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Abstract— In this paper we introduce and develop the con-
cepts of self-boundedness and self-hiddenness for implicit two-
dimensional systems. The aim of this note is to show that when
extending such concepts to a multidimensional setting, a richer
structure arises than in the one-dimensional case.

I. INTRODUCTION

In the last forty years, geometric control has played a fun-

damental role in understanding several structural properties

of both linear and nonlinear systems and in the solution

of important control/estimation problems. The interested

readers are directed to the comprehensive monographs [21],

[2], [20]. In more recent times, several efforts have been

devoted to the adaptation of the classic geometric approach to

implicit (or singular, or descriptor) systems [3]. An important

adaptation of geometric techniques was proposed in [4],

which identified for the first time a definition of controlled in-

variance for the explicit first-order 2-D Fornasini-Marchesini

model [9]. Further developments in this multidimensional

setting were presented in [10] and [18]. In recent years,

in [14] a new geometric setting was established for an

explicit 2-D local state model that is sufficiently general to

realise any quarter-plane causal bivariate transfer function,

but that enables the solutions of the local state model to be

characterised in terms of necessary and sufficient conditions.

In [14] the notion of self-boundedness was also generalised

for the first time to regular 2-D systems. In that paper, it

was found that, as in the 1-D case, the set of 2-D self-

bounded subspaces forms a lattice, with respect to subspace

addition and intersection, and therefore admits a minimum

and a maximum.

The approach developed in [14] was partially extended

to singular models in [15]. In particular, in [14] the notion

of controlled invariance of feedback type is generalised to

2-D systems in descriptor form. However, to date no results

have been obtained on the notion of self-boundedness for

two-dimensional systems in implicit form. The aim of this

paper is to fill this gap, by providing a system-theoretic

definition of self-boundedness which follows the same line

of argument used in [13]. Then, a geometric characterisation

of self-boundedness is introduced, which is shown to be

intrinsically richer than the one which is valid for regular

systems. We also provide an algorithm for the computation

of the minimum of the lattice of self-bounded subspaces.
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By duality, in the last part of this paper we also define the

concept of self-hiddenness.

Notation. Throughout, we denote by Z and N the integers

and the natural numbers, respectively. The image and null-

space of a linear operator M are denoted by imM and

kerM, respectively. The Moore-Penrose pseudo-inverse of

M is denoted with M†. Given A : Rn → R
m and a subspace

Y ⊆ R
m, we denote by A−1Y the set {x ∈ R

n |Ax ∈ Y }.

Subspaces are denoted by calligraphic letters. The annihilator

of a subspace S of the linear space X is denoted by S ⊥,

and resides in the dual space of X .

II. INVARIANT SUBSPACES FOR SINGULAR FM MODELS

Consider the implicit Fornasini-Marchesini (FM) 2-D

model [8], [7]

E xi+1, j+1 = A0 xi, j +A1 xi+1, j +A2 xi, j+1 +Bui, j, (1)

yi, j = C xi, j +Dui, j, (2)

where, for all i, j ∈ Z, the vector xi, j ∈X =R
n is the partial

local state, ui, j ∈ U = R
m is the input, yi, j ∈ Y = R

p is the

output. Hence, E , A0, A1, A2 ∈ R
q×n, B ∈ R

q×m, C ∈ R
p×n

and D ∈ R
p×m. The outer state-space, corresponding to the

number of equations in (1), is denoted by X = R
q. In this

implicit model the matrices E , A0, A1, A2 are in general not

square, and if they are square (i.e., if q = n), they may be

singular. For the sake of brevity, we identify the system (1-2)

with the septuple Σ
def
= (E;A0,A1,A2;B;C;D).

We are interested in the evolution of ‘south-west’ causal

solutions [17] given suitable boundary conditions xi, j for

(i, j) ∈B0, where

Bk
def
=({k}×{h∈Z |h≥ k})∪({h∈Z |h≥ k}×{k}), k ∈ Z.

Within this setting, the latent variable evolves over the region

B
def
=

∞
⋃

k=0

Bk = {(i, j) ∈ Z×Z | i ≥ 0 and j ≥ 0 }= N×N.

Given a subspace S of X , we say that (1) has an S -

valued boundary condition if there exists a solution of (1)

with xi, j ∈ S for all (i, j) ∈ B0. We also say that (1) has

an S -valued solution if there exists a solution of (1) with

xi, j ∈ S for all (i, j) ∈B.

We recall that a subspace J⊆X is called invariant for

(E;A0,A1,A2) if

Ai J ⊆ E J (3)

for all ∈ {0,1,2}, [15], [16]. Invariant subspaces are use-

ful tools in the investigation of the so-called compatible



boundary conditions of (1), i.e., the boundary conditions

{xi, j ∈ X | (i, j) ∈ B0} for which an admissible solution

{xi, j ∈ X | (i, j) ∈B} exists with ui, j = 0 for all (i, j) ∈B.

The following lemma [15], [16] shows the relation be-

tween the concept of invariance for (E;A0,A1,A2) defined

here and the existence of compatible solutions for Σ.

Lemma 1: [15], [16]. Subspace J of X is invariant

for (E;A0,A1,A2) if and only if (1) has a solution {xi, j ∈
J | (i, j) ∈B} for any J -valued boundary condition with

zero input.

The set of invariant subspaces of (E;A0,A1,A2) is closed

under subspace addition. Therefore, it admits a maximum

element, which is given by the sum of all invariant subspaces

of (E;A0,A1,A2). This subspace, herein denoted by J ⋆, can

be computed using the following result, see [15], [16].

Lemma 2: [15], [16]. The subspace J ⋆ can be computed

as the last term of the monotonically non-increasing sequence

of subspaces {Ji}i∈N given by











J0 = X

Ji =
2
⋂

j=0

(A−1
j E Ji−1)∩Ji−1 i ∈ {1,2, . . . ,k},

where the integer k≤n−1 is determined by the condition

Jk+1=Jk(= J ⋆).

III. CONTROLLED INVARIANCE

We now recall the notion of (simple) controlled invariance

for the implicit FM model (1).

Definition 1: [15], [16]. A subspace V of X is a con-

trolled invariant subspace for the quintuple (E;A0,A1,A2;B)
if

2

∑
i=0

(Ai V )⊆ E V + im B. (4)

Theorem 1: [15], [16]. For all V -valued boundary

conditions there exists a control input such that (1) admits

a quarter-plane causal V -valued trajectory if and only if V
is a controlled invariant.

For the definitions of controlled invariance given in [4] and

[5], where a first-order FM model was considered, only the

if part of the statement of Theorem 1 holds true. Necessity

for the implicit model (1) considered here holds as in the

regular case of this form studied in [14].

A. Output-Nulling Subspaces

In many control problems it is of interest to derive control

laws that maintain certain outputs of a system at zero. The

most famous example is the disturbance decoupling problem,

[2]. This requirement leads to the notion of output-nulling

subspace: a subspace V is said to be output-nulling for Σ
if there exists a control law such that (1-2) admits a (non

necessarily unique) V -valued solution with zero output given

an arbitrary V -valued boundary condition. It is easy to see

[15], [16] that a subspace V is output-nulling for Σ if and

only if

[

A0 A1 A2

C O O

] 3
⊕

k=1

V ⊆ (E V ⊕{0})+ im

[

B

D

]

, (5)

where

3
⊕

k=1

V = V ⊕V ⊕V .

The set of output-nulling subspaces of (1-2) is denoted by

V (Σ). As for the set of 2-D controlled invariant subspaces,

this set is seen to be closed under subspace addition but

not under subspace intersection. Therefore, (V (Σ),+;⊆) is a

(non-distributive and modular) upper semilattice with respect

to the binary operation + and with respect to the partial

ordering ⊆. Thus, it admits a maximum V ⋆ given by the sum

of all elements of V (Σ), i.e., V ⋆ def
= max V (Σ) =∑V ∈V (Σ)V .

The following lemma extends the famous algorithm for the

computation of V ⋆.

Lemma 3: [16]. V ⋆ is the last term of the monotonically

non-increasing sequence {Vi}i given by














V0 = X

Vi =
2
⋂

j=0

[

A j

O

]−1(

(E Vi−1 ⊕{0})+im

[

B

D

])

i ∈ {1, . . . ,k}

where the integer k≤n−1 is determined by the condition

Vk+1=Vk, i.e., V ⋆ = Vk.

B. Controlled Invariants of Feedback Type

The FM model (1-2) is closed under the feedback ui, j =
F xi, j, which gives rise to the closed-loop local state update

equation

E xi+1, j+1 = (A0 +BF)xi, j +A1 xi+1, j +A2 xi, j+1. (6)

Differently from 1-D systems, the notion of controlled in-

variance alone is not sufficient to guarantee the existence

of a feedback matrix F for which a solution of (1) is

maintained on a controlled invariant subspace V for V -

valued boundary conditions. For this reason, the concept

of controlled invariance of feedback type was introduced in

[15]-[16]. The subspace W of X is controlled invariant of

feedback type for Σ if there exists an F ∈R
m×n such that (1),

with ui, j = F xi, j, admits a W -valued trajectory for arbitrary

W -valued boundary condition. In [15]-[16] it was shown that

W is controlled invariant of feedback type for Σ if and only

if

• A0 W ⊆ E W + imB;

• A1 W +A2 W ⊆ E W .

Given a controlled invariant subspace of feedback type

W for Σ, any feedback matrix F ∈ R
m×n such that with the

input ui, j = F xi, j the system Σ admits a W -valued trajectory

for arbitrary W -valued boundary condition is called friend

of W . In [15]-[16] it is shown that the set of friends of

the controlled invariant subspace of feedback type W , with

basis matrix W , coincides with the set of matrices F such that

Ω = −F W , where Ω is a solution of A0 W = E W X0 +BΩ



for some matrix X0. As such, the set of friends of W is

parameterised as follows. First, we compute X0 and Ω as
[

X0

Ω

]

=
[

E W B
]†

A0W +H1 K1,

where H1 is a basis matrix for ker
[

E W B
]

and K1 is an

arbitrary matrix of suitable size. Then, recalling that W is

full column-rank, we compute

F =−Ω(W T W )−1 W T +K2 H2,

where H2 is a full row-rank matrix such that kerH2 ⊇ W
(so that H2 W = 0) and K2 is an arbitrary matrix of suitable

size. The set of friends of W are parameterised in this way

in terms of the two matrices K1 and K2.

C. Output-Nulling Subspaces of Feedback Type

The notion of controlled invariance of feedback type can

be extended to output-nulling subspaces. A subspace W
is output-nulling of feedback type for Σ if there exists a

static local-state feedback control law ui, j = F xi, j such that

(1-2) admits a W -valued solution for which the output is

identically zero for arbitrary W -valued boundary condition.

It is easy to see [15]-[16] that W is output-nulling of

feedback type for Σ if and only if

•

[

A0

C

]

W ⊆ (E W ⊕{0})+ im

[

B

D

]

;

• A1 W +A2 W ⊆ E W .

Observe that the inclusion
[

A0

C

]

W ⊆ (E W ⊕ {0}) +

im
[

B

D

]

is equivalent to the existence of two matrices X0 and

Ω such that
[

A0

C

]

W =

[

E W

0

]

X0 +

[

B

D

]

Ω,

where W is a basis matrix of W , while the inclusion A1 W +
A2 W ⊆ E W is equivalent to the existence of matrices X1,X2

such that Ai W = E W Xi (i ∈ {1,2}). Let F be such that Ω =
−F W , so that

[

A0 +BF

C+DF

]

W =

[

E W

0

]

X0.

It turns out that W is output-nulling of feedback type for Σ
if and only if a feedback matrix F exists such that

[

A0 +BF A1 A2

C+DF 0 0

] 3
⊕

k=1

W ⊆ E W ⊕{0}. (7)

The next theorem addresses the problem of the uniqueness

of the solution of (1) on output-nulling subspaces of feedback

type, which will be instrumental for a correct identification

of geometric conditions characterising self-boundedness and

self-hiddenness for 2-D implicit models.

Theorem 2: Let W be an output-nulling subspace of feed-

back type, and let F be a friend of W . A solution of (1)

corresponding to zero input and with zero output is the

unique W -valued solution of (1) with zero output if and

only if

kerE ∩W = {0}.

The proof follows closely the one for [15, Theorem 1].

The set of output-nulling subspaces of feedback type,

denoted by W (Σ), is closed under addition (but not under

intersection). Hence, the maximum output-nulling subspace

W ⋆ of feedback type can still be defined as the sum of all

the elements of W (Σ). An algorithm for the computation of

W ⋆, that can be derived by adapting the one for V ⋆, is given

as follows.

Lemma 4: [15]-[16]. Subspace W ⋆ is the last term of the

monotonically non-increasing sequence of subspaces {Wi}i

given by






W0 = X

Wi =

[

A0

C

]−1(

(E Wi−1 ⊕{0})+im

[

B

D

])

∩

[

A1

A2

]−1

(E Wi−1⊕E Wi−1),

with i ∈ {1,2, . . . ,k}, where the integer k≤n−1 is deter-

mined by the condition Wk+1 =Wk, i.e., W ⋆ = Wk.

IV. SELF-BOUNDEDNESS

In this section, we introduce the notion of self-

boundedness for implicit 2-D systems. Self-bounded sub-

spaces play a central role in disturbance decoupling prob-

lems since they allow such problems to be solved without

necessarily making the closed-loop system maximally un-

observable [4]. A question that remains open, and which

goes beyond the scope of this paper, is wether, as in the

1-D case, solving decoupling problems using self-bounded

subspaces ensures maximum assignability of the closed-loop

dynamics as proved in the 1-D case in [11]. The concept

of self-boundedness can be intuitively introduced as follows.

Consider an output-nulling subspace of feedback type W ,

and a W -valued boundary condition. Is it possible to find a

feedback control ui, j = F xi, j such that the partial local state

xi, j is not W -valued, but the output continues to remain at

zero? Subspaces for which this is not possible are known as

self-bounded subspaces.

Definition 2: An output-nulling subspace of feedback type

W is self-bounded if, for any W -valued boundary condition

and any control ui, j =F xi, j for which a unique solution xi, j of

(1) exists yielding zero output, the partial local state solution

of (1) is W -valued, i.e., xi, j ∈ W for all (i, j) ∈B.

Notice that in Definition 2 it was necessary to require

that the partial local state trajectory that corresponds to

zero output be unique, or else the characterisation of

self-bounded subspaces where the solution of the system

is “trapped” if we insist on maintaining the output at

zero becomes meaningless. As a consequence of this, a

fundamental difference arises with respect to the notion of

self-boundedness in the regular case. Indeed, in the regular

case W ⋆ is trivially self-bounded. In the singular case this

is not necessarily the case. In fact, given a control input

ui, j = F xi, j where F is a friend of W ⋆, we know that for

every W ⋆-valued boundary conditions of (1) a solution of



(1) exists with identically zero output. On the other hand, if

W ⋆ ∩ kerE 6= {0}, there might exist other solutions to (1)

that do not correspond to an identically zero output.

Now, our aim is to provide a geometric characterisation

for self-boundedness similar to the one developed in [14]

for the regular (and strictly proper) case. In the 1-D strictly

proper case, a self-bounded subspace V of a triple (A,B,C) is

defined as an (A,B)-controlled invariant subspace contained

in the null-space of C such that V ⊇ V ⋆∩ im B, where V ⋆

represents the largest (A,B) controlled-invariant subspace

contained in ker C, [1], [2]. This condition was extended to

1-D singular systems in [6], where a self-bounded subspace

V of a strictly proper system ruled by

E xk+1 = Axk +Buk

yk = C xk

is defined an (E;A,B)-controlled invariant subspace (i.e., it

satisfies the inclusion AV ⊆ E W + imB) contained in the

null-space of C such that E V ⊇ E V ⋆ ∩ imB. In [13], the

definition of self-boundedness was extended to bi-proper

systems described by a quadruple (A,B,C,D). In that case,

the definition of self-boundedness was given in terms of

its system-theoretic property, and an equivalent geometric

characterisation was proposed that was characterised by the

subspace inclusion V ⊇ V ⋆ ∩BkerD. A “natural” way of

characterising self-bounded subspaces for 2-D implicit bi-

proper systems is to assume they satisfy the inclusion E W ⊇
E W ⋆∩BkerD. Unfortunately, we will see that this geometric

inclusion is not sufficient to characterise self-bounded sub-

spaces as defined above (indeed, W ⋆ satisfies this inclusion

but as noticed above it is not self-bounded in general). We

will show that a correct geometric characterisation of self-

boundedness is given by the two conditions

• W ⋆∩kerE = {0}
• E W ⊇ E W ⋆∩BkerD

The first condition was used in a 1-D setting in [6] to identify

the case in which the set of output-nulling subspaces satis-

fying E W ⊇ E W ⋆ ∩ imB is closed under intersection, and

therefore it admits a minimum, but it was not recognised as

being an essential part of the definition of self-boundedness.

The following lemma extends a well-known property for

explicit 1-D systems [2, Property 4.1.7].

Lemma 5: Let F be a friend of W ⋆. Let W be such that

E W ⊇ E W ⋆∩B kerD. Then, F is a friend of W .

Proof: Since W ⊆ W ⋆, there holds

[

A0 +BF

C+DF

]

W ⊆

[

A0 +BF

C+DF

]

W ⋆ ⊆ E W ⋆⊕{0}. (8)

Moreover, the trivial inclusion
[

B

D

]

F W ⊆ im
[

B

D

]

, together

with
[

A0

C

]

W ⊆ E W ⊕{0}+ im
[

B

D

]

, gives

[

A0 +BF

C+DF

]

W ⊆ E W ⊕{0}+ im

[

B

D

]

. (9)

The intersection of (8) and (9) and the application of the

modular rule1 gives
[

A0+BF

C+DF

]

W ⊆ (E W ⊕{0})+

(

(E W ⋆⊕{0})∩im

[

B

D

])

= E W ⊕{0},

because E W ⊇ E W ⋆∩B kerD is equivalent to E W ⊕{0}⊇

(E W ⋆⊕{0})∩ im
[

B

D

]

.

Differently from explicit 2-D systems, the intersection of

two output-nulling subspaces of feedback type satisfying

the inclusion E W ⊇ E W ⋆ ∩ B kerD does not necessarily

satisfy the same subspace inclusion. In other words, given

two output-nulling subspaces W1 and W2 of feedback type

such that

E W1 ⊇ E W ⋆∩B kerD, (10)

E W2 ⊇ E W ⋆∩B kerD, (11)

it is not true in general that

E (W1 ∩W2) ⊇ E W ⋆∩B kerD. (12)

Indeed, in general such intersection W1 ∩W2 may not even

give an output-nulling subspace. Consider the following

simple example, described by the matrices

E =

[

0 1 0

0 0 0

]

, A0 =

[

1 1 0

0 0 1

]

,

A1 = A2 =

[

0 0 0

0 0 0

]

, B =

[

1 1

1 0

]

,

C =
[

0 0 1
]

, D =
[

1 0
]

.

In this case, using the recursion in Lemma 4 we find W ⋆ =
X . It is easy to check that a friend of W ⋆ is given by the

matrix

F =

[

0 0 −1

− 1
2

− 1
2

1
2

]

.

The two subspaces

W1 = span

{[

1

1

0

]}

and W2 = span

{[

1

2

0

]}

are easily seen to be two output-nulling subspaces of feed-

back type, and they satisfy (10-11). Hence, F is also a friend

of W1 and W2. Indeed,
[

A0 +BF

C+DF

]

W1 = span

{[

1

0

0

]}

⊆ E W1 ⊕{0}

[

A0 +BF

C+DF

]

W2 = span

{[

1

0

0

]}

⊆ E W2 ⊕{0}.

1Given three subspaces X ,Y ,Z of the same vector space, there holds

X ∩ (Y +Z ) ⊆ (X ∩Y )+(X ∩Z )

X +(Y ∩Z ) ⊆ (X +Y )∩ (X +Z ).

The modular rule says that these inclusions hold with the equality sign if
any one of the involved subspaces X ,Y ,Z is contained in any of the
others.



However, the intersection W = W1 ∩ W2 = {0} is not

self-bounded. Indeed, while E W = {0}, we find E W ⋆ ∩

B kerD = span{
[

1

0

]

}.

The next theorem, whose proof is omitted, introduces

a geometric characterisation of self-boundedness along the

same lines of the classic definition given in [1] for regular

1-D systems.

Theorem 3: The output-nulling subspace of feedback type

W is self-bounded if and only if

W ⋆∩kerE = {0} (13)

E W ⊇ E W ⋆∩BkerD (14)

We denote by Φ(Σ) the set of self-bounded subspaces of

Σ, i.e.,

Φ(Σ)
def
=
{

W ∈W (Σ) |E W ⊇E W ⋆∩BkerD, W ⋆∩kerE = {0}
}

We now generalise an important result [2, Property

4.1.8] of self-boundedness that is essential to establish that

(Φ(Σ),+,∩;⊆) is a lattice.

Lemma 6: The intersection of two self-bounded subspaces

of feedback type is self-bounded of feedback type.

Proof: Let W1 and W2 be two self-bounded subspaces of

feedback type. Let W = W1 ∩W2. Consider a friend F of

W ⋆. From Lemma 5, we find

[

A0 +BF

C+DF

]

Wi ⊆ E Wi ⊕{0}, i ∈ {1,2}.

Thus,

[

A0 +BF

C+DF

]

W ⊆

[

A0 +BF

C+DF

]

W1 ∩

[

A0 +BF

C+DF

]

W2

⊆ (E W1 ⊕{0})∩ (E W2 ⊕{0})

= (E W1 ∩E W2)⊕{0}

= E (W1 ∩W2)⊕{0},

where the last equality follows from the fact that W ⋆ ∩
kerE = {0}. In fact, in general there holds E (W1 ∩W2) ⊆
E W1 ∩ E W2. In this case, however, such relation holds

with the equality sign. Indeed, let ξ ∈ E W1 ∩ E W2. This

means that two vectors ξ1 ∈ W1 and ξ2 ∈ W2 exist such that

ξ = E ξ1 = E ξ2. This implies that the difference ξ1 − ξ2

is a vector of kerE . On the other hand, such difference

is also an element of W ⋆, since W1 ⊆ W ⋆ and W2 ⊆ W ⋆.

Since W ⋆∩kerE = {0}, we find that ξ1 = ξ2, and therefore

ξ ∈ E (W1 ∩W2). By intersecting E Wi ⊇ E W ⋆∩B kerD for

i ∈ {1,2}, we get E W1 ∩E W2 ⊇ E W ⋆ ∩B kerD. Since as

aforementioned W ⋆ ∩ kerE = {0} guarantees that E W1 ∩
E W2 = E (W1 ∩W2), we find E (W1 ∩W2)⊇ E W ⋆∩B kerD,

which implies that W is self-bounded of feedback type.

Theorem 4: Let W ⋆ ∩ kerE = {0}. Let F be a friend of

W ⋆. The minimum element of the lattice (Φ(Σ),+,∩;⊆)

is given by the last term R⋆ of the monotonically non-

decreasing sequence of subspaces {Ri}i given by
{

R0 = W ⋆∩E−1B kerD

Ri = Ri−1 +
(

E−1(A0 +BF)Ri−1 ∩W ⋆
)

+
2

∑
j=1

(E−1A j Ri−1 ∩W ⋆),

with i ∈ {1,2, . . . ,k}, where the integer k≤n−1 is deter-

mined by the condition Rk+1=Rk, i.e., R⋆ = Rk.

Notice that subspace R⋆, as defined above, is the smallest

(E;A0 +BF,A1,A2) invariant subspace of X that contains

the subspace W ⋆∩E−1B kerD. The proof can be carried out

by adapting the proof of [14, Lemma 7.10] to the argument

used in the proof of [6, Lemma 3.1]. In particular, i) R⋆

is output-nulling; ii) R⋆ is self-bounded; iii) R⋆ does not

depend on the particular choice of the friend F of W ⋆; iv)

R⋆ is the smallest among all the self-bounded subspaces

of Σ. It is also worth noticing that, unlike the 1-D case,

R⋆ does not coincide with the intersection of the largest

output-nulling subspace of feedback type with the smallest

input-containing subspace of output-injection type, as it was

proved (in the regular strictly proper case) in [14, p. 352].

V. DUALITY AND SELF-HIDDENNESS

The dual concept of 2-D controlled invariance is called

2-D conditioned invariance. While 2-D controlled invariant

subspaces reside in the state-space X , their duals lie in the

outer state space X . A subspace S of the outer space X
is conditioned invariant for Σ if

Ai (E
−1 S ∩kerC)⊆ S , i ∈ {0,1,2},

see [15]-[16]. The duality between 2-D controlled and

conditioned invariance can be stated in precise terms as

follows. Let ΣT identify the dual system of (1-2), i.e., ΣT def
=

(ET;AT
0,A

T
1,A

T
2;CT;BT;DT). Then, the orthogonal complement

of a controlled invariant for Σ is conditioned invariant for ΣT,

and vice-versa. The duals of 2-D output-nulling subspaces

are the 2-D input-containing subspaces, which can be defined

as the subspaces S satisfying the subspace inclusion




A0 B

A1 0

A2 0





(

(E−1S ⊕U )∩ker
[

C D
]

)

⊆
3

⊕

k=1

S .

The set of input-containing subspaces of Σ is denoted by

S (Σ). This set is closed under subspace intersection but not

under subspace addition. Therefore, (S (Σ),∩;⊆) is a (non-

distributive and modular) lower semilattice with respect to

the binary operation ∩ and with respect to the partial ordering

⊆. Thus, it admits a minimum given by S ⋆ = min S (Σ) =
⋂

S∈S (Σ)S . By dualising the algorithm for V ⋆, we have

the following.

Lemma 7: [15]-[16]. S ⋆ is the last term of the monoton-

ically non-decreasing sequence of subspaces {S i}i given by


















S 0 = 0

S i =
2

∑
j=1

[

A j O
](

(E−1S i−1 ⊕U )∩ker
[

C D
])

+
[

A0 B
](

(E−1S i−1 ⊕U )∩ker
[

C D
])



where the integer k≤n−1 is determined by the condition

S k+1=S k, i.e., S k = S ⋆.

The dual of controlled invariance of feedback type was

introduced in [15]-[16] with the name of conditioned invari-

ance of output-injection type. A subspace Z is conditioned

invariant of output-injection type for Σ if

• A0(E
−1Z ∩kerC)⊆ Z ;

• A1E−1Z ∩A2E−1Z ⊆ Z .

For conditioned invariant subspaces of output-injection type

the existence of a matrix G is guaranteed such that

(A0+GC)E−1Z ⊆Z , A1 E−1Z ⊆Z , A2 E−1Z ⊆Z .

Conditioned invariant subspaces of output-injection type and

controlled invariant subspaces of feedback type are dual

objects. In order to define a notion of self-hiddenness for Σ,

we also need to define input-containing subspaces of output-

injection type. A subspace Z is an input-containing subspace

of output-injection type for Σ if
[

A0 B
](

(E−1Z ⊕U )∩ker
[

C D
])

⊆ Z (15)

AiE
−1Z ⊆ Z i ∈ {1,2}. (16)

Input-containing subspaces of output-injection type are the

duals of output-nulling subspaces of feedback type. It fol-

lows that the set of input-containing subspaces of output-

injection type Z (Σ) is closed under intersection but not

under addition, and (Z (Σ),∩;⊆) is a lower semilattice,

whose minimum is denoted by Z ⋆, which can be obtained

by dualising the algorithm in Lemma 4:










Z 0 = 0

Z i =
[

A0 B
](

(E−1Z i−1 ⊕U )∩ker
[

C D
])

+
[

A1 A2

]

(E−1Z i−1 ⊕E−1Z i−1)

A self-hidden subspace Z for Σ is an input-containing

subspace of output-injection type for Σ which satisfies

E−1 Z ⊆ E−1 Z ⋆+C−1 imD, (17)

Z ⋆+ imE = X . (18)

The dual of a self-hidden subspace is a self-bounded sub-

space. We denote by Ψ(Σ) the set of self-hidden subspaces

of Σ:

Ψ(Σ)
def
=
{

Z ∈Z (Σ) |E−1 Z ⊆ E−1 Z ⋆+C−1 imD,

Z ⋆+ imE = X
}

As a result of this duality, it follows that Ψ(Σ) is also a

lattice. Its minimum element is Z ⋆. Its largest element can

be obtained by dualising the algorithm in Theorem 4 as
{

Q0 = Z ⋆+EC−1 imD

Qi = Qi−1 ∩
(

E (A0 +GC)−1 Qi−1 +Z ⋆
)

∩
2
⋂

j=1

(E A−1
j Qi−1 +Z ⋆),

where G is a friend of Z ⋆, i.e., it satisfies




A0 +GC B+GD

A1 0

A2 0



 (E−1Z ⋆⊕U )⊆
3

⊕

k=1

Z ⋆
.

The sequence is monotonically non-increasing, and con-

verges in at most n−1 steps to the subspace Q⋆ =minΨ(Σ).

VI. CONCLUSIONS

In this paper we have introduced the concepts of

self-boundedness and self-hiddenness for 2-D implicit

Fornasini-Marchesini models. We have observed that the

geometric characterisation of these subspaces within this

context is richer than in the case of regular 2-D models.
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