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Abstract: We present a bond percolation model for community clustered
networks with an arbitrarily specified joint degree distribution. Our model is
based on the Probability Generating Function (PGF) method for multitype
networks, but incorporate the free-excess degree distribution, which makes it
applicable for clustered networks. In the context of contact network epidemiol-
ogy, our model serves as a special case of community clustered networks which
are more appropriate for modelling the disease transmission in community net-
works with clustering effects. Beyond the percolation threshold, we are able to
obtain the probability that a randomly chosen community-i node leads to the
giant component. The probability refers to the probability that an individual
in a community will be affected from the infective disease. Besides that, we also
establish method to calculate the size of the giant component and the average
small-component size (excluding the giant component). When the clustering ef-
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fect is taken into account through the free-excess degree distribution, the model
shows that the clustering effect will decrease the size of the giant component.
In short, our model enables one to carry out numerical calculations to simu-
late the disease transmission in community networks with different community
structure effects and clustering effects.

AMS Subject Classification: 92D30
Key Words: epidemics, community clustered networks, probability generat-
ing function

1. Introduction

It has long been recognized that two of the key features of social networks are
community structure and clustering effect. The former one emphasizes that
the links are dense in a community but sparse between communities, while the
later one refers to the relative number of triangles in a network. For the com-
munity structure effect, the links between communities will make the network
less heterogeneous and result in larger epidemic prevalence in the exponential
degree distribution networks [1]. For other types of degree distributions such
as the power-law degree distribution, the authors of [2] developed an algorithm
to obtain a social network model with a multiple-community structure with
adjustable clustering coefficients and adjustable degree of community. They
showed that the heterogeneous network is less efficient than the homogeneous
network in spreading of epidemic. Different to [2], we study the bond perco-
lation model of community clustered networks with an arbitrary joint degree
distribution by using the PGF formalism.

In a series of papers [3, 4, 5], M.E.J. Newman used PGF for random graphs
with arbitrary distributions of vertex degree. With the mathematics of gen-
erating functions, the author managed to calculate exactly some statistical
properties of such graphs in the limit of large numbers of vertices, including
the mean of component size and the giant component. Using the combina-
tion of mapping to percolation models and the generating function method,
Newman established the analytic expressions for the size of epidemic outbreaks
and the mean degree of individuals affected in an epidemic. Following New-
man’s work, many researchers consider more features to improve the percolation
models based on the generating function method. For example, in [6], the au-
thor developed a model to represent heterogeneous populations so as to study
the mixing patterns. Apart from that there are many other models, including
percolation models for random directed networks [7], models for two compet-
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ing disease spreading over the same network at the same time [8].Despite all
these efforts, for the PGF formalism type of models, the impact of community
structure on epidemic spreading has not been well considered. In this paper, we
intend to fill this gap by proposing a PGF model with community structure and
investigating epidemic spreading upon these community structure networks.

There are some other models which use other mathematical tools or sim-
ulation to predict the transmission of infectious diseases in social networks.
Among that including [9, 10, 11]. In [9], the authors proposed a growth model
to create networks with overlapping community structure and investigating epi-
demic spreading upon these networks by numerical simulation, while in [10], the
authors proposed a model which the links in and between communities are dy-
namical to study the epidemic spreading in communities. Apart from that, a
model consists of two types of nodes with different behavior patterns, i.e. active
nodes and passive nodes was proposed to study the effects of social impact on
the epidemic spreading in complex networks based on SIS epidemic model in [11]
and simulations are done for the model in ER random network, BA scale-free
network, structured scale-free network , and WS small-world network. Different
from these models, our model having specific joint degree distribution in and
between the communities. For this purpose, we use PGF formalism to generate
the community structure model with the specific degree distribution we desire
for each node. The biggest advantage is the PGF formalism allows us to get
the analytical solution.

Apart from that, one of the areas which get considerable attention from re-
searchers is clustered networks. In [7], the author introduced a class of random
clustered networks and showed that the clustered networks had small compo-
nent sizes and bigger epidemic threshold in comparison to the same preferential
mixing unclustered networks.We intend to study the clustering effect in our
community structure model.

In this paper, we present a bond percolation model of community clustered
networks with an arbitrary joint degree distribution (i.e. the degree distribu-
tion can be specified arbitrarily). Our model is based on the PGF formalism for
multitype networks introduced by Antoine Allard et.al. [12]. Their multitype
network model is the extension of the PGF formalism which investigated by
M.E.J. Newman. In addition, we incorporate the free-excess degree distribu-
tion, which was introduced in [13] to make it applicable for clustered networks.
We focus on complex networks with arbitrary joint degree distribution. In the
context of contact network epidemiology, our model serves as a special case of
community clustered networks which are more suitable for modelling the dis-
ease transmission in community networks with the clustering effect. For certain
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clustering coefficient and beyond the percolation threshold, we obtain the prob-
ability that a randomly chosen community-i node leads to the giant component.
In the context of contact network epidemiology, this probability refers to the
probability that an individual in a community is affected by the infectious dis-
ease. In addition, we derive formulae to calculate the size (i.e. fraction) of the
giant component and the average small-component size (excluding the giant
component) in the community structure network. If the disease transmission
rate between each pair of communities is the same in both direction, the size of
the giant component in each community-i is equivalent to the probability that
a randomly chosen community-i node leads to the giant component. When the
clustering effect is taken into account through the free-excess degree distribu-
tion , our model shows that the clustering effect leads to the reduce of the size
of the giant component.

The rest of the paper is organized as follows. In Section 2, we discuss some
assumptions to be used in our community clustered networks. In Section 3, we
present the PGF formamlism for the proposed community clustered networks.
In Sections 4 and 5, we focus on the calculation of the outbreak size distribution
and the percolation threshold, followed by numerical simulations in Section 6.
Some conclusions are given in Section 7.

2. Community Clustered Networks

We discuss a model with 2 communities which can be generalized to multi-
communities. Throughout the discussion, we assume that

(a) there exist realizable degree sequences which lead to simple graphs (i.e.
networks) with no self loop,

(b) the inter-community edges will be redistributed according to the three
ways as explained in Section 3.1.3,

(c) the isolated nodes in each community will remain isolated,

(d) the highest degree is 8 for model 1, and 6 for model 2,

(e) it is possible for two nodes connecting to a mutual node to connect them-
selves, thereby forming a triangle. It is represented by the clustering
coefficient, C,

(f) One link is counted as two edges.

Assumption (b) implies that power-law distribution will not be applied here.
In other words, nodes with higher degree do not necessarily have more inter-
community edges. In assumption (c), we assign some isolated nodes to each
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community. In a finite time, the isolated nodes remain isolated when we ran-
domly connect the inter-community edges to the nodes with different degrees
in each community. This can serve as a check point for our computer program
when we use it to find distribution for the size of small component. There is no
contact for every isolated node, namely there is no transmissibility of disease.
Hence, the number of isolated nodes in each community will remain the same.
Apart from that, we set the highest degree at 8. In other words, the network
is not a highly right skewed network and does not have super infection nodes.

In some of our analysis, we will further assume that one of the communities
has a low vaccination rate and thus a higher rate of disease transmissibility
among their members.BEsides that, the rate of disease transmissibility along
the inter-community edges is low, as sick individuals will travel less. For our
models, we assume that the exact number of nodes having degree k, denoted
by nk, is known. Hence, we can write the exact generating function for the
probability distribution in the form of a finite polynomial.

3. Formalism

We now present a formalism that describes the bond percolation model of com-
munity networks. It is based on the PGF formalism for multitype networks
introduced by Antoine Allard et.al. [12].

3.1. Degree Distribution

First, we assume that the arbitrarily specified degree distribution will produce
a realizable degree sequence. Let Pi=1(k1, k2, ..., kM ) and Pi=2(k1, k2, ..., kM )
be the probability degree distributions that a randomly chosen community-i
node is connected to k1 nodes, k2 nodes, k3 nodes and so on. Since we deal
with community structure networks, among the edges of a node, there are some
edges which may connect to nodes in other community.

For the sake of simplicity, we discuss the PGF formalism for the model
with two communities. In this case, we have two ways to represent the degree
distribution, namely number of nodes in each community or number of nodes
connecting community-i node to community-j.
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3.1.1. Degree Distribution for Number of

Nodes in Each Community

In the first way, we need to have degree distribution for the number of nodes in
each community. As an example, we consider the following degree distribution

p1(k) = {10, 10, 10, 45, 205, 135, 85},

p2(k) = {10, 10, 5, 85, 110, 185, 135},

where k = {kl}
6
l=0 = {l}6l=0 = (0, 1, 2, 3, 4, 5, 6) and the value of pi(kl) is the

number of nodes with degree l in the community-i. In the above example,
there are 10 nodes with 0 degree (i.e. isolated nodes) in community 1, 10 nodes
with 1 degree, 10 nodes with 2 degree, 45 nodes with 3 degree and so on in
community 1. Apart from that, we can get the information about the number
of edges in each community, namely there are 2170 and 2450 edges respectively
in communities 1 and 2 in our model example and the total edges is 4620. Note
that here one link is counted as two edges. If we divide Pi(k) by Ni where Ni

denotes the number of nodes in community-i, we will have a probability degree
distribution.

P1(k) =
1

500
{10, 10, 10, 45, 205, 135, 85},

P2(k) =
1

540
{10, 10, 5, 85, 110, 185, 135}.

Without considering the rate of transmissibility of diseases, we have the follow-
ing PGF

Gi(x) =
∞
∑

k=0

Pi(k)
M
∏

l=1

xkll (1)

where i = 1, 2; M denotes the number of communities which is 2 in this example
and xkll denotes node in community-l with degree kl.

3.1.2. Degree Distribution for Number of Nodes Connecting

Community-i to Community-j

The second way of representing the degree distribution is by considering the
number of nodes connecting community-i to community-j. We have the follow-
ing degree distribution:

p1(k1) = {10, 10, 20, 80, 200, 120, 60},
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p1(k2) = {420, 50, 20, 10, 0, 0, 0},

p2(k1) = {460, 50, 20, 10, 0, 0, 0},

p2(k2) = {10, 10, 10, 100, 140, 180, 90},

where pi(ki) is as defined before, while pi(kjl) denotes the number of nodes
in community-i with kjl edges linking to community j in which kjl = l for
l = 0, 1, 2, . . ..

For the above example, p1(k1) shows that there are 10 nodes with 0 degree
(i.e. isolated nodes) in community 1, 10 nodes with 1 degree, 20 nodes with
2 degree and so on in community 1; The data of p1(k2) shows that there are
420 nodes in community 1 with no edge linking to community 2, 50 nodes in
community 1 having one edge linking to community 2 and so on. The same will
apply to the nodes in community 2. We can also get the information about the
number of inter-community edges and the number of intra-community edges in
each community. The number of intra-community edge is 2170 in community-1
and 2450 in community-2.For the two communities model, k = k1 + k2, hence
the total edges must be the same as that by the first way mentioned in Section
3.1.1 (where it is 4620). The number of inter-community edges for communities
1 and 2 must be the same, in our model, we have 120 inter-community edges.

We can rewrite the degree distribution above as probability degree distri-
bution as follows

P1(k1) =
1

500
{10, 10, 20, 80, 200, 120, 60},

P1(k2) =
1

500
{420, 50, 20, 10, 0, 0, 0},

P2(k1) =
1

540
{460, 50, 20, 10, 0, 0, 0},

P2(k2) =
1

540
{10, 10, 10, 100, 140, 180, 90}.

Without considering the rate of transmissibility of diseases, let Gij be the gener-
ating function where the subscript ij represents the chosen node in community-i
connected to node in community-j, and let Pi(kuv) be the probability that a
randomly chosen community-i node with u edges connects to the nodes in com-
munity v. Then, we have the following PGF

G11(x) = P1(k01) + P1(k11)x1 + P1(k21)x
2
1 + P1(k31)x

3
1 + P1(k41)x

4
1

+ P1(k51)x
5
1 + P1(k61)x

6
1

=
10

500
+

10

500
x1 +

20

500
x21 +

80

500
x31 +

200

500
x41 +

120

500
x51 +

60

500
x61
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G12(x) =
420

500
+

50

500
x2 +

20

500
x22 +

10

500
x32

G21(x) =
460

540
+

50

540
x1 +

20

540
x21 +

10

540
x31

G22(x) =
10

540
+

10

540
x2 +

10

540
x22 +

100

540
x32 +

140

540
x42 +

180

540
x52 +

90

540
x62

and dG11(1)
dx1

= 41
10 ,

dG12(1)
dx2

= 6
25 ,

dG21(1)
dx1

= 2
9 ,

dG22(1)
dx2

= 233
54 ,

where
dGij(1)

dx denotes the average number of edges connecting nodes in community-
i to nodes in community-j, and we represent it as zij .

Definition 1. Let zij be the average number of edges connecting nodes
in community-i to nodes in community-j, then

zij =

∞
∑

k1=0

· · ·

∞
∑

kM=0

kjPi(k1, k2, · · · , kM ) ≡

∞
∑

k=0

kjPi(k).

In matrix form, for two communities, we have

z =

(

z11 z12
z21 z22

)

.

Let the community-i nodes occupy a fraction wi of the network, and define

w =

(

w1 0
0 w2

)

.

We have wz = (wz)T ,tr(w) = 1 and w1 = z21
z12+z21

,w2 = z12
z12+z21

. In our model,

we have w1 = z21
z12+z21

= 2/9
6/25+2/9 = 25

52 ,w2 = z12
z12+z21

= 6/25
6/25+2/9 = 27

52 . This

means that we have 25
52 fraction of nodes in community 1 and 27

52 fraction of
nodes in community 2. The followings two ways can be used to determine how
strong the community structure is:

(a) Let Z be the number of edges connecting nodes in community-i to nodes
in community-j, then we will have Z = n

2mz where n is the number of
nodes and m is the number of edges. Hence we can use the information
to obtain the modularity which is given by Q = Tr(Z)− ‖Z2‖.

(b) In [14], the degree of community σ , is given by σ = p/q where p is
the probability for the event that there exist links within the community
and q is the probability for the event that there exist links between the
communities. In this work, we redefine σ = tr(z)∑

i6=j zij
where σ >> 1 implies

strong community. It is easy to show that our model has Q = 0.446 or
σ = 18.02.
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3.1.3. Algorithm for Redistributing the Intercommunity Links

There are a few possible ways to consider the distribution of intercommunity
links including: the links are randomly attached to the nodes in each commu-
nity, the links are equally attached to the nodes in each community, the links
are preferably attached to the nodes with higher degrees in each community.

Consider the two communities model, where the links are equally attached
to the nodes in each community. Let n be the number of intercommunity links,
and let M be the highest degree of the nodes in the respectively community.
If n mod M = R, then we have YM + R = n . Assuming that P and Q are
the number of nodes with degree 1 and degree M , then we have the number
of nodes with degree M + 1 is Y + R, the number of nodes with degree M is
P −R where P is the number of nodes with degree 1, the number of nodes with
degree 1 is Q− Y where Q is the number of nodes with degree M .

3.2. The Occupied Degree Distribution

For the discussion of the PGF formalism involving rate of disease transmission,
we should consider the occupied degree distribution. For the two communities
model, we define a bond occupation probability matrix as

T =

(

T11 T12

T21 T22

)

.

Definition 2. The probability that a randomly chosen degree-k node has
k̃ occupied edges is

Pi(k̃|k) =

M
∏

i=1

(

kl
k̃l

)

(Til)
k̃l(1− Til)

kl−k̃l .

The occupied degree distribution, P̃i(k̃), is

P̃i(k̃) =

∞
∑

k=k̃

Pi(k̃|k)Pi(k) =

∞
∑

k=k̃

Pi(k)

M
∏

l=1

(

kl
k̃l

)

(Til)
k̃l(1− Til)

kl−k̃l .

Hence, the PGF is

Gi(x;T) =
∞
∑

k̃=0

P̃i(k̃)
M
∏

l=1

xk̃ll =
∞
∑

k=0

Pi(k)
M
∏

l=1

kl
∑

k̃l=0

(

kl
k̃l

)

(xlTil)
k̃l(1− Til)

kl−k̃l



142 C. Phang, Y. Wu, B. Wiwatanapataphee

Gi(x;T) =

∞
∑

k=0

Pi(k)

M
∏

l=1

[1− (xl − 1)Til]
kl ,

where Gi(1;T) = 1 if Pi(k) is properly normalized.

From Definition 2, we can get the average occupied degree connecting nodes
in community-i to nodes in community-j as z̃ij =

∂Gi(1;T)
∂xj

= Tij
∑∞

k=0 kjPi(k)

= Tijzij. For example,∂G1(x;T)
∂x2

|x1=1,x2=1 gives T12z12.
For two communities (we assume each node has at most degree 6 as for in

model 2) , we have the following generating functions when we consider the
rate of transmissibility,

G1(x;T) = P1(k0)

[

L11

L1
(1− (x1 − 1)T11)

L12

L1
(1− (x2 − 1)T12)

]k0

+ P1(k1)

[

L11

L1
(1− (x1 − 1)T11)

L12

L1
(1− (x2 − 1)T12)

]k1

+ . . .+ P1(k6)

[

L11

L1
(1− (x1 − 1)T11)

L12

L1
(1− (x2 − 1)T12)

]k6

,

G2(x;T) = P2(k0)

[

L21

L2
(1− (x1 − 1)T21)

L22

L2
(1− (x2 − 1)T22)

]k0

+ P2(k1)

[

L21

L2
(1− (x1 − 1)T21)

L22

L2
(1− (x2 − 1)T22)

]k1

+ . . .+ P2(k6)

[

L21

L2
(1− (x1 − 1)T21)

L22

L2
(1− (x2 − 1)T22)

]k6

,

where L1 and L2 are the total number of edges in communities 1 and 2 respec-
tively and Lij is the total number of edges which link nodes in community-i to
nodes in community-j. Note that G1(1;T) = 1 and G2(1;T) = 1.

3.3. The Occupied Excess Degree Distribution

Definition 3. The occupied excess degree distribution is given by

Q̃ij(k̃) =
1

zji

∞
∑

k=k̃

(ki + 1)Pj(k+ δi)

M
∏

l=1

(

kl
k̃l

)

(Tjl)
k̃l(1− Tjl)

kl−k̃l .

Hence, the PGF is given by

Fij(x;T) =

∞
∑

k̃=0

Q̃ij(k̃)

M
∏

l=1

xk̃ll =
1

zji

∞
∑

k=0

kiPj(k)

M
∏

l=1

[1− (xl − 1)Tjl]
kl−δil ,
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where the ij represents the chosen edges connecting community-i and community-
j.

For our 2-community model, we can obtain Fij(x;T) by

Fij(x;T) =
1

z̃ji

∂Gj(x;T)

∂xi
. (2)

For two communities networks with nodes of at most degree 6, using (2),
after some algebra work, we have

F11(x1, x2;T) = p0 + p01x2 + p02x
2
2 + p03x

3
2 + p04x

4
2 + p05x

5
2

+ p10x1 + p11x1x2 + p12x1x
2
2 + p13x1x

3
2 + p14x1x

4
2

+ p20x
2
1 + p21x

2
1x2 + p22x

2
1x

2
2 + p23x

2
1x

3
2 + p30x

3
1

+ p31x
3
1x2 + p32x

3
1x

2
2 + p40x

4
1 + p41x

4
1x2 + p50x

5
1,

where the parameter puv denotes the probability that a node with excess degree
v is reached by following a randomly chosen edge with excess degree u. Similar
formulae can be established for F12(x1, x2;T) , F21(x1, x2;T) and F22(x1, x2;T)
where the parameter p in the above equation will be replaced by q,r,and s
respectively.

3.4. The Occupied Free-Excess Degree Distribution

In order to consider the clustered network (C > 0 ), we apply the free-excess
degree distribution concept introduced in [12]. Analogously to the excess de-
gree, we follow one of the edges of node v0 to reach a neighbour v1 having
degree d(v1) = i + 1( i is the excess degree). We are interested in calculating
the probability that the node has k neighbours that are not connected back to
v0 (via a triangle), which is given by

( i
k

)

(1− C)kCi−k

Definition 4. The free excess degree distribution is given by

Gc(x) =

∞
∑

k=0

ekx
k =

∞
∑

k=0

∞
∑

i=0

qi

(

i

k

)

Ci

(

1−C

C

)k

xk

=
∞
∑

i=0

qiC
i

∞
∑

k=0

(

i

k

)(

1− C

C
x

)k

=
∞
∑

i=0

qiC
i

(

1 +
1− C

C
x

)i

=
∞
∑

i=0

qi [C + (1− C)x]i = G1 [C + (1− C)x]
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ek =
∞
∑

i=0

qi

(

i

k

)

(1− C)kCi−k =
∞
∑

i=0

qi

(

i

k

)

Ci

(

1− C

C

)k

By Definition 4, we use the generating function associated with the occupied
excess degree distribution as given in Definition 3. Thus, we have the following
relationship

Fcij(x;T) = Fij(C + (1− C)x;T) (3)

4. Outbreak Size Distribution

In this section, we discuss an iteration method to obtain the probability that
a randomly chosen community-i node leads to the giant component. Although
the discussion applies to the model without considering the clustering coefficient
C, for the model with clustering coefficient C, we will have Fcij instead of Fij

as in (3).
Let Hij(x;T) be the generating function for the size distribution of the

component reached by following an i → j edge.

Hij(x;T) = xjFij(Hj(x;T);T) (4)

The solution for the equation (4) can be found by seeking the stable fixed point
of the mapping

H
(n)
ij (x;T) = xjFij(H

(n−1)
jM (x;T);T) (5)

as i = 1 . . .M and n → ∞ for initial conditions H0
ij(x;T) = xj. The equa-

tion says that when we follow an i → j edge, we find at least one node at the
other end (the factor of x1 , x2 on the RHS), plus some other clusters of nodes
(each represented by Hij(x;T) ) which are reachable by following other edges
attached to that node. The number of the clusters is distributed according to

the coefficients of x1 , x2 in Fij(x;T) = 1
z̃ij

∂Gj(x;T)
∂xi

, and hence the appearance

of Fij(x;T) .

For our model, using (4) and (5), we have the following iteration process

H
(n)
11 (x1, x2;T) = x1F11(H

(n−1)
11 (x1, x2;T),H

(n−1)
12 (x1, x2;T);T)

H
(n)
12 (x1, x2;T) = x2F12(H

(n−1)
21 (x1, x2;T),H

(n−1)
22 (x1, x2;T);T)

H
(n)
21 (x1, x2;T) = x1F21(H

(n−1)
11 (x1, x2;T),H

(n−1)
12 (x1, x2;T);T)

H
(n)
22 (x1, x2;T) = x2F22(H

(n−1)
21 (x1, x2;T),H

(n−1)
22 (x1, x2;T);T)
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where the initial condition is given by H
(0)
11 (x1, x2;T) = p0x1, H

(0)
12 (x1, x2;T) =

q0x2, H
(0)
21 (x1, x2;T) = r0x1, and H

(0)
22 (x1, x2;T) = s0x2. For the first iteration

in our model 2, we have

H
(1)
11 (x1, x2;T) =x1F11(H

(0)
11 (x1, x2;T),H

(0)
12 (x1, x2;T);T)

=x1F11(p0x1, q0x2;T)

=x1{p0 + p01(q0x2) + p02(q0x2)
2 + p03(q0x2)

3

+ p04(q0x2)
4 + p05(q0x2)

5

+ p10(p0x1) + p11(p0x1)(q0x2) + p12(p0x1)(q0x2)
2

+ p13(p0x1)(q0x2)
3 + p14(p0x1)(q0x2)

4

+ p20(p0x1)
2 + p21(p0x1)

2(q0x2) + p22(p0x1)
2(q0x2)

2

+ p23(p0x1)
2(q0x2)

3

+ p30(p0x1)
3 + p31(p0x1)

3(q0x2) + p32(p0x1)
3(q0x2)

2

+ p40(p0x1)
4 + p41(p0x1)

4(q0x2) + p50(p0x1)
5}

= p0x1 + p01q0x1x2 + p10p0x
2
1 +O(x1, x2)

3.

Similarly, we have

H
(1)
11 (x1, x2;T) = q0x2 + q10r0x1x2 + q01s0x

2
2 +O(x1, x2)

3,

H
(1)
21 (x1, x2;T) = r0x1 + r01q0x1x2 + r10p0x

2
1 +O(x1, x2)

3,

H
(1)
22 (x1, x2;T) = s0x2 + s10r0x1x2 + s01s0x

2
2 +O(x1, x2)

3.

For the second iteration, we have

H
(2)
11 (x1, x2;T) =x1F11(H

(1)
11 (x1, x2;T),H

(1)
12 (x1, x2;T);T)

= x1F11(p0x1 + p01q0x1x2 + p10p0x
2
1, q0x2

+ q10r0x1x2 + q01s0x
2
2;T).

After some algebra work, we obtain

H
(2)
11 (x1, x2;T) =p0x1 + p01q0x1x2 + p10p0x

2
1 + (p01q01s0 + p02q

2
0)x1x

2
2

+ (p10p01q
2
0 + p11p0q0 + p01q10r0)x

2
1x2

+ (p210p0 + p20p
2
0)x

3
1 +O(x1, x2)

4.
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Similarly, we have

H
(2)
12 (x1, x2;T) = x2F12(H

(1)
21 (x1, x2;T),H

(1)
22 (x1, x2;T);T),

H
(2)
21 (x1, x2;T) = x1F21(H

(1)
11 (x1, x2;T),H

(1)
12 (x1, x2;T);T),

H
(2)
22 (x1, x2;T) = x2F22(H

(1)
21 (x1, x2;T),H

(1)
22 (x1, x2;T);T),

and the iteration process continues until obtaining H
(4)
ij (x1, x2;T) for model 2.

Denoting Ki(x;T) as the generating function for the size distribution of the
whole component, we have the

Ki(x;T) = xiGi(Hi(x;T);T). (6)

Now we can have the following definition.

Definition 5. Let Ki(x;T) be the total number of nodes reachable from
a randomly chosen vertex in community-i , i.e. the size of the component to
which such a node belongs, is generated by

Ki(x;T) = xiGi(Hi(x;T);T).

Since type-i nodes occupy a fraction wi of the network, the size distribution
of the component reached from a randomly chosen node is generated by

K(x;T) =
M
∑

i=1

wiKi(x;T) =
M
∑

i=1

wixiGi(Hi(x;T);T). (7)

For our 2-communities model, using (7), we have

K1(x1, x2;T) = x1G1(H
(n)
11 (x1, x2;T),H

(n)
12 (x1, x2;T);T),

K2(x1, x2;T) = x2G2(H
(n)
21 (x1, x2;T),H

(n)
22 (x1, x2;T);T).

Above the percolation threshold, we will find the giant component. Hence the
probability that a randomly chosen community-i node leads to the giant com-
ponent is Pi = 1−Ki(1;T). According to [12], for symmentric transmissibility
T = TT , the size of the giant component, S, is equal to P .
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5. Percolation Threshold

Using the moment property of the PGF, the average number of community-i
nodes in the small component reached from a randomly chosen node is obtained

by differentiating H
(n)
ij (x;T) with respect to xi . Hence, the average number of

community-i nodes in the small component, 〈si〉,is given by

〈si〉 = wi +

M
∑

l=1

wl

M
∑

j=1

z̃ljα
(i)
lj , (8)

where α
(i)
lj ≡

∂Hlj(x;T)
∂xi

|x=1. α
(i)
lj is well approximated by the solution of α

(i)
lj =

δij +
∑M

n=1 Tjnβ
(n)
lj α

(i)
jn and where the average excess degree is given by B

(n)
lj =

1
Tjn

∂Flj(x;T)
∂xn

|x=1.

Define [Aij ]µv = Tijβ
(j)
µv δiv . If there are only two communities, A can be

obtained by

A =











T11β
(1)
11 0 T12β

(2)
11 0

T11β
(1)
21 0 T12β

(2)
21 0

0 T21β
(1)
12 0 T22β

(2)
12

0 T21β
(1)
22 0 T22β

(2)
22











, (9)

with the average of s given by

〈s〉 =
M
∑

i=1

〈si〉 ∝
1

det(I −A)
. (10)

Hence, the phase transition occurs when det(I −A) = 0.

6. Numerical Simulations

Model 1: We summarize the model 1 as follows : There are two commu-
nities ( i.e. M = 2) with probability degree distribution: Pi(k1, k2) ≡ Pi(k) as
shown below:

P1(k1) =
1

5700
{10, 2910, 2120, 480, 10, 70, 60, 20, 20},

P1(k2) =
1

5700
{5300, 300, 100, 0, 0, 0, 0, 0, 0},
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P2(k1) =
1

5900
{5500, 300, 100, 0, 0, 0, 0, 0, 0},

P2(k2) =
1

5900
{10, 3010, 2210, 450, 40, 80, 60, 20, 20}.

After redistributing the intercommunity links, we obtain

P1(k) =
1

5700
{10, 2910 − Y, 2120, 480, 10, 70, 60, 20, 20 − Y, Y +R},

P2(k) =
1

5900
{10, 3010 − Y, 2210, 450, 40, 80, 60, 20, 20 − Y, Y +R},

where Y = 62 and R = 4.

We have average edges z =

(

482
285

5
57

5
59

100
59

)

and the distribution of nodes

among the communities is w =

(

57
116 0
0 59

116

)

. More details are shown in Table

1.

Community 1 Community 2

Total nodes 5700 5900

Total inter community edges 9640 10000

Total intra community edges 500 500

Table 1: Number of edges in each community in model 1

The modularity for this model is σ = 19.634 or Q = 0.451. First, we study
the effect of transmissibility rate. In this case, we have the same transmissibility
rate for all the links, namely either inter or intra community edges within the
same community have the same transmissibility rate. For example, T = 0.1

means that T =

(

0.1 0.1
0.1 0.1

)

. Figure 1 shows the result obtained.

Secondly, we study the effect of clustering in this mode. Using (10), the
epidemic threshold is determined to be 0.599. Above the epidemic threshold,
clustering will reduce the probability that a randomly chosen community-i node
leads to the giant component. In this case we use T = 0.64. Figure 2 shows the
result obtained.

Thirdly, by using (8), we determine the average number of community-i
nodes in the small component, 〈si〉, reached from a randomly chosen node for
different clustering coefficient, C, in Figure 3.
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Figure 1: Diagram showing the probability, P , that a randomly chosen
community-i node leads to the giant component versus tranmissiblity
rate, T , for model 1. The diagram also shows the fraction of giant
component in communities 1 and 2 (S1 and S2) versus tranmissiblity
rate, T . The epidemic threshold in this example is 0.599.

Model 2: We summarize the model 2 as follows : There are two commu-
nities ( i.e. M = 2) with probability degree distribution: Pi(k1, k2) ≡ Pi(k) as
shown below :

P1(k1) =
1

500
{10, 10, 20, 80, 200, 120, 60},

P1(k2) =
1

500
{420, 50, 20, 10, 0, 0, 0},

P2(k1) =
1

540
{460, 50, 20, 10, 0, 0, 0},

P2(k2) =
1

540
{10, 10, 10, 100, 140, 180, 90}.

For analysis, we distribute the inter-community edges randomly across nodes
in each community, we get

P1(k) =
1

500
{10, 10, 10, 45, 205, 135, 85},

P2(k) =
1

540
{10, 10, 5, 85, 110, 185, 135}.
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Figure 2: The probability, P , that a randomly chosen community-i
node leads to the giant component versus clustering coefficients, C, for
model 1 when T = 0.64. S1 and S2 are the fraction of giant component
in communities 1 and 2 respectively

Figure 3: A diagram showing the average number of community-i nodes
in the small component, 〈si〉, reached from a randomly chosen node for
different clustering coefficient, C, for model 1 when T = 0.64.
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We have average edges z =

(

41
10

6
25

2
9

233
54

)

and the distribution of nodes

among the community is w =

(

25
52 0
0 27

52

)

. More details are shown in Table 2.

Community 1 Community 2

Total nodes 500 540

Total inter community edges 2050 2330

Total intra community edges 120 120

Table 2: Number of edges in each community in model 2

The modularity for this model is σ = 18.20 or Q = 0.446. For transmissi-

bility, T =

(

3
10

1
5

1
5

6r
10

)

. Using (10), we obtain det(I−A) = −0.0464+0.1002r.

When r = 0.4633 , phase transition occurs, namely the giant component first

appears. If r = 1 , that is when T =

(

3
10

1
5

1
5

6
10

)

, there exists a giant compo-

nent. (i.e. outbreak of disease)

We present the results in Figure 4 and Figure 5.

7. Concluding Remarks

In this paper, we focus on complex networks with an arbitrary joint degree
distribution. We study community clustered networks which are more suitable
for modelling the disease transmission in community networks with clustering
effects. With certain clustering coefficient and beyond the percolation thresh-
old, we obtain the probability that a randomly chosen community-i node leads
to the giant component. In the context of contact network epidemiology, this
probability refers to the probability that an individual in a community is af-
fected by the infectious disease. We have also derived formulae to calculate the
size of the giant component and the average small-component size (excluding
the giant component). Taking into account the clustering effect through the
free-excess degree distribution, the model shows that the clustering effect will
decrease the size of the giant component.
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Figure 4: The probability,P , that a randomly chosen community-i node
leads to the giant component versus the clustering coefficient,C, for
model 2. S1 and S2 are the fraction of the giant component in com-
munities 1 and 2 respectively.

Figure 5: A diagram showing the average number of community-i nodes
in the small component, 〈si〉, reached from a randomly chosen node for
different clustering coefficient, C, for model 2.
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