heuristic optimization of state-of-charge 

feedback controller parameters for output power dispatch of hybrid photovoltaic/battery energy storage 

system, Measurement 49 (2014) 15-25. 



 
 

30

[7] O. Erkan, M. Demetgul, B. Isik and I.N. Tansel, Selection of optimal machining conditions for the 

composite materials by using Taguchi and GONNs, Measurement 48 (2014) 306-313. 

[8] R. Fergus, B. Singh, A. Hertzmann, S. T. Roweis, and W. Freeman, Removing camera shake from a single 

photograph, ACM Transactions on Graphics 25 (2006) 787–794. 

[9] J. Rivera and R.V.D. Meulen, Gartner says annual smartphones sales surpassed sales of feature phones for 

the first time in 2013, Gartner (2013).  

[10] D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Boston, MA, USA: 

Addision Wesley Longman Publishing Co., Inc., (1989). 

[11] B. Gunter, A perspective on the Taguchi methods, Quality Progress (1987) 44-52. 

[12] R. Horstmeyer, Camera motion tracking for deblurring and identification, Technical Report, MIT Media 

Laboratory, MIT (2010). 

[13] A.K. Jain, Ed., Fundamentals of Digital Image Processing, New York, USA: Prentice Hall (1989). 

[14] X. Jiang, D.C. Cheng, S. Wachenfeld and K. Rothaus, Motion deblurring, Technical Report, Department 

of Mathematics and Computer Science, University of Muenster (2004). 

[15] N. Joshi, S.B. Kang, and C.L. Zitnick, Image deblurring using inertial measurement sensors, ACM 

Trans. Graphics 29 (4) (2010) 1-9. 

[16] S. Kirkpatrick, C. D. G. Gelatt, Jr., andM. P. Vecchi, “Optimization by simulated annealing”, Science 

220 (1983) 671–680. 

[17] C.K. Kwong, K.Y. Chan and H. Wong, An empirical approach to modeling fluid dispensing for 

electronic packaging, International Journal of Advanced Manufacturing Technology 34 (1-2) (2007) 

111-121. 

[18] C.C. Lai and Y.C. Chen, A user-oriented image retrieval system based on interactive genetic algorithm, 

IEEE Transactions on Instrumentation and measurement 60 (10) (2011) 3318-3325. 

[19] N.D. Lane, E. Miluzzo, H. Lu, and D. Peebles, A survey of mobile phone sensing, IEEE 

Communications Magazine 48 (9) (2010) 140-150. 

[20] J. Li, J. Fang and M. Du, Error analysis and gyro-bias calibration of analytic coarse alignment for 



 
 

31

airborne POS, IEEE Transactions on Instrumentation and Measurement  61 (11) (2012) 3058-3064. 

[21] P. Marziliano, F. Dufaux, S. Winkler, T. Ebrahimi, A no-reference perceptual blur metric, in 

Proceedings of IEEE International Conference Image Processing (2002) 57–60. 

[22] R.J. Mayer and P.C. Benjamin, Using the Taguchi paradigm for manufacturing system design using 

simulation experiments, Industrial Engineering, 22 (2) (1992) 195-209. 

[23] A. Mittal, R. Soundararajan, and A.C. Bovik, Making a Completely Blind Image Quality Analyzer, IEEE 

Signal Processing Letters, 20 (2013) 209-212. 

[24] A. K. Moorthy and A. C. Bovik, Blind image quality assessment: From natural scene statistics to 

perceptual quality, IEEE Transactions Image Processing, 20 (12) (2011) 3350–3364. 

[25] H. Muhlenbein and D.S. Voosen, Predictive models for the breeder genetic algorithm: I. Continuous 

parameter optimization, Evolutionary Computation 1 (1) (1993) 25-49. 

[26] H.A. Nguyen, H. Guo and K.S. Low, Real-time estimation of sensor node’s position using particle 

swarm optimization with log-barrier constraint, IEEE Transactions on Instrumentation and Measurement 60 

(11) (2011) 3619-2628. 

[27] M. Park and Y. Gao, Error and performance analysis of MEMS-based inertial sensors with a low-cost 

GPS receiver, Sensors, 8 (2008) 2240-2261. 

[28] K.E. Parsopoulos and M.N. Vrahatis, On the computation of all global minimizers through particle 

swarm optimization, IEEE Transactions on Evolutionary Computation, 8 (3) (2004) 211-224. 

[29] J. Prasanna, L. Karunamoorthy, M.V. Raman, S. Prashanth and D.R. Chordia, Optimization of process 

parameters of small hole dry drilling in Ti-6Al-4V using Taguchi and grey relational analysis, Measurement 

48 (2014) 364-354. 

[30] A. Rav-Acha and S. Peleg, Two motion blurred images are better than one, Pattern Recognition Letters 

26 (2005) 311–317. 

[31] N.K. Rout, D.P. Das and G. Panda, Particle swarm optimization based active noise control algorithm 

without secondary path identification, IEEE Transactions on Instrumentation and Measurement 62 (2) 

(2012) 554-562. 



 
 

32

[32] M. Saad, A. C. Bovik, and C. Charrier, Blind image quality assessment: A natural scene statistics 

approach in the DCT domain, IEEE Transactions Image Processing 21 (8) (2012) 3339–3352. 

[33] S. Saha, R. Vemuri, An analysis on the effect of image features on lossy coding performance, IEEE 

Signal Processing Letters 7 (5) (2000) 104–107. 

[34] D.P. Selvaraj, P. Chandramohan and M. Monanraj, Optimization of surface roughness, cutting force and 

tool wear of nitrogen alloyed duplex stainless steel in dry turning process using Taguchi method, 

Measurement 49 (2014) 205-215. 

[35] Q. Shan, J. Jia and A. Agarwala, High-quality motion de-blurring from a single image, in Proceedings of 

ACM SIGGRAPH Conference (2008). 

[36] O. Sindelar and F. Sroubek, Image de-blurring in smartphone devices using built in inertial measurement 

sensors, Journal of Electronic Imaging 22 (2013) 1-22. 

[37] L.P. Sullivan, The power of Taguchi methods, Quality Progress (1987) 76-79. 

[38] G. Taguchi, Quality engineering (Taguchi methods) for the development of electronic circuit 

technology, IEEE Transactions on Reliability 44 (2) (1995) 225-229. 

[39] G. Taguchi, Y. Yokohama, and Y. Wu, Eds., Design of experiments. Tokyo, Japan: ASI Press, (1993). 

[40] D. Titterton and J.L. Weston, Eds., Strapdown Inertial Navigation Technology. IET Publisher, 2nd 

Edition, (2004). 

[41] E. Ulrich, K. Maulana, H.J. Zepernick and M. Caldera, Reduced reference matric design for objective 

perceptual quality assessment in wireless imaging, Signal Processing, 24 (7) (2009) 525-547. 

[42] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, Image quality assessment: From error 

visibility to structural similarity,  IEEE Transactions on Image Processing, 13 (4) (2004) 600–612. 

[43] C. Wang, Y. Yue, F. Dong, Y. Tao, X. Ma, G. Clapworthy and X. Ye, Enhancing Bayesian estimators for 

removing camera shake, Computer Graphics Forum, vol. 32, no. 6, pp. 113-125, 2013. 

[44] C. Wang, Y. Yue, F. Dong, Y. Tao, X. Ma, G. Clapworthy, H. Lin and X. Ye, Nonedge specific adaptive 

scheme for highly robust blind motion deblurring of natural images, IEEE Transactions on Image 

Processing, vol. 22, no. 3, pp. 884-897, 2013. 



 
 

33

[45] P. Ye and D. Doermann, No-reference image quality assessment using visual codebook, in Proceedings 

of IEEE International Conference Image Processing (2011). 

[46] L. Yuan, J. Sun, L. Quan, and H.Y. Shum, Image de-blurring with blurred/noisy image pairs, in 

Proceedings of ACM SIGGRAPH Conference (2007). 

[47] X. Yun, J. Calusdian, E.R. Bachmann and R. McGhee, Estimation of human foot motion during normal 

walking using inertial and magnetic sensor measurements, IEEE Transactions on Instrumentation and 

Measurement 61 (7) (2012) 2059-2072. 

[48] K. Zhu, X. Song and D. Xue, A roller bearing fault diagnosis method based on hierarchical entropy and 

support vector machine with particle swarm optimization algorithm, Measurement, 47 (2014) 669-675. 

 


