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Abstract: 

A train station catchment area delineates the spatial territory from which the users of a 

train station are drawn. The size and shape of this catchment can be influenced by a 

variety of factors, such as the transport network, the location of stations and the 

service quality they offer, as well as the land use density and diversity in the transport 

corridor. Although numerous studies have been conducted to understand the size of 

catchment areas, limited research has focused on determining the spatial boundary 

(shape) of train station catchments. This paper develops a framework for deriving a 

spatial boundary of a Park and Ride (PnR) catchment area by incorporating the Huff 

model and Geographic Information Systems (GIS) technologies. The approach  is 

staged, firstly determining the PnR station choice as a function of the attractiveness of 

a train station and the cost of access between the origin (such as a suburb) and the 

destination of a trip (such as the Perth CBD). Linear referencing method is then 

applied to re-define the origins to train stations based on the derived station choice 

probability. Finally, the spatial boundary of a catchment area is determined according 

to the adjusted origins, using GIS technologies. The model outputs were evaluated 

against licence plate survey of station users, where the Kappa coefficient (0.74) and 

overall accuracy (0.88) statistic suggested that the model’s results are robust. The 

paper then shows how catchment area data can be used to better manage travel 

demand and plan design solutions aimed at increased accessibility to train stations.  

 

Keywords: urban rail transport, station choice, modified Huff model, linear 

referencing, station attractiveness 
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1. Introduction   

A train station’s catchment area refers to the areal extent from which the majority of 

users will typically be found (Dolega et al., 2016) . It is a prerequisite for the 

calculation of several fundamental statistics including latent demand (potential 

customers) (Banister, 1980), market share (the portion of a market) (Lee and Masao, 

1988, p. 17-19) and accessibility (ability to reach) (El-Geneidy and Levinson, 2006). 

Catchment area estimation methods are numerous, range greatly in sophistication, and 

the choice between them largely depends on the complexity of the competitive forces 

involved, along with their computational complexity and data availability.  

 

Proximity-only models include buffer rings and polygons depicting drive time along a 

network (i.e. service areas) from a point of interest (e.g. convenience store). Buffer 

rings are perhaps the simplest method to calculate, but assume distance from origin to 

destination is Euclidean and omnidirectional, whereas catchment areas can have a 

diverse shape affected by road alignments, natural features, property developments, 

zoning, parking capacity, location of train station, and surrounding land use (Cervero 

et al., 1995; Debrezion et al., 2009; Sanko and Shoji, 2009). Furthermore, these 

approaches make generalised, and strictly binary, decisions about maximum buffer 

distance (Upchurch et al., 2004) . For example, 800 m has been broadly accepted as a 

reasonable walking distance to a train station (Cervero, 2001; Cervero et al., 1995; 

El-Geneidy et al., 2010; Zhao et al., 2013). However, this distance varies spatially, 

with people living in the suburbs likely to accept larger distances than people living in 

the CBD (O'Sullivan and Morrall, 1996), for example. Service area polygons are a 

more realistic way of delineating the catchment area and are valid where patrons are 

expected to use the closest facility (Dolega et al., 2016; Landex and Hansen, 2009). 

However, like buffer rings, they can be poor predictors of catchment area where 

proximity is not the only consideration for selecting a particular service.  

  

Proximity to residence is not necessarily the only factor for choosing a train station,  

as factors such as service quality, facilities available at station, total travel time, access 

time, service frequency, generalised cost, access mode, road congestion, network 

connectivity, parking search time, carriage crowding, and demographics all play a key 

role in station choice (Chen et al., 2014a; Chen et al., 2014b; Kastrenakes, 1988; Lin 

et al., 2014; Olaru et al., 2014; Ryan et al., 2016; Shao et al., 2015). For example, 

some users may choose a station nearer to their final destination, in order to save 

travel costs, while others may choose a station further away from their destination to 

secure a seat and improve the comfort of their travel, and get access to convenient 

parking. A study conducted by Debrezion et al. (2007) found that less than half (only 

47%) of the passengers in a Dutch railway survey chose their nearest train station. 

Whilst this may be an extreme example, it does serve to illustrate that the size of 

catchment area can depend upon the interaction of travellers with facilities and 

services at stations. This cannot be well depicted with proximity-only models. 

Another concept uses the convex hull of geocoded trip data (origin to destination) 
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after removal of outliers (Durr et al., 2010) which could present the real trip 

characteristics, but does require substantial sample sizes (both spatially and 

temporally) to be truly representative. In such cases, gravity models may be more 

appropriate as they include not only distance but attractiveness in their computation.   

 

Hence some new perspectives are needed to define train station catchment areas that 

can incorporate the plethora of reasons affecting decisions made by travellers. In this 

study, we apply the Huff Model to define train station boundaries using the suburban 

railway service in Perth, Western Australia as a test case. The Huff model is a 

probabilistic retail gravity model originally used to predict consumer behaviour 

among competing retail stores (Huff, 1963). Its major advantage over proximity-only 

models and more simplistic retail models (e.g. Reilly (1931)) is the ability to 

simultaneously estimate a customer’s patronage probability for many centres (e.g. 

retail locations) at once (Joseph and Kuby, 2011). Whilst originally developed for 

retail, the Huff model has been applied to many other areas including accessibility to 

health care (Luo, 2014)  and healthy food (Kuai, 2015), and for choice based 

analysis like university campus or movie theatre to attend (Bruno and Improta, 2008; 

De Beule et al., 2014; Nakanishi and Cooper, 1974).  

 

The aim of the paper is to develop a methodology for deriving the spatial boundary of 

the PnR catchment area of train stations, by incorporating the Huff model and 

Geographic Information Systems (GIS) technologies. Four objectives for achieving 

this aim are: a) adapt the Huff model by including additional factors that affect train 

station choice using the Multiple Criteria Decision Analysis (MCDA); b) determine 

the probabilities for PnR commuters to choose a parking station from the nearest three 

train stations to their origins; c) derive the spatial boundary of the PnR catchment area 

of train stations; d) validate the model with observed license plate survey of actual 

station PnR users.  

 

The paper is structured as follows: Section 2 states the material used in the paper. 

Section 3 focuses on the framework and methodology of estimating catchment areas. 

The results are explained based on a case study of Perth, Western Australia in Section 

4. Section 5 evaluates the results by two different methods and Section 6 exemplifies 

the methodology using two scenarios. The paper ends with a summary of findings and 

contributions, and a discussion of limitations and possible further developments. 

2. Materials 

2.1 Study area  

Perth has 70 train stations on 173 kilometres of track (Australian Department of 

Infrastructure and Transport, 2014). Figure 1 shows the overall design of Perth’s rail 

network, which includes three long established lines (Midland, Fremantle and 

Armadale lines built before the 1900s) and two new lines crossing the city from the 

North to the South (Joondalup, 1992 and Mandurah, 2007 lines) (PTA, 2009). The 
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radial system starts from Perth’s CBD, which is the largest destination of the rail trips, 

and most railway trips in the morning peak hour are in-bound trips. There are 

significant differences among the train lines, stations and their surrounding land use, 

mainly because of their place in the urban development of Perth. (see Figure 1).  

 

Perth (Western Australia (WA)) is a low-density city (310 people per km
2
 for the 

Great Perth) with high car ownership (around 723 vehicles per 1, 000 people) 

(Australian Bureau of Statistics, 2012-2013; Curtis, 2008). This has made the delivery 

of a high-frequency public transport system a major challenge. The PnR system is 

widely recognised as having a positive influence on public transport demand in a low 

density city (Olaru et al., 2013). Perth has developed a 17,203 parking bays (including 

270 short-term parking bays and 16,983 long-term parking bays) by 2010 and plan to 

add additional 17,000 by 2021 as part of its $3.8billion METRONET plan (McGowan, 

2013). 

 

Figure 1: Perth railway network and location of intercept surveys (Lin et al., 2014) 

(Surveys were conducted at the seven labelled stations) 

2.2 Data collection 

This research used multiple sources of primary and secondary data. Primary data refer 

to data that observed and collected from first-hand experience whist secondary data 

refer to the data that previously gathered by someone else for some other purposes 

(Stevens, 2006, p. 90). Table 1 summarises the data collected by this study. In order to 

understand commuters’ station choice behaviour, intercept surveys were conducted to 

collect travel data of all public transport riders (including all travel modes) and their 

satisfaction with train services and facilities. We randomly chose train users at station 

platforms and asked them to fill in the questionnaire designed for our study. The 

intercept surveys were conducted on all five rail lines, at seven stations (Figure 1) on 

two occasions: 31 July - 1 August 2012 (between 6:00AM and 4:00PM) and 19 - 20 

September 2013 (between 7:00AM and 12:30PM). A total of 1,263 responses were 

collected. The purpose of the intercept surveys is to understand the commuters’ travel 

behaviour. For this study, we used the PnR component of the survey. Prior to that, a 

PnR facilities survey was conducted in April 2012 to understand train station service 
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quality. Twenty-seven types of facilities (12 categories of facilities within and around 

the train stations) were audited at all train stations in the Perth Metropolitan Area. 

Finally, the licence plate survey data and the public transport timetable information 

were obtained from the state government agencies (e.g. Public Transport Authority, 

PTA, Department of Planning, DoP, and Department of Transport, DoT). The licence 

plate survey provided the home address for the PnR users at the train stations, based 

on their number plate and vehicle registration information. The home location 

(randomly shifted within a 50 m buffer in order to protect individual privacy) was 

then geocoded and mapped. Although this procedure aimed to ensure anonymity it did 

introduced some locational errors, though they are were deemed small enough and 

within the range of confidence for model validation.    

 

Information from the intercept surveys indicates that work and education represent the 

dominant trip purposes for the morning peak travel (over 80%) and one-third of 

commuters use PnR (32.65%). In addition, results show that over 70% of the PnR 

travellers accessed stations at distances less than 8 km, which corresponds to an 

average of three stations (see cumulative function Figure 2). 

 

Table 1 Data collection summary table 

  Primary data source 

 
Name Num Stations Num Samples Time period 

1 Intercept survey 1 7 940     31/07/ 2012- 1/8/2012 (6:00AM - 4:00PM)  

2 Intercept survey 2 7 323     19-20/ 09/ 2013 (7:00AM-12:30PM) 

3 Facilities survey 691 
 

    April 2012  

4 
Factors importance 

ranking survey2 
  17     December 2013 

  Secondary data source 

  Name Num Stations Time period Source 

1 Network data    Provided by DoP 

2 Walk Score 69   Work Score (https://www.walkscore.com/) 

3 Licence plate survey 22 2006-2008 Provided by DPI 

4 TransPerth timetable 69   PTA (2015) 

5 
Car park full time 

survey  
  2014 Parliament of WA (2014) 

6 Statistical boundaries  2011 
Australian Bureau of Statistics 

(http://www.abs.gov.au) 

7 Journey to work  2011 Australian Bureau of Statistics (2011) 

1 A new station (Bulter) opened in Perth, 2014 

2 17 policy makers from government agencies 
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Figure 2: Cumulative distance function 

3. Methods 

Starting from the Huff model, this section describes the steps required to model the 

catchment area of railway stations. The first step applied a modified Huff model to 

determine the probability of a station was chosen by PnR users. Linear referencing 

was used to calibrate the points of the origins for trips. Finally, the spatial boundary of 

a station catchment area was delineated according to adjusted points using ArcGIS
TM

 

software. Perth, Western Australia, was selected as case study given the prominence 

of PnR in the public transport mode share and the local knowledge of the researchers. 

For simplicity, only morning commuting trips to CBD were analysed, as they 

represent more than 60% of the total trips done in the morning peak. 

3.1 Modified Huff model 

The original Huff model was developed by Huff in 1963 (Huff, 1963) for 

understanding the popularity of shopping centres based on a spatial interaction theory. 

It has endured for more than 50 years and has been widely used by business analysts 

and academicians all over the world (Huff and McCallum, 2008). For this study, the 

original Huff model was modified for application to choice of train station as follows 

through provided equation (2) and (3) regarding to how to define jA
and ijT

: 

1

ij

nij

ijj

Aj

T
P

Aj

T








                               (1)                                                                 

1 1 2 2 ...j l lA F F F                              (2)                                                
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ij ij jT TOT TTD                               (3)                                                 

where: 

ijP
 is the probability of travelling from origin suburb i to Perth CBD, through train 

station j; 

ijT
is network based travel time from origin suburb i to Perth CBD through train 

station j; 

 is a distance decay exponent, indicating the effect of travel time on station choice 

(here  =2);  

jA
 is the attractiveness of train station j; 

lF
 is the factor l that contributes to the train station’s attractiveness, such as parking 

availability index or land use diversity index; 

lW
 is the weight of the factor l that contributes to the train station’s attractiveness; 

ijTOT
is network based travel time from origin suburb i to train station j (access time); 

and 

jTTD
is travel time from train station j to Perth CBD (here it means in-vehicle time). 

In the most recent form of Huff model, the attractiveness was measured in a 

multiplicative form and the weight or parameter for the sensitivity of a choice 

associated with a factor was estimated and calibrated statistically using the actual 

shopping preference survey data (Huff and McCallum, 2008). In our study, rather than 

the multiplicative form, we adopted the additive form to derive weights by conducting 

an extra survey for understanding policymakers’ opinions on the importance of train 

station choice factors. For the detailed information, see section 3.2. 

  

Dolega et al. (2016) reported the distance decay parameter usually takes a value of 

between −1 and −2, depending on factors such as the types of retail centres or 

competition between centres; Dramowicz (2005) also noted the distance decay 

parameter as a value of 2. In transport, it is reported that 2 is usually used for the 

distance decay of a power function (Cambridge Systematics et al., 2012, p. 44). 

Through modelling the relationship between distance and the percentage of PnR trips 

within a 1 km buffer ring using a power function in the Matlab
TM

, the distance decay 

parameter was estimated to be about -1.87 (R
2
 = 0.67) (see figure 3). Based on 

literature and our model, two, therefore, was adopted for the modified Huff model. 

The robustness of model was thoroughly evaluated in Section 5. 
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Figure 3: Distance decay of commuters’ station choice 

 

 

Because Perth’s CBD is the largest employment centre and the largest destination in 

Perth, we simplified the analysis by considering only trips to the city. Therefore, the 

travel time includes access time from home to a station and travel time from the 

station to Perth’s CBD. While the travel time from home to a station is populated 

through network analysis in ArcGIS
TM

, the travel time from station to Perth’s CBD is 

directly extracted from Transperth timetables (PTA, 2015). As indicated, given the 

low density and longer travel distances in Perth, the choice set is reduced from 70 

stations to the closest three stations to home location. Therefore, instead of calculating 

the probability of accessing any of the 70 stations, the nearest three stations to the 

centroid of a suburb were considered as candidate stations. 

3.2 Attractiveness of a train station 

The attractiveness of station can be determined using both a multiplicative form (Huff, 

2003) and an additive form (Haimes and Steuer, 2012, p. 333). This study adopted the 

additive form based on the MCDA model in order to incorporate the experts’ opinions 

on the importance of factors affecting station choices. The attractiveness of a train 

station was measured using four indices:  

 Parking capacity (the number of available parking bays at the train stations);  

 Street parking availability (dummy variable, indicating whether street parking 

is available around a station 1 or not 0);   

 Land use diversity index, and  

 Service and facility quality index.  

 

This research adopted the Walk Score for assessing land use diversity (Leslie et al., 

2007), as it represents a good proxy for land use mix. Walk Score was calculated 

based on “distance to 13 categories of amenities (e.g., grocery stores, coffee shops, 

restaurants, schools, parks, libraries); and each category was weighted equally and 

summarized scores were then normalized to yield a score of 0-100” (Carr et al., 2010). 

Finally, the train station service and facility quality index include two components: 

facilities and frequency of services. Frequency was measured by the average number 
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of trains serving the train station on a working day (using the Transperth timetables). 

The facilities index was calculated as a weighted sum of 12 facilities and its 

components is shown in Figure 4. 

 
Figure 4: Components of a Train Station’s attractiveness 

As these factors are measured in different units, in order to combine them into one 

attractiveness index, the factors were “standardised” using the score range (benefit 

criteria) method (Malczewski, 1999): 

min

'

max min

ij j

ij

j j

X X
X

X X





                                 (4) 

where: 

'

ijX  is the normalised value for item i in jth attribute;  

min

jX  is the minimum score for the j
th

 attribute; 

max

jX  is the maximum score for the j
th

 attribute; and  

max min

j jX X  is the range of a given criteria. 

 

Then, the overall attractiveness of a train station was calculated according to equation 

(2). These weights were determined through ranking the importance of factors from 

1-7, 7 is the most important by policy makers. Seventeen officers from government 

agencies (such as DoP, PTA and DoT) were interviewed. The average of ranked 

values of each factor was calculated and rescaled into weights using a comparison 

weighting matrix. These weights, therefore, can be added up to one for deriving the 

attractiveness of a train station using the MCDA model (See Table 2). For services 

and facilities index (SQI), there are two main components (frequency and facilities). 

However, we didn’t separate them in the questionnaire. Based on the research from 

Chen et al. (2014b), the frequency is twice more important than facilities. The weight 

of SQI was re-distributed. 
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Table 2: The weights of factors that contribute to attractiveness of a train station 

Factor Weights 

Parking capacity 0.29 

Street parking availability 0.24 

Land use diversity index 0.23 

Services and facilities quality index  0.24 Facilities 0.16 

Frequency 0.08 

3.3 Linear referencing and origin calibration for deriving spatial boundary of 

catchment area 

The purpose of linear referencing and origin calibration is to define the spatial 

boundary of the catchment area of a train station. The modified Huff model outputs 

the probabilities of a station being chosen from a particular location, such as a 

centroid of a suburb (Figure 5). One suburb can then be allocated to three train 

stations with different probabilities (section 3.1). Once these probabilities are 

calculated, the next step is to determine the spatial boundary of the catchment area for 

each train station. In order to make a fair allocation, the centroid of the suburb is 

relocated using the linear referencing method. The underlying principle is that the 

probability of a station being chosen is inversely proportional to the distance between 

a suburb and a station. If the probability of a station being chosen is lower, the 

centroid of a suburb will be moved away from its original location and get closer to 

the station. The lower the probability Pij, the more the adjustment of the centroid of 

suburb i and the shorter the distance D’ij. We call this process linear referencing and 

origin calibration. It can be formalised in the following.  

' *
ij

ij ij highest

i

P
D D

P


 

                        (5) 

where: 

'

ijD
is the adjusted distance from the centroid of a suburb (origin) i to station j which 

will determine the calibrated origin;  

ijD
 is the distance from the centroid of a suburb (origin) i to station j; 

ijP
is the probability of choosing station j from the centroid of a suburb (origin) i to 

Perth CBD; and  

highest

iP is the highest probability of a station being chosen from the centroid of a 

suburb (origin) i to Perth CBD. 
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Figure 5: A diagrammatic sketch of calibrating origins for the nearest three train stations from the 

centroid of a suburb 

 

The spatial boundary of the catchment area of a station was determined using the 

linear referencing method. As each calibrated origin point represents a suburb, the 

spatial boundary of a train station was drawn by selecting the intersected suburbs of a 

station and dissolving or aggregating the boundary of selected suburb’s polygons into 

one area of the station using the ArcGIS
TM

 software. Figure 6 illustrates the process of 

how the boundaries were drawn using Model Builder
TM

 in the ArcGIS
TM

.   

 

 

Figure 6: The process drawing a boundary in ArcGIS 

4. Results 

4.1 The attractiveness of train stations 

Figure 7a shows the Walk Score, which represents the land use diversity around the 

train stations. From the map, it is seen that Perth CBD has higher walkability. Perth 

and Esplanade stations get the highest values; and the further from the CBD, the 

lower the Walk Score. Among the train lines, Fremantle and Midland lines receive 
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higher Walk Scores than other train lines as the surrounding areas are well-developed 

along these two train lines. Although Perth City got higher Walk Score, the final 

attractiveness was not necessarily the highest when all factors (Figure 7b) were taken 

into account. It is mainly due to the limited parking capacity in the CBD area. 

 

 

Figure 7: The map of Walk Scores of train stations and train station’s attractiveness 

 

4.2 Origin calibration 

To illustrate how the method was applied, Figure 8 provides an example of output 

from the modified Huff model (Alexander Heights is the suburb name). The nearest 

three stations to Alexander Heights are Warwick, Greenwood and Whitfords stations 

(see Figure 8). The probabilities of these three stations being chosen from the suburb 

are 0.41, 0.31 and 0.28. Warwick station has the highest probability; therefore, the 

centroid of Alexander Heights will remain unchanged on the line to the Warwick 

station. However, the centroid of the suburb will move towards the Greenwood and 

Whitfords stations by 1,881.55 m and 2,585.67 m respectively.  
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Figure 8: The outputs from the Modified Huff Model and origin calibration 

5. Evaluation of the methodology 

Two approaches were applied to assess the performance of the methodology: direct 

comparison and using the Kappa test, described in sections 5.1. Both of them used 

license plate survey data (section 2.2). The approximate home locations of PnR users 

as observed data served for validating the accuracy of derived spatial boundary of the 

catchment area of a station. The license plate survey is a good source for 

understanding the train station catchment areas (See Figure 9). The yellow points 

represent the approximate locations of the PnR users’ travel origin. Buffer rings of 1, 

3, 5, and 10 km were drawn around the train stations to illustrate the size of their 

catchment areas.   

 



14 
 

 
Figure 9:Cockburn central catchment area study based on 2007 plate survey data (DPI, 2007) 

 

5.1 Direct evaluation 

Direct evaluation was conducted by overlaying the catchment area derived from our 

method over the observed PnR users’ origins on a map and calculating the percentage 

of PnR users within the catchment area boundary. Table 3 shows the direct evaluation 

results for 22 train stations where the license plate survey was conducted. The overall 

accuracy of the model is satisfactory by capturing around 73% of patronage, given the 

nearest three train stations considered in the methodology. Maylands, Cannington and 

Claremonts stations, which are on heritage train lines, have lower performance which 

is probably due to a combination of the small spacing between stations on these lines 

and the land use diversity around those stations, attracting for commuters from 

beyond the three nearest stations to come. For example, Cannington station remains 

51.4% driving longer distances to board the train at the Cannington station. It is also 

consistent with the results in Shao’s research that it is only 26.9% commuters in 

Cannington station chose Cannington station because it is the nearest station, which 

means 73.1% people didn’t choose their nearest station to their origin instead of 

driving a longer distance to use Cannington station (Shao et al., 2015). 
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Table 3: Evaluation table using plate survey provided by PTA 

Station Name Percentage
1
 

(%)  

Station 

Name 

Percentage
1
 

(%)  

Station Name Percentage
1
 

(%)  

Cannington 48.59 Maylands 58.18 Bassendean 60.55 

Thornlie 66.73/70.892 Meltham 59.62 Midland 60.55 

Armadale 76.34 Bayswater 60.83 Claremont 36.00 

Fremantle 89.66 Stirling 62.45 Glendalough 74.92 

Warwick 87.22 Greenwood 86.34 Whitfords 76.74 

Edgewater 89.66 Currambine 85.38 Clarkson 85.64 

Bull Creek 72.90 Murdoch 75.75 Cockburn 

Central 

79.15 

Mandurah 87.99   Average 72.85 

1 Percentage of survey commuters covered by catchment area generation algorithm 

2 PTA conducted two number plate surveys at the station 

 

5.2 Kappa statistic test 

Although the direct evaluation provided a simple way to assess the performance of the 

model, it only counts points of origins inside the catchment area. Kappa statistic test 

can evaluate performance by thoroughly considering origin locations both within and 

outside the boundaries of the station catchment areas – LOFI (little out from inside) 

and LIFO (little in from outside) (Huff and McCallum, 2008). 

 

Kappa test, introduced by Cohen (1960), is the most commonly used index for 

analysing agreement on a binary outcome between two observers or two classification 

methods (McLsaac and Cook, 2014). It is frequently used to test reliability.  

 

Figure 10 illustrates how Kappa coefficient was calculated. The colours denote three 

different train stations. The circles indicate the modelled catchment areas and the 

points indicate the origins of travel (observed data). To conduct the Kappa test for the 

blue station, we need to also include the data from adjacent stations (yellow and 

purple stations). According to the Kappa test, the records are grouped into four 

categories depending on the agreement between catchment areas and the vehicle 

registration plate survey data: observed presence and modelled presence (PoPm), 

observed absence and modelled absence (AoAm), observed presence and modelled 

absence (PoAm), observed absence and modelled presence (AoPm). PoPm counts all 

the observed license plate points inside the modelled catchment area (see four blue 

points inside the blue circle on Figure 9; AoAm counts for all the observed points 

outside the modelled catchment area (six yellow and purple points outside the blue 

circle on Figure 9). AoPm counts the yellow and purple dots inside the blue circle, but 

outside their own colour circles. These locations are important because the catchment 

areas of the train stations can substantially overlap. Finally, PoAm counts for all blue 

points outside the blue circle. AoPm and PoAm indicate the errors of the model. Then 

the Kappa coefficient and the accuracy of the model could be determined as (Viera 
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and Garrett, 2005) : 

 

1 o m o mm P P A P                          (6) 

0 o m o mm P A A A                         (7) 

1 o m o mn P P P A                          (8) 

0 o m o mn A P A A                         (9) 

o m o m o m o mn P P A A A P P A                          (10) 
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o
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
                        (11) 
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n n n n
                        (12) 

1

o m

m

AG AG
K

AG





                       (13) 

             

where: 

oAG  represents the observed agreement; 

mAG  = modelled agreement; and  

K = Kappa index; 

 

Figure 10: The illustration of Kappa test 
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Like most correlation statistics, the Kappa can range from −1 to +1. Cohen suggested 

that Kappa statistic could be interpreted as follows: values ≤ 0 indicate no agreement, 

0.01–0.20 show weak/slight agreement, 0.21–0.40 fair agreement, 0.41–0.60 

moderate, 0.61–0.80 substantial, and 0.81–1.00 as almost perfect agreement.  

 

As described, Kappa calculation requires the presence of adjacent stations. Although 

22 stations have the license plate data, only six stations satisfied the criterion of three 

consecutive train stations available. The results are shown in Table 4. The results from 

Kappa index show the overall accuracy of the model is satisfactory and the 

proportions are higher than in the direct evaluation method. The overall accuracy here 

refers to the ratio that is correctly modelled. To example shown in the Figure 10, it 

can be expressed as (PoPm+ AoAm)/( PoPm+ AoAm+ PoAm+ AoPm). 

 

Table 4: Kappa coefficient table 

Station 

Name 

Kappa 

index  

Overall 

Accuracy 

Station 

Name 

Kappa 

index 

Overall 

Accuracy 

Meltham 0.70 0.91 Stirling 0.61 0.80 

Warwick 0.86 0.95 Greenwood 0.84 0.92 

Whitfords 0.78 0.89 Murdoch 0.62 0.83 

Average 0.74 0.88    

 

6. Implementation of the methodology and policy implications  

Two case studies are presented next to understand the catchment area and the 

supply-demand relationships for Perth train stations.   

 

6.1 Changes after Mandurah line expansion 

Figure 11 and Table 5 show the variation of catchment areas of train stations after 

Mandurah line expansion. It appears that the operation on the newest rail line to 

Mandurah had a significant influence on the Fremantle and Armadale lines. The 

largest catchment areas correspond to the stations located near to the end of the train 

line, such as Mandurah, Rockingham. At the same time, for Fremantle and Armadale 

lines, most of the train stations have decreased their catchment areas after Mandurah 

train line expansion (Table 5). The reason of the big catchment area variations in 

Table 5 is due to lack of train services in the south/southwest suburbs of Perth before 

train line expansion and train users live far away from Mandurah train station still 

need to access train services (Figure 12). Another possible reason is the long station 

spacing on the Mandurah line. For example, the spacing between Warnbro and 

Mandurah is around 23.5 km. Figure 10b shows the substantial changes in the 

catchment area of Fremantle train station before and after Mandurah line expansion. 

The results are also due to some changes in the suburb boundaries occurred between 

2006 and 2011 (the line started operation in December 2007). From the modelling 

result, the average rate of Fremantle catchment decrease is 126.65% whist for 
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Armadale line, the average decrease rate is around 90.95% after Mandurah line 

expansion.  

 

Figure 11: Catchment area variation after Mandurah line expansion 

 

 

Table 5: Catchment area variation rank table 

Station 

Name 

Catchment Area (km
2
) Rank Station 

Name 

Catchment Area 

Variation - Decreased 

(km
2
) 

Rank 

Mandurah  2,129.99  1 Sherwood -3,352.54  1 

Rockingham  817.98  2 Armadale -2,261.31  2 

Warnbro  622.21  3 Challis -924.21  3 

Wellard  370.95  4 Seaforth -486.57  4 

Kwinana  315.47  5 Fremantle -222.27  5 
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Figure 12 :Mandurah catchment area study based on 2007 plate survey data (DPI, 2007) 

 

6.2 Latent PnR demand and supply 

In Perth, Parking supply is an important determinant of the travel mode choice. As it 

delineates where travellers come from, the estimated catchment area of a train station 

can be used for estimating the parking demand and thus helping to support parking 

supply decisions. The survey of car parks found most of them are full before 8:00am, 

indicating that most train stations have insufficient parking bays (Parliament of WA, 

2014). Combining this information with journey to work data from Census 2011 

(Australian Bureau of Statistics, 2011), Table 6 shows the estimated parking demand 

compared to  the current parking supply, highlighting stations with unsatisfied 

parking demand.  
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Table 6:  Estimated PnR demand vs provided parking bays 

Station 

Name 

Estimated PnR 

Demand 

Ranking by 

Demand 

Long-term 

bays 

Current Capacity 

Status 

Edgewater 1,596 1 887 Full by 7:45 am 

Joondalup 1,391 2 225 Full by 5:40 am 

Murdoch 1,256 3 1,152 Full by 7:50 am 

Greenwood 1,147 4 931 Full by 7:50 am 

Whitfords 1,035 5 866 Full by 7:30 am 

 

It is found that the highest PnR demand is at train stations where there is already a 

large supply of parking bays. Still the supply shortage exists. Most of the train stations 

identified in table 6 have parking areas full in the early hours of the morning and 

earlier than at other train stations (according to the car park full time survey 

conducted in 2014). This is especially the case of the Joondalup train station, where 

the car park is full before 5:40 am. 

7. Concluding remarks 

This paper has reported on the development of a modelling tool to forecast the 

catchment area of a train station, which is useful for understanding the potential travel 

demand of transit stations, and for subsequent planning of parking space supply. The 

developed model delineated the catchment area based on the attractiveness of the train 

station and the distribution of residential origins. This is novel and enriches the 

existing catchment area measures. By combining an enhanced Huff model with linear 

referencing modelling, we now better understand the competition between train 

stations, as well as the role of train station attractiveness on the catchment areas. 

Using a case study for Perth, Western Australia, the model was tested using direct 

evaluation and Kappa statistic. The results confirm the robustness of the model.   

 

The method we developed has several advantages and benefits: 1) It is simple to 

calculate and provides not only the size of a catchment area, but also the spatial 

boundary (extent) of a catchment area of a transit station. Therefore, it can be easily 

used to link to other issues of concern to transit policy and planning (Dolega et al., 

2016). 2) Using catchment areas can provide better estimates of latent demand for a 

transit station, and account for competition between stations. 3) The tool is useful for 

both long-term and short-term planning. For example, catchment area can be used to 

test various infrastructure scenarios. These include  the impact of adding a new 

station, or even a new train line, on the catchment area of the station or line itself 

(local effect) or the catchment area of other stations and lines (global effect) (Rietveld, 

2010). Therefore, decision-makers can develop more sensitive long term plans for 

transport supply and demand. 4) This methodology can also be useful for operational 

and practical purposes such as  the effect of improvements to a train station 

infrastructure or the quality of services offered, or to assess the impact of changing 
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accessibility to train stations (Cervero et al., 1995). 5) By incorporating parking 

supply, a land use index and a services and facilities quality index the tool developed 

here can evaluate any change to the overall attractiveness of the station following 

proposals such as to adding new parking facilities or increasing frequency of train 

services. 6) Although this tool was developed for understanding the catchment area of 

PnR users, the method can be transferred to estimate catchment areas based on other 

modes such as, walking, cycling or buss connections.  

 

We implemented the methodology into two scenarios in Perth: one involving train line 

expansion and the other latent demand analysis. It is found that the some train line 

catchment areas experienced a great decrease after the Mandurah line expansion, 

which it is as expected as the new line improved accessibility from some residential 

areas. The average decrease in the size of catchment areas of train stations along the 

Armadale line is about 90.95%, whilst it is about 126.65% for the Fremantle line. The 

latent demand analysis confirmed the robust nature of the model as the estimated 

demand is consistent with the levels of car park pressure. 

 

As with any research, there are limitations. Firstly, we didn’t calibrate the modified 

Huff model to determine the distance decay parameter in a traditional manner. Rather 

a widely accepted value was adopted in the paper. However, we did use reliable 

benchmark data collected by PTA to validate the accuracy of that estimate, which was 

found to be 0.88. In future developments of this approach we will calibrate the 

distance decay parameter systematically in order to understand the impact of spatial 

variation, temporal variation and heterogeneity (e.g. different transport modes) on 

catchment estimation. Secondly, although the method used in the research is a popular 

method for determining the weight of the station attraction factors, it has a subjective 

element and may be difficult to generalise to other studies. Other methods such as 

discrete choice modelling can help to understand how various station choice factors 

contribute to the station preference by various categories of travellers. Thirdly, the 

accuracy of the model can be improved if more stations are included in the “choice 

set” and then used in linear referencing. However, this will increase the complexity of 

the calculation. Fourthly, the modifiable areal unit problem (MAUP), a common 

problem in the GIS analysis, may lead to various solutions. In this study, the suburb 

was used as the spatial unit of analysis due to computation complexity, although it is 

not the smallest available unit. Adopting a smaller unit of analysis (SA1 is the 

smallest spatial unit currently available in Australia) may be beneficial for catchment 

area identification, however that approach will require more complex    

computation. As a sensitivity analysis this research explored the influence of the 

MAUP, at eight train stations, comparing results by suburb and SA1. The catchment 

areas did change, but not considerably. Therefore, as a compromise between 

simplicity and accuracy, the suburb is considered an effective unit for analysis. 
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