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Abstract

In this paper, we investigate the transceiver design for amplify-and-forward (AF) interference multiple-input
multiple-output (MIMO) relay communication systems when the direct links between the source and destination
nodes are taken into consideration. The minimummean-squared error (MMSE) of the signal waveform estimation at
the destination nodes is chosen as the design criterion to optimize the source, relay, and receiver matrices for
interference suppression. As the joint source, relay, and receiver optimization problem is nonconvex with matrix
variables, a globally optimal solution is computationally intractable to obtain. We propose two iterative algorithms to
provide computationally efficient solutions to the original problem through solving convex subproblems. These two
algorithms provide efficient performance-complexity trade-off. Simulation results demonstrate that the proposed
algorithms converge quickly after a few iterations and significantly outperform existing scheme in terms of the system
bit error rate.
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1 Introduction
Relay-aided multiple-input multiple-output (MIMO)
communication technology has attracted great research
interest recently [1,2]. By incorporating relay nodes in a
MIMO system, the network coverage and reliability can
be significantly improved. In a MIMO relay system, com-
munication between source nodes and destination nodes
can be assisted by single or multiple relays equipped with
multiple antennas. The relays can either decode-and-
forward (DF) or amplify-and-forward (AF) the relayed
signals [3]. In the AF scheme, the received signals are
simply amplified (including a possible linear transforma-
tion) through the relay precoding matrices before being
forwarded to the destination nodes. Therefore, in gen-
eral, the AF strategy has lower complexity and shorter
processing delay than the DF strategy.
For single-user two-hop MIMO communication sys-

tems with a single relay node, the optimal source and
relay precoding matrices have been developed in [4]. For
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a single-user two-hop MIMO relay system with multiple
parallel relay nodes, the design of relay precodingmatrices
has been studied in [5]. Recent progress on the optimiza-
tion of AF MIMO relay systems has been summarized in
the tutorial of [2].
ForMIMO interference channel, the idea of interference

alignment (IA) [6] was developed for interference sup-
pression by arranging the desired signal and interference
into appropriated signal spaces. The idea of IA has been
applied in interferenceMIMO relay systems in [7,8]. How-
ever, there is still no general solution for IA as a number
of conditions must be met. One main reason is that the
number of dimensions required for IA is very large and it
depends on the number of independent fading channels.
This leads to high computational complexity and infeasi-
bility in practical systems. In [9], an iterative algorithm has
been proposed to optimize the source beamforming vec-
tor and the relay precoding matrices to minimize the total
source and relay transmit power such that a minimum
signal-to-interference-plus-noise ratio (SINR) threshold is
maintained at each receiver. Three iterative transceiver
design algorithms to minimize either the matrix-weighted
summean-squared error (SMSE) or the total leakage have
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been developed in [10]. However, the works in [7,10] did
not take the direct source-destination links into consider-
ation.
The direct links between the source and destination

nodes provide valuable spatial diversity to the MIMO
relay system and should not be ignored. In this paper,
we investigate the transceiver design for AF interfer-
enceMIMO relay communication systems where multiple
source nodes transmit information simultaneously to the
destination nodes with the aid of multiple relay nodes,
and each node is equipped with multiple antennas. The
direct source-destination links are taken into account for
the design of the transceivers. We aim at optimizing the
source, relay, and receiver matrices to suppress the inter-
ference and minimize the SMSE of the signal waveform
estimation at the destination nodes, subjecting to trans-
mission power constraints at the source and relay nodes.
The SMSE criterion is chosen as it provides a good trade-
off between performance and complexity. Since the joint
source, relay, and receiver optimization problem is non-
convex with matrix variables, a globally optimal solution
is computationally intractable to obtain. We propose two
iterative algorithms to provide computationally efficient
solutions to the original problem through solving convex
subproblems. In each iteration of the first algorithm, we
first optimize all receiver matrices based on the source
and relay matrices from the previous iteration. Then, we
optimize all relay matrices using the receiver matrices in
this iteration and the source matrices from the previous
iteration. Finally, the source matrices are updated.
In the second algorithm, the receiver matrices are opti-

mized in the same way as the first algorithm. How-
ever, in contrast to the first algorithm, each source and
relay matrix is optimized individually by fixing all other
matrices. We show that both proposed algorithms con-
verge. Comparing the two proposed algorithms, the first
algorithm has a better MSE and bit error rate (BER)
performance, while the second algorithm has a smaller per-
iteration computational complexity. Such performance-
complexity trade-off is very useful for practical MIMO
relay communication systems. Simulation results demon-
strate that the proposed algorithms outperform the exist-
ing technique in terms of the system MSE and BER.
We assume that similar to [10], the two proposed algo-

rithms are carried out at a central controlling unit, which
can be any node in the system. The controlling unit has
knowledge of the global channel state information (CSI).
After the convergence of the algorithms, the controlling
unit sends the information on the optimal source, relay,
and receiver matrices to corresponding nodes.
The rest of this paper is organized as follows. The sys-

tem model and problem formulation are introduced in
Section 2. Two iterative joint source, relay, and receiver
matrices design algorithms are developed in Section 3.

Simulation results are presented in Section 4 to demon-
strate the performance of the proposed algorithms. Con-
clusions are drawn in Section 5.
Throughout this paper, scalars are denoted with lower-

or uppercase normal letters, and vectors and matrices
are denoted with bold-faced lower- and uppercase let-
ters, respectively. Superscripts (·)T , (·)H , and (·)−1 denote
the matrix transpose, conjugate transpose, and inverse,
respectively; tr() stands for the trace of a matrix; vec()
stacks columns of a matrix on top of each other into a
single vector; bd() denotes a block-diagonal matrix; ⊗
represents the Kronecker product, E[ ] denotes the sta-
tistical expectation; and In stands for the n × n identity
matrix.

2 Systemmodel and problem formulation
We consider a two-hop interferenceMIMO relay commu-
nication system where K source-destination pairs com-
municate simultaneously with the aid of a network of
L-distributed relay nodes as shown in Figure 1. The kth
source node and the kth destination node are equipped
with Nsk and Ndk antennas, respectively, k = 1, · · · ,K ,
and the number of antennas at the lth relay node is Nrl,
l = 1, · · · , L.
Using half duplex relay nodes, the communication

between source and destination pairs is completed in two
time slots. At the first time slot, the kth source node
transmits an Nsk × 1 signal vector

xsk = Bksk , k = 1, · · · ,K (1)

to the relay nodes and the destination nodes, where sk is
the d × 1 information-carrying symbol vector and Bk is
the Nsk × d source precoding matrix. The received signal
vectors at the lth relay node and the kth destination node
are given by

Figure 1 Block diagram of an interference MIMO relay system.
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yrl =
K∑

k=1
Hlkxsk + vrl, l = 1, · · · , L (2)

yd1k =
K∑

m=1
Tkmxsm + vd1k , k = 1, · · · ,K (3)

where Hlk is the Nrl × Nsk MIMO fading channel matrix
between the kth source node and the lth relay node,Tkm is
the Ndk × Nsm MIMO fading channel matrix between the
mth source node and the kth destination node, vrl is the
Nrl × 1 additive white Gaussian noise (AWGN) vector at
the lth relay node with zero mean and covariance matrix
E
[
vrlvHrl

] = σ 2
rlINrl , l = 1, · · · , L, and vd1k is the Ndk × 1

AWGN vector at the kth destination node at the first time
slot with zero mean and covariance matrix E

[
vd1kvHd1k

] =
σ 2
dkINdk , k = 1, · · · ,K .
During the second time slot, the received signal vec-

tor at the lth relay node is amplified with the Nrl × Nrl
precoding matrix Fl as

xrl = Flyrl, l = 1, · · · , L. (4)

The precoded signal vector xrl is forwarded to the des-
tination nodes. The received signal vector at the kth
destination node is given by

yd2k =
L∑

l=1
Gklxrl + vd2k , k = 1, · · · ,K (5)

whereGkl is theNdk×Nrl MIMO channel matrix between
the lth relay node and the kth destination node and vd2k
is the Ndk × 1 AWGN vector at the kth destination node
at the second time slot with zero mean and covariance
matrix E

[
vd2kvHd2k

] = σ 2
dkINdk , k = 1, · · · ,K .

From Equations 1 to 5, the signal vector received at the
kth destination node over two consecutive time slots is

yk =
[
yd2k
yd1k

]

=
K∑

m=1

⎡
⎣ L∑

l=1
GklFlHlm

Tkm

⎤
⎦Bmsm+

[
v̄dk
vd1k

]
(6)

where v̄dk =∑L
l=1GklFlvrl + vd2k is the total noise vector

at the kth destination node at the second time slot.
Due to their simplicity, linear receivers are used at

the destination nodes to retrieve the transmitted signals.
Thus, the estimated signal vector at the kth destination
node can be written as

ŝk = WH
k yk , k = 1, · · · ,K (7)

where Wk = [
WT

k2,W
T
k1
]T is the receiver weight matrix,

and Wk1 and Wk2 are the Ndk × d receiver weight matri-
ces for the direct link and the relay link, respectively. In
Equations 6 and 7, we have

ŝk = [
WH

k2 WH
k1
] [ yd2k

yd1k

]

=
(
WH

k2

L∑
l=1

GklFlHlk + WH
k1Tkk

)
Bksk

︸ ︷︷ ︸
desired signal

+
K∑

m=1,m �=k

(
WH

k2

L∑
l=1

GklFlHlm + WH
k1Tkm

)
Bmsm

︸ ︷︷ ︸
interference

+WH
k2v̄dk + WH

k1vd1k︸ ︷︷ ︸ . (8)

noise

In Equations 1 and 4, the transmission power con-
straints at the source and relay nodes can be written
as

tr
(
BkBH

k
) ≤ Psk , k = 1, · · · ,K (9)

tr
(
FlE
[
yrlyHrl

]
FHl
) ≤ Prl, l = 1, · · · , L (10)

where Psk and Prl denote the power budget at the kth
source node and the lth relay node, respectively, and
E
[
yrlyHrl

] = ∑K
m=1HlmBmBH

mHH
lm + σ 2

rlINrl is the covari-
ance matrix of the received signal vector at the lth relay
node.
In this paper, we aim at optimizing the source precoding

matrices {Bk} = {Bk , k = 1, · · · ,K}, the relay precod-
ing matrices {Fl} = {Fl, l = 1, · · · , L}, and the receiver
weight matrices {Wk} = {Wk , k = 1, · · · ,K}, to minimize
the sum-MSE of the signal waveform estimation at the
destination nodes under transmission power constraints
at the source and relay nodes. We would like to mention
that minimal MSE (MMSE) is a sensible design criterion
based on the links of MSE to other performance measures
in MIMO systems such as mutual information and SINR
[4,11].
From Equation 8, the MSE of the kth source-destination

pair can be calculated as

MSEk = tr
(
E
[(
ŝk − sk

) (
ŝk − sk

)H])
= tr

((
WH

k H̃kk − Id
) (

WH
k H̃kk − Id

)H
+WH

k CkWk + WH
k �kWk

)
, k = 1, · · · ,K (11)

where H̃km is the equivalent MIMO channel matrix from
the mth source node to the kth destination node, Ck =
E
{[
v̄Tdk , v

T
d1k
]T [v̄Hdk , vHd1k]} and �k are the covariance

matrices of the equivalent noise and the interference at the
kth destination node, respectively. For k,m = 1, · · · ,K ,
they are given respectively as
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H̃km =
⎡
⎣ L∑

l=1
GklFlH̄lm

TkmBm

⎤
⎦ , �k =

K∑
m=1,m �=k

H̃kmH̃
H
km

Ck =
⎡
⎣ L∑

l=1
σ 2
rlGklFlFHl G

H
kl + σ 2

dkINdk 0

0 σ 2
dkINdk

⎤
⎦

where H̄lm = HlmBm is the equivalent MIMO channel
matrix between the mth source node and the lth relay
node.
From Equations 9 to 11, the optimal source, relay, and

receiver matrix design problem can be written as

min{Wk},{Bk},{Fl}

K∑
k=1

MSEk (12)

s.t. tr
(
BkBH

k
)≤Psk , k=1, · · · ,K (13)

tr
(
FlE

[
yrlyHrl

]
FHl
)≤Prl, l=1, · · · , L. (14)

3 Proposed source, relay, and receiver matrix
design algorithms

The problem (Equations 12 to 14) is highly nonconvex
with matrix variables, and a globally optimal solution is
intractable to obtain. In this section, we propose two iter-
ative algorithms to solve the problem (Equations 12 to 14)
by optimizing {Wk}, {Bk}, and {Fl} in an alternating way
through solving convex subproblems.

3.1 Proposed Algorithm 1
In each iteration of this algorithm, we first optimize {Wk}
based on {Bk} and {Fl} from the previous iteration. Then,
we optimize all relay matrices based on {Wk} from the
current iteration and {Bk} from the previous iteration.
Finally, we optimize all source matrices using {Wk} and
{Fl} from the current iteration.
It can be seen from Equation 11 that Wk only affects

MSEk . Thus, with given {Fl} and {Bk}, the optimal linear
receiver matrix which minimizes MSEk in Equation 11 is
the solution to the following unconstrained optimization
problem

min
Wk

MSEk . (15)

The solution to the problem (Equation 15) is the well-
known MMSE receiver [12] given by

Wk =
(
H̃kkH̃H

kk + Ck + �k
)−1

H̃kk , k = 1, · · · ,K . (16)

Let us introduce fl = vec(Fl), l = 1, · · · , L. With given
receiver matrices {Wk} and source precoding matrices
{Bk}, the sum-MSE SMSE =∑K

k=1 MSEk can be rewritten
as a function of f = [fT1 , fT2 , · · · , fTL

]T as

ψ1(f) =
K∑

k=1

[
(Okkf − ok)H (Okkf − ok) + fHQkf

+
K∑

m �=k

(
Okmf − qkm

)H (Okmf − qkm
)⎤⎦+ t1 (17)

where t1 = ∑K
k=1 σ 2

dktr
(
WH

k Wk
)
is independent of f and

for k,m = 1, · · · ,K , l = 1, · · · , L
Okm = [

Ok,1,m, Ok,2,m, · · · , Ok,L,m
]

(18)
Qk = bd (Qk1, Qk2, · · · , QkL) (19)
ok = vec

(
Id − T̄kk

)
, qkm = −vec

(
T̄km

)
(20)

Ok,l,m = H̄T
lm ⊗ Ḡkl, Qkl = σ 2

rlINrl ⊗
(
ḠH
klḠkl

)
. (21)

Here, Ḡkl = WH
k2Gkl is the equivalent MIMO channel

matrix between the lth relay node and the kth desti-
nation node and T̄km = WH

k1TkmBm is the equivalent
direct linkMIMO channel matrix between themth source
node and the kth destination node. The detailed proof of
Equation 17 is given in Appendix 6.1.
By introducing

Dll=
( K∑
m=1

HlmBmBH
mHH

lm+σ 2
rlINr

)T
⊗ INrl , l = 1, · · · , L

(22)

and D̄l = bd (Dl1, Dl2, · · · ,DlL), where Dlj = 0, l �= j,
the relay transmit power constraints in Equation 10 can be
rewritten as

fHD̄lf ≤ Prl, l = 1, · · · , L. (23)

In Equations 17 and 23, the relay matrix optimization
problem can be written as

min
f

ψ1(f) (24)

s.t. fHD̄lf ≤ Prl, l = 1, · · · , L. (25)

The optimization problem (Equations 24 to 25)
is a quadratically constrained quadratic programming
(QCQP) problem [13]. From Equation 21, we can see that
Qkl, k = 1, · · · ,K , l = 1, · · · , L are positive semidefi-
nite (PSD) matrices, and thus from Equation 19, Qk , k =
1, · · · ,K are PSD matrices. Moreover, it can be seen from
Equation 22 that Dll, l = 1, · · · , L are PSD matrices, and
thus, D̄l, l = 1, · · · , L are PSD matrices. Therefore, the
QCQP problem (Equations 24 to 25) is convex and can
be efficiently solved by the interior-point method [13]. In
particular, the problem (Equations 24 to 25) can be solved
by the CVX MATLAB toolbox for disciplined convex
programming [14].
Let us introduce bk = vec(Bk), k = 1, · · · ,K . With

given receiver matrices {Wk} and relay matrices {Fl},
the sum-MSE can be rewritten as a function of b =[
bT1 , bT2 , · · · ,bTK

]T as
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�1(b) =
K∑

k=1

(
S̄kb − vec(Id)

)H(S̄kb − vec(Id)
)+bHUb+t2.

(26)

where t2 = ∑K
k=1 tr(WH

k CkWk) can be ignored in the
optimization process as it is independent of b and

U = bd(U1,U2, · · · ,UK ) (27)
S̄k = [Sk1, Sk2, · · · , SkK ] (28)
Skk = Id ⊗ P̄kk , Ski = 0, i �= k (29)

Uk = Id ⊗
⎛
⎝ K∑

m=1,m �=k
P̄H
mkP̄mk

⎞
⎠ . (30)

Here, P̄mk = WH
m2

L∑
l=1

ḠmlFlHlk + WH
m1Tmk . The detailed

proof of Equation 26 is given in Appendix 7.1.
Let us introduce Eij = Id ⊗

(
HH

ij FHi FiHij
)
, El =

bd (El1,El2, · · · ,ElK ), Ēi = bd
(
Ēi1, Ēi2, · · · , ĒiK

)
, where

Ēii = IdNs and Ēij = 0, i �= j. The optimal b can be
obtained by solving the following problem

min
b

�1(b) (31)

s.t. bH Ēmb ≤ Psm, m = 1, · · · ,K (32)
bHElb ≤ Prl − σ 2

rltr
(
FlFHl

)
, l = 1, · · · , L. (33)

From Equation 30, we can see that Uk , k = 1, · · · ,K
are PSD matrices, and thus from Equation 27, U is PSD.
Moreover, it can be seen that Ēm, m = 1, · · · ,K and
El, l = 1, · · · , L are PSD matrices. Therefore, the prob-
lem (Equations 31 to 33) is a convex QCQP problem and
can be solved by the CVX MATLAB toolbox [14] for
disciplined convex programming.
The steps of applying the proposed Algorithm 1 to opti-

mize {Bk}, {Fl}, and {Wk} are summarized in Table 1,
where the superscript (n) denotes the variable at the
nth iteration, and ε is a small positive number up to
which convergence is acceptable. Since all subproblems
(Equation 15, 24 to 25, and 31 to 33) are convex, the solu-
tion to each subproblem is optimal. Thus, the value of the
objective function (Equation 12) monotonically decreases
after each iteration. Moreover, the value of Equation 12 is

lower bounded by at least zero. Therefore, the proposed
Algorithm 1 is guaranteed to converge.

3.2 Proposed Algorithm 2
In the proposed Algorithm 1, all source precoding matri-
ces are optimized together through b, while all relay
precoding matrices are updated together through f. Since
the dimensions of b and f are

∑K
k=1Nskd and

∑L
l=1N2

rl,
respectively, the computational complexity of solving the
QCQP problems (Equations 24 to 25 and 31 to 33) using

the interior point method [15] is O
((∑K

k=1Nskd
)3)

and

O
((∑L

l=1N2
rl

)3)
, respectively. Therefore, the computa-

tional complexity at each iteration of the proposed Algo-

rithm 1 is O
((∑K

k=1Nskd
)3 +

(∑L
l=1N2

rl

)3)
, which can

be very high for interference MIMO relay systems with a
large K and L. To reduce the per-iteration complexity, in
this subsection, we develop an iterative algorithm where
each source and relay matrix is optimized individually by
fixing all other matrices.
Adopting notations from proposed Algorithm 1, with

given receiver matrices {Wk}, source precoding matrices
{Bk}, and relay precoding matrices Fj, j = 1, · · · , L, j �= l,
the sum-MSE can be rewritten as a function of Fl as

SMSE =
K∑

k=1
tr
[(
ḠklFlH̄lk − Akl

) (
ḠklFlH̄lk − Akl

)H

+
L∑

l=1
σ 2
rlḠklFlFHl Ḡ

H
kl +

K∑
m=1,m �=k

(
ḠklFlH̄lm−Dk,l,m

)
× (ḠklFlH̄lm−Dk,l,m

)H]+ t1 (34)

where for k,m = 1, · · · ,K , l = 1, · · · , L

Akl = Id −
L∑

j=1,j �=l
ḠkjFjH̄jk − Tkk (35)

Dk,l,m = −
L∑

j=1,j �=l
ḠkjFjH̄jm − Tkm.

Table 1 Procedure of solving the problem (Equations 12 to 14) by the proposed Algorithm 1

Steps Description

1) Initialize the algorithm with
{
F(0)
l

}
and

{
B(0)
k

}
satisfying Equations 9 and 10; Set n = 0.

2) Obtain
{
W(n+1)

k

}
based on Equation 16 with fixed

{
F(n)
l

}
and

{
B(n)
k

}
.

3) Update {F(n+1)
l } through solving the problem (Equations 24 to 25) with given

{
B(n)
k

}
and

{
W(n+1)

k

}
.

4) Update {B(n+1)
k } by solving the problem (Equations 31 to 33) with fixed

{
F(n+1)
l

}
and

{
W(n+1)

k

}
.

5) If SMSE(n) − SMSE(n+1) ≤ ε, then end. Otherwise, let n := n + 1 and go to step 2.
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Using the identities in Equations 43 to 45, the SMSE in
Equation 34 can be written as

ψ2(fl) =
K∑

k=1

⎡
⎣(Ok,l,kfl − akl)H(Ok,l,kfl − akl) + fHl Qklfl + rkl

+
K∑

m=1,m �=k

(
Ok,l,mfl − dk,l,m

)H(Ok,l,mfl − dk,l,m
)⎤⎦ (36)

where for k,m = 1, · · · ,K , l = 1, · · · , L
akl = vec(Akl)

rkl = tr

⎛
⎝ L∑

j=1,j �=l
σ 2
rjḠkjFjFHj ḠH

kj + σ 2
dkW

H
k Wk

⎞
⎠

dk,l,m = vec
(
Dk,l,m

)
.

Note that since the terms rkl in Equation 36 are inde-
pendent of fl, they can be ignored when optimizing fl.
The relay transmit power constraint in Equation 10 can be
rewritten as

fHl Dllfl ≤ Prl. (37)

Based on Equations 36 and 37, the optimal fl can be
obtained by solving the following problem for each l =
1, · · · , L

min
fl

ψ2(fl) s.t. fHl Dlfl ≤ Prl. (38)

The problem (Equation 38) is a QCQP problem and can
be solved effectively using the CVX toolbox.
With given receiver matrices {Wk}, relay precoding

matrices {Fl}, and source precoding matrices Bj, j =
1, · · · ,K , j �= k, the SMSE can be rewritten as a function
of bk as

�2(bk) = (Skkbk − vec(Id))H(Skkbk − vec(Id))
+bHk Ukbk + zk

where

zk =
K∑

m=1,m �=k

[
(Smmbm − vec(Id))H(Smmbm − vec(Id))

+bHmUmbm
]+ t2, k = 1, · · · ,K .

By introducing clk = σ 2
rltr
(
FlFHl

) + ∑K
j=1,j �=k b

H
j Eljbj,

k = 1, · · · ,K , l = 1, · · · , L, the optimal bk can be obtained
by solving the following problem for each k = 1, · · · ,K

min
bk

�2(bk) (39)

s.t. bHk bk ≤ Psk (40)
bHk Elkbk ≤ Prl − clk , l = 1, · · · , L. (41)

The problem (Equations 39 to 41) is a QCQP prob-
lem and can be solved by the CVX MATLAB toolbox
[14] for disciplined convex programming. The steps of
using the proposedAlgorithm 2 to optimize {Bk}, {Fl}, and
{Wk} are summarized in Table 2. Similar to the analysis
used to the proposed Algorithm 1, since all subproblems
(Equations 15, 38, and 39 to 41) are convex, the solu-
tion to each subproblem is optimal. Thus, the value of the
objective function (Equation 12) monotonically decreases
after each iteration. Moreover, the value of Equation 12
is lower bounded by at least zero. Therefore, the conver-
gence of the proposed Algorithm 2 follows directly from
this observation.
Since the dimensions of bk and fl are Nskd and N2

rl,
respectively, the computational complexity of solving
the QCQP problems (Equations 38 and 39 to 41) is
O
(
(Nskd)3

)
and O

(
N6
rl
)
, respectively. Thus, the com-

putational complexity at each iteration of the proposed
Algorithm 2 is O

(∑K
k=1(Nskd)3 +∑L

l=1N6
rl

)
, which is

lower than the per-iteration computational complexity of
the proposed Algorithm 1. However, we will see through
numerical simulations that the proposed Algorithm 1 has
a better MSE and BER performance than that of the pro-
posed Algorithm 2. Such performance-complexity trade-
off is very useful for practical interference MIMO relay
communication systems.

4 Numerical examples
In this section, we illustrate the performance of the
proposed algorithms through numerical simulations. All
channel matrices have independent and identically dis-
tributed (i.i.d.) complex Gaussian entries with zero mean
and unit variance. The noises are i.i.d. Gaussian with zero
mean and unit variance. Unless explicitly mentioned, the

Table 2 Procedure of solving the problem (Equations 12 to 14) by the proposed Algorithm 2

Steps Description

1) Initialize the algorithm with
{
F(0)
l

}
and

{
B(0)
k

}
satisfying Equations 9 and 10; Set n = 0.

2) Obtain
{
W(n+1)

k

}
based on Equation 16 with fixed

{
F(n)
l

}
and

{
B(n)
k

}
.

3) For l = 1, · · · , L, update F(n+1)
l through solving the problem (Equation 38) with given

{
B(n)
k

}
,
{
W(n+1)

k

}
, and F(n)

j , j = 1, · · · , L, j �= l.

4) For k = 1, · · · , K , update B(n+1)
k by solving the problem (Equations 39 to 41) with fixed

{
F(n+1)
l

}
,
{
W(n+1)

k

}
, and B(n)

j , j = 1, · · · , K ,
j �= k.

5) If SMSE(n) − SMSE(n+1) ≤ ε, then end. Otherwise, let n := n + 1 and go to step 2.
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QPSK constellations are used tomodulate the source sym-
bols. For the sake of simplicity, we set d = 2 and assume
that all nodes have three antennas, i.e.,Nsk = Ndk = Nrl =
3, k = 1, · · · ,K , l = 1, · · · , L, all source nodes have the
same power budget as Psk = 15dB, k = 1, · · · ,K , and
all relay nodes have the same power budget as Prl = P,
l = 1, · · · , L.
For all simulation examples, the simulation results

are averaged over 105 independent channel realiza-
tions. Unless explicitly mentioned, we assume that there
are K = 4 source-destination pairs and L = 5
relay nodes in the interference MIMO relay system.
The proposed algorithms are initialized at F(0)

l =√
Prl/tr

(∑K
k=1 H̄lkH̄

H
lk + INrl

)
INrl , l = 1, · · · , L, and

B(0)
k = √

Psk/NskINsk , k = 1, · · · ,K . We would like to
mention that when the matrix weight is identity matrix,
the performance of the matrix-weighted sum-MSE min-
imization (WMSE) algorithm without power control in
[10] is similar to the proposed Algorithm 2 without con-
sidering the direct links.
In the first example, we study the performance of the

proposed algorithms at different number of iterations. We
also compare the performance of the algorithms when the
direct links are ignored. Moreover, the performance of
the total leakage minimization (TLM) algorithm in [10] is
included as a benchmark. Figure 2 shows the MSE per-
formance of the proposed algorithms versus P at different
number of iterations for the first source-destination pair
(k = 1). It can be seen from Figure 2 that both pro-
posed algorithms perform better than the TLM algorithm
when the direct links are ignored. The performance of
both proposed algorithm is significantly improved when
the direct links are taken into account. For both proposed

Figure 2 Example 1: MSE versus P at different number of
iterations.

algorithms, the MSE reduces with increasing number of
iterations. Moreover, it can be observed that after ten
iterations, the decreasing of the MSE is small. Thus, we
suggest that only ten iterations need to be carried out in
practice to achieve a good performance-complexity trade-
off. It can also be seen from Figure 2 that both proposed
algorithms have almost the same MSE performance at
convergence.
For this example, the average BER of all source-

destination pairs yielded by both proposed algorithms
versus P at different number of iterations is shown in
Figure 3. It can be clearly seen that the proposed algo-
rithms with direct links yield much smaller BER than
the case when the direct links are ignored, especially at
high P level. We can also observe from Figure 3 that the
proposed Algorithm 1 has a slightly better BER perfor-
mance than the proposed Algorithm 2. It can also be
seen from Figure 3 that when the direct links are ignored,
the proposed algorithms perform better than the TLM
algorithm.
In the second example, we study the performance of

the proposed algorithms with different number of relay
nodes. Figure 4 shows the MSE performance of the
proposed Algorithm 1 versus P with L = 5 and L = 10.
It can be seen that by doubling the number of relay
nodes, a power gain of 10 dB is obtained at the MSE
of 0.2.
For this example, the BER performance of the proposed

Algorithm 1 with L = 5 and L = 10 is illustrated in
Figure 5. It can be seen that by increasing the number of
relay nodes, the system spatial diversity is increased, and
thus, a better BER performance is achieved. In particular,
we observe that an 8 dB gain is obtained at the BER of 10−3

by increasing L from 5 to 10.

Figure 3 Example 1: BER versus P at different number of
iterations.
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Figure 4 Example 2: MSE versus P for different L.

In the next example, we study the performance of the
proposed algorithms with different number of source-
destination pairs. Figure 6 shows the BER performance of
both proposed algorithms versus P. Moreover, the BER of
both algorithms using the 16QAM modulation scheme is
also illustrated in Figure 6. As expected, the system BER
is increased when higher order constellations are used.
We can also obverse from Figure 6 that with a smaller
number of source-destination pairs, the number of inter-
ference channels decreases which yields a better BER
performance. Interestingly, the BER difference between
the two proposed algorithm becomes bigger when K = 3.
In the last example, we study the performance of the

proposed algorithms on the achievable end-to-end sum-
rates of all source-destination pairs. It can be seen from
Figure 7 that, as expected, with the direct links taken into

Figure 5 Example 2: BER versus P for different L.

Figure 6 Example 3: BER versus P for different K .

account, both proposed algorithms achieve a higher sum-
rate. Figure 7 shows that the proposed Algorithm 1 yields
slightly better rate than the proposed Algorithm 2.

5 Conclusions
We have investigated the transceiver design for interfer-
ence MIMO relay systems with direct source-destination
links based on the MMSE criterion. Two iterative algo-
rithms have been developed to jointly optimize the source,
relay, and receiver matrices under power constrains at
each source node and relay node. Numerical simula-
tion results show that the proposed algorithms converge
quickly after a few iterations. The system MSE and BER
performance can be significantly improved compared
with the algorithms without considering the direct links.
The proposed Algorithm 1 has a better MSE and BER

Figure 7 Example 4: achievable end-to-end sum-rates.
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performance than the proposed Algorithm 2 at a higher
per-iteration computational complexity.

6 Appendix A
6.1 Proof of Equation 17
From Equation 11, we have

SMSE

=
K∑

k=1
tr
[( L∑

l=1
ḠklFlH̄lk+ T̄kk − Id

)

×
( L∑

l=1
ḠklFlH̄lk + T̄kk−Id

)H
+

L∑
l=1

σ 2
rlḠklFlFHl Ḡ

H
kl

+σ 2
dkW

H
k2Wk2 + σ 2

dkW
H
k1Wk1

+
K∑

m �=k

( L∑
l=1

ḠklFlH̄lm + T̄km

)( L∑
l=1

ḠklFlH̄lm+T̄km

)H⎤⎦ .

(42)

Using the identities of [16]

tr
(
ATB

)
= (vec (A))T vec(B) (43)

tr
(
AHBAC

) = (vec(A))H
(
CT⊗ B

)
vec(A) (44)

vec(ABC) =
(
CT⊗ A

)
vec(B) (45)

the SMSE (Equation 42) can be represented as a function
of fl, l = 1, · · · , L, as

SMSE =
K∑

k=1

⎡
⎣( L∑

l=1
Ok,l,kfl − ok

)H ( L∑
l=1

Ok,l,kfl − ok

)

+
K∑

m �=k

( L∑
l=1

Ok,l,mfl− qkm

)H( L∑
l=1

Ok,l,mfl− qkm

)

+
L∑

l=1
fHl Qklfl

]
+t1

= ψ1(f).

7 Appendix B
7.1 Proof of Equation 26
From Equation 11, we have

SMSE =
K∑

k=1
tr
[(
P̄kkBk−Id

) (
P̄kkBk−Id

)H

+
K∑

m=1,m �=k
P̄kmBmBH

mP̄H
km

⎤
⎦+ t2. (46)

Using the identities in Equations 43 to 45, the SMSE
function in Equation 46 can be written as
SMSE

=
K∑

k=1

⎡
⎣ (Skkbk − vec(Id))H (Skkbk − vec(Id))

+
K∑

m=1,m �=k
bHm
(
Id ⊗ P̄H

kmP̄km
)
bm

⎤
⎦+t2

=
K∑

k=1

[
(Skkbk−vec(Id))H(Skkbk−vec(Id))+bHk Ukbk

]+t2

= �1(b).
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