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STRUCTURAL INVARIANTS OF TWO-DIMENSIONAL SYSTEMS∗
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Abstract. In this paper, some fundamental structural properties of two-dimensional (2-D) sys-
tems which remain invariant under feedback and output-injection transformation groups are identified
and investigated for the first time. As is well known, structural invariants that follow from the def-
inition of controlled and conditioned invariance, output-nulling, input-containing, self-bounded and
self-hidden subspaces play pivotal roles in many theoretical studies of systems theory and in the
solution of several control/estimation problems. These concepts are developed and studied within a
2-D context in this paper.
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1. Introduction. The fundamental notion upon which classic geometric control
theory hinges is that of controlled invariance. For one-dimensional (1-D) systems
governed by the standard linear time-invariant state difference equation xk+1 = Axk+
B uk, controlled invariant subspaces—also known as (A,B)-invariant or A(modB)-
invariant subspaces—were introduced in the pioneering paper [1] as the subspaces
satisfying AV ⊆ V + im B. These subspaces fully characterize the state trajectories
generated by the system, in the sense that
(a) If the initial state x0 lies on a controlled invariant subspace V , a control uk exists

that maintains the entire state trajectory on the same subspace V ;
(b) Conversely, if for any initial condition on a subspace L the entire trajectory can

be kept on L with a suitable control function, L is controlled invariant.
In the usual 1-D context, controlled invariance also enjoys a fundamental feedback
property:
(c) The control input that maintains the state trajectory on a controlled invariant

subspace can always be expressed in terms of a static state feedback input
uk = F xk.

Conditioned invariance for 1-D systems—also referred to as (C,A)-invariance—was
also introduced in [1] as the dual of controlled invariance. In the last 40 years, con-
trolled and conditioned invariant subspaces have played a pivotal role in the solution
of a vast number of control and estimation problems, including disturbance decou-
pling, unknown-input observation, model matching, noninteraction, and optimal con-
trol/filtering problems; see, e.g., [25, 3, 23] and the references cited therein. For this
reason, several efforts have been devoted to extend the notion of controlled invariance
to two-dimensional (2-D) systems. The first paper containing a definition of controlled
invariance for 2-D Fornasini–Marchesini first-order models [9]

xi+1,j+1 = A1 xi+1,j +A2 xi,j+1 +B1 ui+1,j +B2 ui,j+1(1.1)
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is [7], where a 2-D controlled invariant subspace is defined as a subspace V satisfying[
A1

A2

]
V ⊆ (V ⊕ V) + im

[
B1

B2

]
. This subspace inclusion extends the 1-D counterpart

in a natural way. While it is true that given boundary conditions on a subspace V
satisfying this definition a control input can always be designed to maintain the entire
solution of (1.1) on V , and that such control can be expressed as a static feedback
ui,j = F xi,j , the 2-D analogue of property (b) now does not hold, i.e., a control
might exist maintaining the solution of (1.1) on a certain subspace L for any L-valued
boundary condition without L necessarily being controlled invariant for (1.1). Hence,
this definition of controlled invariance enjoys good feedback properties as shown in
[21], but it does not characterize the set of trajectories generated by (1.1) univocally.
Therefore, when this definition is used in the solution of decoupling, control, and esti-
mation problems, it can lead only to sufficient—and hence conservative—conditions;
see Remark 3.2 in [7]. A second definition of controlled invariance for 2-D systems
was given in [16] for the 2-D singular model

E xi+1,j+1 = A1 xi+1,j +A2 xi,j+1 +B ui,j .(1.2)

This model was considered because the purpose was to ultimately characterize the
solutions of a singular 2-D system in Roesser form over a bounded frame that could
be brought back to the form (1.2). For the aims of this paper, we can consider E to be
the identity matrix. According to the definition given in [16], a controlled invariant
subspace for (1.2) with E = In is a subspace V satisfying A1 V + A2 V ⊆ V + imB.
Both properties (a) and (b) extend to this definition. But the drawback of this model
is the lack of a static feedback characterization of controlled invariance since the
structure of (1.2) is not closed under the feedback control ui,j = F xi,j , in the sense
that the closed-loop model obtained applying such control has a different structure
from the one in (1.2). Hence, property (c) has no meaning in this case. To combine
the advantages of these two definitions without incurring in their drawbacks, here we
define controlled invariance for the Fornasini–Marchesini original model

xi+1,j+1 = A0 xi,j +A1 xi+1,j +A2 xi,j+1 +B ui,j(1.3)

[8], which like the model (1.1) can realize any strictly causal bivariate rational func-
tion but where, different from (1.1), the input appears only once. This model is closed
under static feedback controls ui,j = F xi,j ; moreover, unlike (1.1), its dual is also
well-defined, so that conditioned invariance can be introduced in a natural way. In
this paper we show that the definition of controlled invariance given in [16] can be
trivially extended to models in the form (1.3), thus retaining the fundamental prop-
erties (a) and (b) of the 1-D case. Even though for (1.3) a static feedback input is
well-defined, such definition does not imply that the feedback property (c) automat-
ically holds for 2-D controlled invariant subspaces. However, we will show that it
is possible to introduce a well-characterized restriction of the set of 2-D controlled
invariant subspaces of (1.3) which is locus of solutions of (1.3) generated by the input
ui,j = F xi,j . In other words, we show that similar to what happens for systems over
rings [12], there is no exact counterpart of the definition of controlled invariance for
2-D systems that retains all three properties (a), (b), (c), but we have to distinguish
between the subspaces for which (a) and (b) are satisfied (thus leading to the no-
tion of controlled invariance) and then restrict this set of subspaces to identify those
where the solutions of (1.3) generated by a static feedback input lie (and this will
lead to the notion of controlled invariance of feedback type). This definition, with
respect to the one in [7], characterizes univocally and in finite terms the subspace
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of trajectories of a 2-D system that are generated by static feedback controls. This
enables, for example, a solution of the classic disturbance decoupling problem to be
derived in terms of constructive conditions that eliminate the conservativeness of the
solutions proposed so far in the literature; see [7] and [21]. Then, the problem of
parameterizing the set of feedback inputs ui,j = F xi,j that generate solutions of (1.3)
on controlled invariant subspaces of feedback type is taken into account, along with
the problem of internal and external stabilization of the corresponding solutions with
respect to that subspace. The dual notion is called 2-D conditioned invariance of
output-injection type and is shown to completely characterize the solution of local
state reconstruction in presence of unknown inputs. The notion of self-boundedness
[2] is also generalized for the first time to 2-D systems. It is also shown that the
minimum of the set of self-bounded subspaces, which plays an important role in the
solution of output-nulling and decoupling problems with maximum assignment of the
closed-loop dynamics [18], is not given as in the 1-D case as the intersection of the
largest output-nulling and the smallest input-containing subspace of a 2-D system,
[19]. An algorithm is provided for the computation of such minimum. In this paper,
several other structural properties of 2-D systems are introduced and investigated
from a geometric perspective. Indeed, we show how reachability and observability
can be characterized geometrically as invariants under the system dynamic maps con-
tained in or containing suitable subspaces. A simple algorithm is presented for the
computation of a basis of the reachability and nonobservability subspaces of a 2-D
system, and it is shown how a 2-D counterpart of the Kalman canonical decompo-
sition can be constructed. These considerations on reachability of 2-D systems are
then exploited in conjunction with the definition of controlled invariance of feedback
type to characterize—for the first time in a 2-D context—the notion of controllability
subspaces.

2. Problem formulation. Consider the Fornasini–Marchesini 2-D model [8]

xi+1,j+1 = A0 xi,j +A1 xi+1,j +A2 xi,j+1 +B ui,j,(2.1)

yi,j = C xi,j ,(2.2)

where for all i, j ∈ Z, the vector xi,j ∈ Rn is the local state, ui,j ∈ Rm is the
input, and yi,j ∈ Rp is the output. Here, A0, A1, A2 ∈ Rn×n, B ∈ Rn×m, and
C ∈ Rp×n. For the sake of brevity, we identify the system (2.1)–(2.2) with the

quintuple Σ
def
= (A0, A1, A2;B;C). To define appropriate boundary conditions for Σ,

we introduce the sets

Qi
def
= ({i} × {j ∈ Z | j ≥ i}) ∪ ({j ∈ Z | j ≥ i} × {i}).

A suitable set of boundary conditions for (2.1)–(2.2) is given by assigning the local
state xi,j for all (i, j) ∈ Q0. An alternative set of boundary conditions for (2.1)–(2.2)

is given by defining for each k ∈ Z the separation sets Ck
def
= {(i, j) ∈ Z×Z

∣∣ i+j = k}
(see also [9]) and defining boundary conditions for (2.1)–(2.2) as the assignment of
the local state xi,j over two consecutive separation sets, e.g., for all (i, j) ∈ C−1 ∪ C0.
The fact that for a valid definition of a boundary condition the local state must be
assigned over two adjacent separation sets is due to the intrinsically second-order
recursion in (2.1). To treat these boundary conditions in a unified framework, we
introduce the symbol B to identify any boundary condition for (2.1), including Q0

or C−1 ∪ C0. We use the symbol B1 to denote the first forward boundary, i.e., Q1 or
C0∪C1, respectively. Similarly, Bi denotes the ith forward boundary. We also denote
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by B+ the set of indexes defined by iterating the recursion (2.1) starting from indexes
over B. Hence

• If B = Q0, then B+ =
⋃∞

i=0 Qi;
• If B = C−1 ∪ C0, then B+ =

⋃∞
i=−1 Ci.

Given a subspace W of Rn, we say that (2.1) has a W-valued boundary condition
if xi,j ∈ W for all (i, j) ∈ B and that (2.1) has a W-valued solution if xi,j ∈ W for
all (i, j) ∈ B+.

3. 2-D controlled and conditioned invariance.
Definition 3.1. A subspace V is a 2-D controlled invariant subspace for Σ if it

is simultaneously a 1-D controlled invariant subspace for the pairs (A0, B), (A1, B),
and (A2, B), i.e., if

Ai V ⊆ V + im B, i ∈ {0, 1, 2}.(3.1)

The set of 2-D controlled invariants is always nonempty, as it contains at least {0}
and Rn. Since the sum of 1-D controlled invariant subspaces is a controlled invariant
subspace [3, Property 4.1.1], the same is trivially true for 2-D controlled invariant sub-
spaces. In general, however, the intersection of two (1-D or 2-D) controlled invariant
subspaces is not a (1-D or 2-D) controlled invariant subspace. The following theorem
presents the fundamental system-theoretic interpretation of Definition 3.1 and is a
simple extension of Theorem 2.2 in [16].

Theorem 3.2. Let V be a subspace of Rn. Equation (2.1) has a V-valued solution
for any V-valued boundary condition if and only if V is a 2-D controlled invariant
subspace.

Proof. (Necessity). Suppose (3.1) does not hold. Then, there exist ξ′, ξ′′, ξ′′′

in V such that no ω ∈ Rm exists for which A0 ξ
′ + A1 ξ

′′ + A2 ξ
′′′ + B ω ∈ V holds.

This means that for a boundary condition with x0,0 = ξ′, x1,0 = ξ′′ and x0,1 = ξ′′′,
a control u0,0 cannot be found such that x1,1 ∈ V . Hence, (2.1) does not have a
V-valued solution with this V-valued boundary condition.

(Sufficiency). The sufficiency is obvious.
Remark 3.1. The definition of 2-D controlled invariance proposed in [7], while

convenient for its feedback properties, does not guarantee that a subspace V for which
the system has a V-valued solution for any V-valued boundary condition is a 2-D
controlled invariant subspace. In other words, for the model (1.1) and the definitions
currently available for 2-D controlled invariance, the only if part of Theorem 3.2 does
not hold.

The dual concept of 2-D controlled invariance is called 2-D conditioned invariance.
Definition 3.3. A subspace S is a 2-D conditioned invariant subspace for Σ

if it is simultaneously 1-D conditioned invariant for the pairs (A0, C), (A1, C), and
(A2, C), i.e., if

Ai (S ∩ kerC) ⊆ S, i ∈ {0, 1, 2}.

The duality between 2-D controlled and conditioned invariance can be stated in

precise terms as follows. Let Σ� identify the dual system of (2.1)–(2.2), i.e., Σ� def
=

(A�
0 , A

�
1 , A

�
2 ;C

�;B�).
Lemma 3.4. The orthogonal complement of a 2-D controlled invariant subspace

for Σ is a 2-D conditioned invariant subspace for Σ�, and vice-versa.
Proof. Let L be a 2-D controlled invariant subspace for Σ. Let i ∈ {0, 1, 2}. From

Ai L ⊆ L + im B, we get A�
i (L + im B)⊥ ⊆ L⊥, which in turn yields A�

i (L⊥ ∩
ker B�) ⊆ L⊥. Therefore, L is a 2-D conditioned invariant subspace for Σ�. The
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same steps can be easily reversed to show that the opposite implication holds as
well.

Since the intersection of 1-D conditioned invariant subspaces is a 1-D conditioned
invariant subspace [3, Property 4.1.2], the same is trivially true for 2-D conditioned in-
variant subspaces. In general, however, this is not true for the sum of conditioned
invariant subspaces.

4. Output-nulling and input-containing subspaces. In many control prob-
lems it is of interest to derive control laws that maintain certain outputs of a system
at zero. The most famous example is the disturbance decoupling problem [3]. This
requirement leads to the notion of output-nulling subspace. An output-nulling sub-
space for Σ is such that (2.1)–(2.2) have a V-valued solution with an identically zero
output for any V-valued boundary condition. A solution of (2.1)–(2.2) yields zero
output if and only if for all (i, j) ∈ B+ the local state xi,j lies in ker C. Hence,
an output-nulling subspace is simply a 2-D controlled invariant subspace contained
in kerC. The set of output-nulling subspaces of (2.1)–(2.2) is denoted by V(Σ). As
for the set of 2-D controlled invariant subspaces, this set is seen to be closed under
subspace addition but not under subspace intersection. Therefore, (V(Σ),+;⊆) is a
(nondistributive and modular) upper semilattice with respect to the binary operation
+ and with respect to the partial ordering ⊆. Thus, it admits a maximum V� given

by the sum of all elements of V(Σ), i.e., V� def
= max V(Σ) =

∑
V∈V(Σ) V . The following

lemma extends the famous algorithm for the computation of V� introduced in [1].
Lemma 4.1. V� is the last term of the monotonically nonincreasing sequence

{Vi}i :

⎧⎪⎪⎨
⎪⎪⎩
V0 = ker C,

Vi =

2⋂
j=0

A−1
j (Vi−1 + im B) ∩ ker C, i ∈ {1, 2, . . . , kv},

where the integer kv ≤n− 1 is determined by the condition Vkv +1 =Vkv , i.e., V� =
Vkv .

Proof. First, we show by induction that the sequence {Vi}i is monotonically
nonincreasing. Trivially V0 ⊇ V1. Let Vh−1 ⊇ Vh. We show that Vh ⊇ Vh+1. From
Vh−1 ⊇ Vh we get

Vh =
2⋂

j=0

A−1
j (Vh−1 + im B) ∩ ker C ⊇

2⋂
j=0

A−1
j (Vh + im B) ∩ ker C = Vh+1.

We have proved that the sequence {Vi}i is monotonically nonincreasing. This
also implies that if Vkv+1 = Vkv , also Vj = Vkv for all j ≥ kv. As such, since two
subsequent subspaces are equal if and only if they have equal dimensions and the
dimension of V0 is at least one, the dimension of the subspace Vk+1 of {Vi}i must
decrease by at least one with respect to the dimension of Vk before stationarity is
reached. Therefore, stationary of the sequence {Vi}i is reached in at most n steps.
Let kv denote the index at which the sequence {Vi}i becomes stationary. We show
that Vkv is a 2-D controlled invariant subspace. First, notice that

Vkv =

2⋂
j=0

A−1
j (Vkv + im B) ∩ ker C.(4.1)
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Let h ∈ {0, 1, 2}. By applying Ah to both sides of (4.1) we obtain

Ah Vkv = Ah

⎛
⎝ 2⋂

j=0

A−1
j (Vkv + im B) ∩ ker C

⎞
⎠⊆

2⋂
j=0

AhA
−1
j (Vkv + im B) ∩ (Ah ker C)

⊆ AhA
−1
h (Vkv+im B) ⊆ (Vkv+im B)∩ imAh ⊆ Vkv+im B.

Therefore, Vkv is a 1-D controlled invariant subspace for (Ah, B) with h ∈ {0, 1, 2}.
Hence, it is also a 2-D controlled invariant subspace. Given the way {Vi}i has been
constructed, Vi ⊆ ker C, so that Vkv is also output-nulling. We show that Vkv is the
largest output-nulling subspace for Σ, so that it coincides with V�. Let Ṽ be another
output-nulling subspace, so that Ṽ is a 2-D controlled invariant subspace for (Ah, B)
for h ∈ {0, 1, 2} and Ṽ is contained in ker C. Hence, Ṽ ⊆ A−1

h (Ṽ + im B). Since this
is true for each h ∈ {0, 1, 2}, we find

Ṽ ⊆
2⋂

j=0

A−1
j (Ṽ + im B) ∩ ker C.(4.2)

Now we show that every term of {Vi}i contains Ṽ , so that, in particular, Vkv ⊇ Ṽ .
Clearly, V0 ⊇ Ṽ . Suppose Vi ⊇ Ṽ . Thus

Vi+1=
2⋂

j=0

A−1
j (Vi+im B) ∩ ker C ⊇

2⋂
j=0

A−1
j (Ṽ+im B) ∩ ker C,

which in turn contains Ṽ in view of (4.2). Hence, Vkv ⊇ Ṽ. This implies that V� =
Vkv .

A further consequence of Remark 3.1 is that using the definition of 2-D controlled
invariance given in [7] and the subsequent definition of V�, the fact that a solution
of (1.1) leads to an identically zero output does not necessarily imply that the local
state lies on V�. This is what causes the inherent conservativeness in the solutions
of decoupling and observation problems that use such definition. On the contrary,
the fact that the statement of Theorem 3.2 is both necessary and sufficient for the
definition of 2-D controlled invariance used in this paper guarantees that V� univocally
characterizes the solutions of Σ that lead to zero outputs, and this will lead to a
solution of output-nulling and disturbance decoupling problems in terms of necessary
and sufficient conditions. This will also lead to the new notion of self-boundedness
(and, by duality, self-hiddenness) of 2-D systems.

The duals of 2-D output-nulling subspaces are the 2-D input-containing subspaces.
A 2-D input-containing subspace S is a 2-D conditioned invariant subspace that con-
tains imB.

The set of input-containing subspaces of Σ is denoted by S(Σ). This set is closed
under subspace intersection but not under subspace addition. Therefore, (S(Σ),∩;⊆)
is a (nondistributive and modular) lower semilattice with respect to the binary op-
eration ∩ and with respect to the partial ordering ⊆. Thus, it admits a minimum
given by S� = min S(Σ) =

⋂
S∈S(Σ) S. By dualizing the algorithm for V�, we have

the following.
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Lemma 4.2. S� is the last term of the monotonically nondecreasing sequence

{Si}i :

⎧⎪⎪⎨
⎪⎪⎩
S0 = im B,

Si =

2∑
j=0

Aj(Si−1 ∩ ker C) + im B, i ∈ {1, 2, . . . , ks},

where the integer ks ≤n− 1 is determined by the condition Sks +1 =Sks , i.e., Sks = S�.
Using Lemma 3.4, it is straightforward to prove that the orthogonal complement

of an output-nulling subspace for Σ is input-containing for Σ� and vice versa. In
particular, V� and S� are dual, i.e., maxV(Σ) = (minS(Σ�))⊥.

5. 2-D controlled invariant and output-nulling subspaces of feedback
type. The Fornasini–Marchesini model (2.1)–(2.2), unlike the model used in [16], is
closed under the feedback ui,j = F xi,j , which leads to the closed-loop equation

xi+1,j+1 = (A0 +B F )xi,j +A1 xi+1,j +A2 xi,j+1.(5.1)

It is easy to see that the notion of 2-D controlled invariance alone is not sufficient
to guarantee the existence of a feedback matrix F that maintains the local state xi,j
on a 2-D controlled invariant subspace V for V-valued boundary conditions. For this
reason, we introduce the concept of 2-D controlled invariance of feedback type.

Definition 5.1. Subspace W is a 2-D controlled invariant of feedback type for
Σ if

• W is a 1-D controlled invariant subspace for (A0, B);
• W is both A1- and A2-invariant.

The next theorem shows that this definition completely characterizes the sub-
spaces of trajectories of a 2-D system generated by a feedback law in which the
solutions of Σ lie.

Theorem 5.2. A subspace W is a 2-D controlled invariant subspace of feedback
type for Σ if and only if there exists a static feedback control ui,j = F xi,j such that
for any W-valued boundary condition of Σ, xi,j ∈ W for all (i, j) ∈ B+.

Proof. (Only if). Since W is a 2-D controlled invariant subspace of feedback
type for Σ, it is a 1-D controlled invariant subspace for (A0, B), and this implies that
two matrices X0 and Ω exist such that A0W =W X0+B Ω, where W is a basis of W
(i.e., im W = W and kerW = {0}). Since W is A1- and A2-invariant, two matrices
X1 and X2 exist such that A1W =W X1 and A2W =W X2. SinceW is full column-
rank, we can solve the linear equation Ω = −F W in F , and with its solution we get
(A0 + B F )W = W X0. With this F in the closed-loop system (5.1), we see that if
xi,j , xi+1,j and xi,j+1 are in W , so is xi+1,j+1, and then for any W-valued boundary
condition, xi,j remains in W for all (i, j) ∈ B+.

(If). By virtue of (5.1), the inclusion [A0 + B F A1 A2 ](W ⊕W ⊕ W) ⊆ W
must hold; otherwise it would be possible to find x0,0, x1,0, x0,1 ∈ W such that x1,1
does not lie on W ; this implies that (A0 + B F )W ⊆ W—which means that W is a
1-D controlled invariant subspace for (A0, B)—and A1 W ⊆ W and A2 W ⊆ W .

Given a 2-D controlled invariant subspace of feedback type for Σ, any feedback
matrix F ∈ Rm×n such that ui,j = F xi,j generates a W-valued solution for any
W-valued boundary condition is called a friend of W . Notice that the (If) part of
Theorem 5.2 does not hold for any other definition given so far for 2-D controlled
invariant subspaces.

The notion of 2-D controlled invariant subspaces of feedback type can be extended
to output-nulling subspaces. A subspace W is output-nulling of feedback type if it is
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a 2-D controlled invariant subspace of feedback type contained in the null-space of C.
Also, W is output-nulling of feedback type if and only if F exists such that for any W-
valued boundary condition, the solution of (5.1) is W-valued and yi,j = C xi,j is zero
for all (i, j) ∈ B+. The set of output-nulling subspaces of feedback type, denoted by
W(Σ), is closed under addition. Hence, the maximum output-nulling subspace W� of
feedback type can still be defined as the sum of the elements of W(Σ). An algorithm
for the computation of W� is given below.

Lemma 5.3. W� is the last term of the monotonically nonincreasing sequence

{Wi}i :{
W0 = ker C,
Wi = ker C ∩ A−1

0 (Wi−1 + im B) ∩ A−1
1 Wi−1 ∩ A−1

2 Wi−1, i ∈ {1, 2, . . . , kw},

where the integer kw ≤n− 1 is determined by the condition Wkw +1 =Wkw , i.e., W� =
Wkw .

The proof follows from that of Lemma 4.1 with the obvious modifications.
Example 5.1. Consider the 2-D system with

A0 =

⎡
⎣ 0 0 0
2 0 0
0 0 2

⎤
⎦, A1 =

⎡
⎣ 0 0 0
0 2 0
4 3 0

⎤
⎦, A2 =

⎡
⎣ 0 0 0
0 3 0
2 0 0

⎤
⎦, B =

⎡
⎣ 0 0
0 2
1 5

⎤
⎦, C =

[
1 1 0

]
.

In this example, the largest output-nulling subspace does not coincide with the largest
output-nulling subspace of feedback type. In fact, by using Lemma 4.1 and 5.3, we
find

V� = im

⎡
⎣ 1 0

−1 0
0 1

⎤
⎦ and W� = im

⎡
⎣ 0

0
1

⎤
⎦ .

A direct check shows that F = 1
20

[
0 0 −38
0 1 0

]
is a friend of W�.

6. 2-D conditioned invariant subspaces of output-injection type. We
consider the dual of 2-D controlled invariance of feedback type, which we name 2-D
conditioned invariance of output-injection type. We relate this concept to the existence
of certain types of observers that maintain the information of specific components of
the local state vector in presence of unknown inputs; this approach closely follows the
1-D one developed in [24] and thoroughly discussed in Chapter 5 of [23].

Definition 6.1. Subspace Z is a 2-D conditioned invariant subspace of output-
injection type for Σ if

• Z is a 1-D conditioned invariant subspace for (A0, C);
• Z is both A1- and A2-invariant.

Hence, Z is a 2-D conditioned invariant subspace of output-injection type for Σ if
and only if an output-injection matrix G ∈ Rn×p exists such that (A0 +GC)Z ⊆ Z,
A1 Z ⊆ Z, A2 Z ⊆ Z. Hence, a 2-D input-containing subspace of output-injection
type is a 1-D conditioned invariant subspace for (A0, C) which contains the image of
B, and it is both A1- and A2-invariant.

The following lemma shows that 2-D conditioned invariant and input-containing
subspaces of output-injection type and 2-D controlled invariant and output-nulling
subspaces of feedback type are dual concepts.

Lemma 6.2. The orthogonal complement of a 2-D controlled invariant (resp.,
output-nulling) subspace of feedback type for Σ is a 2-D conditioned invariant (resp.,
input-containing) subspace of output-injection type for Σ� and vice versa.
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Now we relate the concept of conditioned invariance of output-injection type with
the existence of certain local state reconstructors that maintain information on the
local state of Σ modulo a certain subspace. More precisely, given the subspace Z of
Rn and a full row-rank matrix Q such that Z = kerQ, we define (with a slight abuse
of nomenclature) a Z-observer for (2.1)–(2.2) as a system ruled by the recursion

ωi+1,j+1 = K0 ωi,j +K1 ωi+1,j +K2 ωi,j+1 + Lyi,j(6.1)

such that if ωi,j = Qxi,j for all (i, j) ∈ B, then ωi,j = Qxi,j for all (i, j) ∈ B+. In
other words, a Z-observer maintains the knowledge of the components of the local
state that are external to Z, i.e., if ωi,j = xi,j/Z on the boundary, then ωi,j = xi,j/Z
everywhere. Thus, if the initial conditions of the system and of the observer are
equal modulo Z, the state of the observer is always equal to the local state of the
system modulo Z. The 2-D system (6.1) is here referred to as an observer even if as
a matter of fact it only maintains information on the local state of Σ, but it does not
reconstruct such information in the case of mismatched boundary conditions of Σ and
(6.1). In the case in which (6.1) is capable of recovering the local state of Σ modulo
Z with greater accuracy as the index (i, j) evolves away from the boundary, system
(6.1) will be referred to as an asymptotic Z-observer; see section 6.2.

The following theorem provides a geometric characterization of conditioned in-
variance of output-injection type.

Theorem 6.3. A subspace Z is an input-containing subspace of output-injection
type for Σ if and only if there exists a Z-observer for Σ.

Proof. (Only if). Let Z be an input-containing subspace for (A0, C), and invari-
ant with respect to A1 and A2. We can write Z = kerQ, where Q satisfies the linear
equations QA0 = Γ0Q + ΛC, QA1 = Γ1Q, QA2 = Γ2Q, QB = 0. Consider (6.1)

with Ki = Γi for i ∈ {0, 1, 2}, and L = Λ. Define the error as ei,j
def
= Qxi,j − ωi,j .

Since it is assumed that ωi,j = Qxi,j over the boundary B, ei,j = 0 for all (i, j) ∈ B.
Thus,

ei+1,j+1 = Qxi+1,j+1 − ωi+1,j+1

= QA0 xi,j +QA1 xi+1,j +QA2 xi,j+1

− Γ0 ωi,j − Γ1 ωi+1,j − Γ2 ωi,j+1 − ΛC xi,j

= Γ0 ei,j + Γ1 ei+1,j + Γ2 ei,j+1.(6.2)

Since these dynamics are autonomous, the error is zero everywhere if it is zero over B.
(If). There exists a Z-observer for Σ. Therefore, given ωi,j = Qxi,j over the

boundary B, we have ωi,j = Qxi,j over B+. Let the boundary condition of (2.1)
be such that x0,0 ∈ Z ∩ kerC, x1,0 ∈ Z and x0,1 ∈ Z. The boundary condition
of the Z-observer is such that ω0,0 = ω1,0 = ω0,1 = 0. This is compatible with
the fact that ωi,j = Qxi,j for (i, j) ∈ {(0, 0), (1, 0), (0, 1)}, since for such pairs of
indexes we have xi,j ∈ Z, and hence Qxi,j = 0. Therefore, from (6.1) it is found that
ω1,1 = K0 ω0,0+K1 ω1,0+K2 ω0,1+LC x0,0, which is zero since x0,0 ∈ kerC. On the
other hand, x1,1 = A0 x0,0+A1 x1,0+A2 x0,1 leads to Qx1,1 = QA0 x0,0+QA1 x1,0+
QA2 x0,1 + QB u0,0 = ω1,1, which is zero as shown above. For the arbitrariness of
x0,0, x1,0, x0,1 and u0,0 we get QA0(Z∩kerC)+QA1 Z+QA2 Z = {0} and QB = 0,
which imply that A0(Z ∩ kerC) +A1 Z +A2 Z ⊆ Z and im B ⊆ ker Q = Z. Hence,
Z is an input-containing subspace of output-injection type.

Conditioned invariant subspaces as defined in [6] guarantee the existence of a
Z-observer, but the converse is not necessarily true, and the condition in Theorem
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6.1 for that definition is only sufficient. The set of 2-D input containing subspaces
of output-injection type, denoted by Z(Σ), admits a minimum Z�, which can be
computed by duality as follows.

Lemma 6.4. Z� is the last term of the monotonically nondecreasing sequence

{Zi}i :{
Z0 = im B,
Zi = im B +A0(Zi−1 ∩ ker C) +A1 Zi−1 +A2 Zi−1, i ∈ {1, 2, . . . , kz},

where the integer kz ≤ n − 1 is determined by the condition Zkz+1 = Zkz , i.e.,
Z� = Zkz .

6.1. Disturbance decoupling problem. The notion of output-nulling sub-
space of feedback type is useful in the solution of the disturbance decoupling problem.
Consider the model

xi+1,j+1 = A0 xi,j +A1 xi+1,j +A2 xi,j+1 +B ui,j +H wi,j ,(6.3)
yi,j = C xi,j ,(6.4)

where wi,j is a disturbance to be rejected using a control ui,j = F xi,j , i.e., our aim
is to find a feedback law ui,j = F xi,j such that the output of the closed-loop system

xi+1,j+1 = (A0 +B F )xi,j +A1 xi+1,j +A2 xi,j+1 +H wi,j(6.5)

is not affected by the disturbance w, i.e., such that yi,j = C xi,j = 0 for all (i, j) ∈ B+

for zero boundary condition and for any disturbance wi,j . This basic problem is
solved without conservativeness for the first time in a 2-D framework in the following
theorem.

Theorem 6.5. The disturbance decoupling problem admits solutions if and only
if

im H ⊆ W�.(6.6)

Proof. (If). By taking F to be a friend of W�, for each W�-valued boundary
condition, by (6.5) the local state lies on W� for all (i, j) ∈ B+, and therefore it is
contained in the null-space of C. Thus, the system is disturbance decoupled.

(Only if). Suppose the closed-loop system is disturbance decoupled, i.e., F exists
such that yi,j = C xi,j = 0 for any disturbance wi,j . When wi,j is zero, the closed-loop
system is still disturbance decoupled, i.e., xi,j lies for all (i, j) on the largest subspace
T satisfying [ (A0 +BF ) A1 A2 ](T ⊕T ⊕T ) ⊆ T ⊆ ker C. This subspace is clearly
W�. Moreover, since the system must be decoupled for each value of wi,j , H must
satisfy im H ⊆ T = W�.

Remark 6.1. The solution of the disturbance decoupling problem can easily be
extended to the case where the disturbance to reject is measurable, so that the control
can be expressed as ui,j = F xi,j + S wi,j . The problem is to find matrices F and S
such that the output of the closed-loop system

xi+1,j+1 = (A0 +B F )xi,j +A1 xi+1,j + A2 xi,j+1 +B S wi,j +H wi,j(6.7)

is zero for zero boundary conditions and for any disturbance wi,j . Using the same
arguments of Theorem 6.5, we can show that the problem is solvable if and only if
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im H ⊆ W� + im B. In fact, if this condition holds, im H can be decomposed as
im H = H1 +H2, where H1 ⊆ W� and H2 ⊆ im B. This means that the closed-loop
system

xi+1,j+1 = (A0 +B F )xi,j +A1 xi+1,j +A2 xi,j+1 + (B S +H2)wi,j +H1 wi,j ,

where H1 and H2 are basis matrices of H1 and H2, respectively. By choosing S to
satisfy B S + H2 = 0—which is possible since imH2 = H2 ⊆ imB—and F to be a
friend of W�, given a W�-valued boundary condition, the local state remains on W�,
and yi,j is zero.

6.2. Friends and stabilization. In this section we show how to characterize the
set of friends of a 2-D controlled invariant subspace of feedback type. A fundamental
result for this purpose is the following theorem.

Theorem 6.6. The set of friends of the 2-D controlled invariant subspace of
feedback type W with basis matrix W coincides with the set of matrices F such that
Ω = −F W , where Ω is a solution of A0W =W X0 +B Ω for some matrix X0.

Proof. Let F be such that Ω = −F W , where Ω is a solution of A0W =W X0 +
B Ω for a certain X0. Therefore, A0W = W X0 − B F W . Moreover, A1W = W X1

and A2W = W X2. Therefore, F is a friend of W . Conversely, let F be a friend of
W . Then, (A0 + B F )W ⊆ W can be written as (A0 +B F )W = W Ξ for a suitable
Ξ. Hence, A0W =W X0 +B Ω holds with X0 = Ξ and Ω = −F W .

Theorem 6.6 basically says that the set of friends of a 2-D controlled invariant
subspace of feedback type W coincides with the set of friends of W when the latter is
viewed as a 1-D controlled invariant subspace of the pair (A0, B). However, we will see
in this section that the problem of the inner and outer stabilization of 2-D controlled
invariant subspaces of feedback type does not follow as a simple consequence of the
classical inner and outer stabilization of 1-D controlled invariant subspaces.

As in the 1-D case, two degrees of freedom can be identified in the computation
of a friend F . The first follows from the computation of the solution X0 and Ω of
A0W =W X0 +B Ω. In fact, the set of solutions X0, Ω of A0W =W X0 +B Ω is1[

X0

Ω

]
=

[
W B

]†
A0W +

[
H0

H1

]
K1,(6.8)

where
[
H0

H1

]
is a basis matrix of the subspace ker[W B ] and K1 is an arbitrary

matrix of suitable size. Therefore, we can write X0 = X0(K1) and Ω = Ω(K1). The
second degree of freedom comes from the solution of the linear equation Ω = −F W ,
which can be written as F = −Ω(K1) (W

�W )−1W� + K2 Z, where Z
� is a basis

of kerW� and K2 is another arbitrary matrix of suitable size. Hence, we can write
F = F (K1,K2). Thus, as for the 1-D case, there are two degrees of freedom in the
computation of a friend F , given by K1 and K2.

Consider the change of basis T = [W Wc ], where Wc is such that T is non-
singular. Then

T−1(A0+B F )T =

[
L1(K1,K2)L2(K1,K2)

O L3(K1,K2)

]
,

T−1A1 T =

[
M1M2

O M3

]
, T−1A2 T =

[
N1N2

O N3

]
.

1Here the symbol † is used to denote the Moore–Penrose pseudo-inverse.
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Since, as mentioned, the set of friends of W coincides with the set of friends of W
when this is regarded as a 1-D controlled invariant subspace with respect to (A0, B),
it follows that—as in the 1-D case—matrix L1(K1,K2) does not depend on K2, and
matrix L3(K1,K2) does not depend on K1, [3, 23, 25]. A more explicit proof of this
fact can be obtained by adapting that of Lemma 3.3 in [21].

Hence, defining
[

x′
i,j

x′′
i,j

]
def
= T−1xi,j , the closed-loop update equation is in the new

basis as[
x′i+1,j+1

x′′i+1,j+1

]
=

[
L1(K1)L2(K1,K2)
O L3(K2)

][
x′i,j
x′′i,j

]
+

[
M1M2

O M3

][
x′i+1,j

x′′i+1,j

]
+

[
N1N2

O N3

][
x′i,j+1

x′′i,j+1

]
,

where x′ represent the components of the local state on the 2-D controlled invariant
subspace of feedback type W , while x′′ represent the components of the local state
that are external to W . The zeros in the matrices above confirm that the local state
of the closed-loop system lies on W for any W-valued boundary condition. In fact,
a W-valued boundary condition in these coordinates is such that x′′i,j = 0 for all
(i, j) ∈ B. Hence, the components x′′i,j are identically zero on B+ since the update
equation x′′i+1,j+1 = L3(K2)x

′′
i,j +M3 x

′′
i+1,j +N3 x

′′
i,j+1 with the boundary condition

x′′i,j = 0 for all (i, j) ∈ B generates x′′i,j = 0 for all (i, j) ∈ B+.
A 2-D controlled invariant subspace of feedback type W is said to be inner stabi-

lizable if a friend F of W can be found so that for any W-valued boundary condition
the local state xi,j lies on W for all (i, j) ∈ B+ and converges to zero as the bi-index
(i, j) evolves away from the boundary B. Similarly, W is said to be outer stabilizable
if for any (not necessarily W-valued) boundary condition a friend of W exists that
makes the corresponding local state converge to W (without making it necessarily
converge to zero) as (i, j) moves away from B. Using the change of basis described
above, we see that

• W is inner stabilizable if and only if x′i,j converges to zero as (i, j) evolves
away fromB, i.e., if and only if a matrixK1 exists such that (L1(K1),M1, N1)
is asymptotically stable;

• W is outer stabilizable if and only if x′′i,j converges to zero as (i, j) evolves
away fromB, i.e., if and only if a matrixK2 exists such that (L3(K2),M3, N3)
is asymptotically stable.

Hence, K1 affects the inner stabilizability of W but not the outer stabilizability,
while theK2 affects the outer stabilizability of W but not the inner stabilizability. Let
us now focus on the inner stabilization ofW ∈ W(Σ). If we construct the friend F with
(6.8) and then solve Ω = −F W , we find that the matrices X0, X1 = W †A1W and
X2 =W †A2W are the matrices of the Fornasini–Marchesini subsystem that represent
the internal dynamics of (2.1) restricted to W . In fact, let us consider a W-valued
boundary condition. Given xi,j , xi+1,j , xi,j+1 ∈ W , there exist zi,j , zi+1,j , zi,j+1 such
that zi,j =W xi,j , zi+1,j =W xi+1,j , and zi+1,j =W xi+1,j . Therefore, we can write
the closed-loop system as

xi+1,j+1 = (A0 +B F )W zi,j +A1W zi+1,j +A2W zi,j+1

=W (X0 zi,j +X1 zi+1,j +X2 zi,j+1),

which implies that xi+1,j+1 lies on W , and therefore by defining zi+1,j+1
def
= X0 zi,j +

X1 zi+1,j+X2 zi,j+1, given a solution xi,j on W we can construct the vector zi,j which
represents the projection of the local state xi,j on W . Hence, W is inner stabilizable
if and only if A0W =W X0 +BΩ can be solved in X0, and Ω in such a way that the
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triple (X0,W
†A1W,W

†A2W ) is asymptotically stable in the usual 2-D sense, i.e., if
and only if the determinant of I −X0 z1 z2 −W †A1W z2 −W †A2W z1 differs from
zero for all (z1, z2) in the unit bi-disc {(ζ1, ζ2) ∈ C×C

∣∣ |ζ1| ≤ 1 and |ζ2| ≤ 1 }; see [9,
Proposition 3]. A computationally tractable method to compute an inner stabilizing
friend is given in the following theorem.

Theorem 6.7. Let W be a 2-D controlled invariant subspace of feedback type of
dimension r with basis W ∈ Rn×r. Let Q0 denote the first r rows of [W B ]†A0W .
Then, W is inner stabilizable if Φ = Φ� > 0, Ψ = Ψ� > 0, Θ = Θ� > 0 and Ξ exist
such that the linear matrix inequality (LMI)⎡

⎢⎢⎢⎢⎣
Ψ O �

∣∣∣ �
O Θ �

∣∣∣ �
O O Φ−Ψ−Θ

∣∣∣ �

Q0 Φ +H0 Ξ W †A1W Φ W †A2W Φ
∣∣∣ Φ

⎤
⎥⎥⎥⎥⎦ > 0(6.9)

holds.2 Given a quadruple (Φ,Ψ,Θ,Ξ) in the convex set defined by (6.9), a matrix K1

such that the triple (X0, X1, X2) is asymptotically stable is given by K1 = ΞΦ−1.
Proof. From the properties of the Schur complements applied on the condition

in [15], (X0, X1, X2) is asymptotically stable if three symmetric positive semidefinite
matrices P0, P1, and P2 exist such that⎡

⎢⎢⎣
P0 O O
O P1 O
O O P2

⎡
⎣ X�

0

X�
1

X�
2

⎤
⎦ P

P
[
X0 X1 X2

]
P

⎤
⎥⎥⎦ > 0,(6.10)

where P = P0+P1+P2. SinceW ∈ W(Σ), X1 =W †A1W andX2 =W †A2W . Since
Q0 is equal to the first r rows of [W B ]†A0W , we can write X0 = Q0+H0K1. Pre-
and postmultiplying the former by the block-diagonal matrix diag(P−1, P−1, P−1,
P−1) and defining Φ = P−1, Ψ = P−1 P0 P

−1, and Θ = P−1 P1 P
−1 along with

Ξ = K1 Θ we get (6.9).
By adapting the arguments used in [21, section 3.2], one can easily see that the

problem of the outer stabilization of a 2-D controlled invariant subspace of feedback
type is not convex, as this problem is equivalent to one of stabilization by static
output feedback. However, various established numerical techniques can be used to
find feasible points. For example, the so-called sequential linear programming matrix
method developed in [17] along the same lines of [21].

Example 6.1. As already observed, the fact that a friend for a 2-D controlled
invariant subspace can be computed as a friend of (A0, B) seems to suggest that the
inner and outer stabilization of 2-D controlled invariant subspaces of feedback type
can be reduced to that of the 1-D system described by the pair (A0, B). Unfortunately,
this is not the case. Consider the 2-D system described by

A0 =

⎡
⎣ 0 0 0

3 0 0
2 4 0

⎤
⎦, A1 =

⎡
⎣ 0 0 0

0 0 −2
0 0 0

⎤
⎦, A2 =

⎡
⎣ 0 0 0

−2 0 0
0 0 0

⎤
⎦, B =

⎡
⎣ 0

0
1

⎤
⎦,

C =
[
1 0 0

]
.

2The symbol � is used to abbreviate off-diagonal blocks in symmetric matrices.
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By using the sequence in Lemma 5.3, we find W� = imW , where W =
[
0 0
1 0
0 1

]
. A

direct inspection shows that F0 =
[
0 −2 1

10

]
is a friend of the 1-D controlled

invariant subspace W� with respect to the pair (A0, B), since (A0 + B F0)W� =

im
[
0 0 1

]� ⊆ W�. Moreover, this friend is such that all the eigenvalues of the
1-D closed-loop system (A0 +BF0) lie in the open unit disc, i.e., they are asymptoti-
cally stable in a 1-D sense. In fact, the eigenvalues of (A0+B F0) are equal to 0 (with
double multiplicity) and 0.1. The inner eigenvalues of W� with respect to (A0+B F0)
are 0.1 and 0. However, it can be seen that this friend is not inner stabilizing for the
2-D controlled invariant subspace of feedback type W� with respect to (2.1). To
see this, we compute the triple (X0, X1, X2) whose dynamics represent the dynamics
of the 2-D system (2.1) restricted to W�, i.e., such that (A0 + B F0)W = W X0,
A1W =W X1, A2W =W X2. Such a triple is given by

X0 =W † (A0 +B F0)W =

[
0 0
2 1

10

]
,

X1 =W †A1W =

[
0 −2
0 0

]
, X2 =W †A2W = 0.

This triple (X0, X1, X2) is not asymptotically stable, i.e., there exist ζ1 ∈ C and ζ2 ∈ C

in the unit bi-disc (i.e., such that |ζ1| < 1 and |ζ2| < 1) for which the determinant

det(I − X0 ζ1 ζ2 − X1 ζ2 − X2 ζ1) =
[

1 2 ζ2

−2 ζ1 ζ2 1− ζ1 ζ2
10

]
is equal to zero. An example

of such a pair is (ζ1, ζ2) =
(
− 2

3 ,−
3
5

)
. On the other hand, the problem of finding an

inner stabilizing friend for W� is solvable with the results of Theorem 6.7. First, we
compute

H =
[
W B

]†
=

1

2

⎡
⎣ 0

−
√
2√
2

⎤
⎦ and Q =

[
W B

]†
A0W =

⎡
⎣ 0 0

2 0
2 0

⎤
⎦

so that Q0 = [ 0 0
2 0 ]. The LMI (6.9) in Theorem 6.7 is satisfied with Φ = diag(2.0649,

0.3607), Ψ = diag(2.0649, 0.3607), Θ = diag(0.6883, 0.2734), Ξ =
[
5.8405 0

]
.

These values lead to K1 = ΞΦ−1 =
[
2
√
2 0

]
, which gives

[
X0

Ω

]
=

[
W B

]†
A0W +H K1 = Q+H K1 =

⎡
⎣ 0 0

0 0
4 0

⎤
⎦ ,

which in turn gives F = −ΩW † =
[
0 −4 0

]
. The new matrix F is indeed a

friend of W� since (A0 +B F )W� = {0} and is inner stabilizing for W�. In fact, it is
associated with the new matrix X0 =W † (A0 +B F )W = 0. The triple (X0, X1, X2)
is now asymptotically stable, as the determinant of the matrix I −X0 ζ1 ζ2 −X1 ζ2 −
X2 ζ1 =

[
1 2 ζ2
0 1

]
never vanishes for any value ζ2 ∈ C. Therefore, this new friend F is

inner stabilizing for W�.
A parallel (dual) theory for the outer stabilization of 2-D conditioned invariant

subspaces of output-injection type can easily be established. First, we can see that the
set of output-injection matrices of the 2-D conditioned invariant subspace of output-
injection type Z such that (A0+GC)Z ⊆ Z, A1 Z ⊆ Z, and A2 Z ⊆ Z coincides with
the set of matrices G such that Λ = −QG, where Λ is a solution of QA0 = Γ0Q+ΛC
for a suitable Γ0, where Q is a full row-rank matrix such that kerQ = Z. The set of
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solutions of QA0 = Γ0Q+ ΛC is given by

[
Γ0 Λ

]
= QA0

[
Q
C

]†
+K1

[
H0 H1

]
,(6.11)

where [H0 H1 ] has linearly independent rows and its null-space spans the image
of

[
Q
C

]
. Matrix K1 is arbitrary. The solution of Λ = −QG is given by G =

−Q�(QQ�)−1 Λ + HK2, where im H = kerQ and K2 is arbitrary. Changing co-
ordinates with T = [ Sc

Q ] where the rows of Sc are linearly independent of those of Q,
we get

T (A0 +B F )T−1 =

[
L1(K1,K2)L2(K1,K2)

O L3(K1,K2)

]
,

TA1 T
−1 =

[
M1M2

O M3

]
, TA2 T

−1 =

[
N1N2

O N3

]
.

It is easily proved that L1(K1,K2) does not depend on K1 and L3(K1,K2) does not
depend on K2. Hence, we obtain the following.

• Z is inner stabilizable if and only if a matrixK2 exists such that (L1(K2),M1, N1)
is asymptotically stable.

• Z is outer stabilizable if and only if a matrixK1 exists such that (L3(K1),M3, N3)
is asymptotically stable.

Similar to the 1-D case [23], outer stabilizable 2-D conditioned invariant subspaces
of output-injection type are referred to as 2-D detectability subspaces.

Again by using arguments based on duality, it can be seen that Z is outer stabiliz-
able if and only if an output-injection matrix G exists such that Q (A0+GC) = Γ0Q,
QA1 = Γ1Q, and QA2 = Γ2Q, where the triple (Γ0,Γ1,Γ2) is asymptotically stable.
Outer stabilizable input-containing subspaces of output-injection type are linked to
the existence of asymptotic Z-observers for Σ. The 2-D system ruled by (6.1) is an
asymptotic Z-observer if for any boundary condition of Σ and of (6.1), the local state
of (6.1) asymptotically reconstructs the local state xi,j of Σ modulo the components
of this vector on Z. In other words, on the basis of the observations yi,j , the vector
ωi,j asymptotically converges to xi,j/Z, as the indexes i and j evolve away from the
boundary, regardless of the boundary conditions of Σ and (6.1). This is instrumen-
tal in the definitions of asymptotic Z-observers for which, when there is a mismatch
between the boundary conditions of Σ and (6.1), the estimation error converges to
zero as the bi-index (i, j) evolves away from the boundary; see [22]. In fact, if Z
is outer stabilizable, by considering an observer (6.1) with the asymptotically stable
triple (K1,K2,K3) = (Γ1,Γ2,Γ3) and L = Λ, by (6.2) we obtain that ei,j goes to zero
as (i, j) evolves away from the boundary B. This leads to the following result.

Theorem 6.8. A subspace Z is a detectability subspace of Σ if and only if there
exists an asymptotic Z-observer for Σ.

Again, the (If) part of Theorem 6.8 does not hold for the other definitions given
so far in the literature of 2-D conditioned invariance. Hence, the definition given here
appears to be the most suitable in the characterization of 2-D asymptotic observers
with unknown inputs.

The following result presents a computationally tractable test for outer stabiliz-
ability that is the dual of the one in Theorem 6.7.

Theorem 6.9. Let Z be a 2-D conditioned invariant subspace of output-injection
type of dimension r, and let Q be a full row-rank matrix such that kerQ = Z. Let
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Π0 denote the first n − r columns of QA0

[
Q
C

]†
. Then, Z is outer stabilizable if

Φ = Φ� > 0, Ψ = Ψ� > 0, Θ = Θ� > 0, and Ξ exist such that the LMI

⎡
⎢⎢⎢⎢⎣

Ψ � �
∣∣∣ �

O Θ �
∣∣∣ �

O O Φ−Ψ−Θ
∣∣∣ �

ΦΠ0 + ΞH0 ΦQA1Q
† ΦQA2Q

†
∣∣∣ Φ

⎤
⎥⎥⎥⎥⎦ > 0(6.12)

holds. Given a quadruple (Φ,Ψ,Θ,Ξ) in the convex set defined by (6.12), a matrix K1

such that the triple (Γ0,Γ1,Γ2) is asymptotically stable is given by K1 = Φ−1 Ξ.

7. Self-boundedness and self-hiddenness. In this section, we introduce the
notions of self-boundedness and self-hiddenness for 2-D systems. Self-bounded sub-
spaces play a central role in disturbance decoupling problems since they allow such
problems to be solved without necessarily making the closed-loop system maximally
unobservable [7]. In fact, as shown in section 6.1, the common strategy to solve de-
coupling problems is to check if imH is contained in W� and, in this case, looking
for a friend of W�. However, a friend of any output-nulling subspace of feedback
type that contains imH is a suitable solution of the problem. This observation is
useful because sometimes in the solution of a disturbance decoupling problem it is
convenient to look for output-nulling subspaces of smaller dimension than W�, such
as the self-bounded subspaces W�∩Z� or RW� that will be defined in the sequel. For
example, in decoupling problems with dynamic feedback/feedforward control archi-
tectures, the size of the dynamic compensator is often equal to the dimension of the
output-nulling subspace that contains imH (or that satisfies other structural condi-
tions that depend on the knowledge on the disturbance to reject); see, e.g., the full
information control [21].

As such, the use of self-bounded subspaces smaller than W� in the solution of de-
coupling problem often leads to feedforward compensators of smaller size. In the 1-D
case, there are other advantages connected with the use of self-bounded subspaces in
the solution of decoupling problems. The most important is the fact that these sub-
spaces guarantee maximum freedom in the choice of the dynamics of the closed-loop
system [18]. The extension of this property to the 2-D case can only be conjectured
at this stage and is the object of intense ongoing investigation.

We begin by recalling some facts about reachability for 2-D Fornasini–Marchesini
models. The notions of reachability and observability in the 2-D case are intrinsically
richer than their 1-D counterpart, due to the difference that arises in such systems
between the local state (which has been denoted in this paper by xi,j and represents
the size of the update vector in (2.1)) and the global state (which represents the
memory of the system and is an infinite-dimensional vector). Correspondingly, the
reachability and observability of 2-D models can be introduced in a local form if they
are referred to the local state or in a global form if it is referred to the global state;
see, e.g., [4, 10, 13, 14]. In this section we focus our attention on 2-D reachability in
a local sense.

As is well-known, the reachable subspace from the origin of a 1-D linear time-
invariant (continuous or discrete-time) systems described by a pair (A,B) coincides
with the smallest A-invariant subspace that contains the image of B. We extend this
characterization to the 2-D case by showing that an analogous result holds. Consider
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the following 2-D sequence of subspaces{
Ri,j = {0}, (i, j) ∈ B,
Ri,j = A0 Ri−1,j−1 +A1 Ri,j−1 +A2 Ri−1,j + im B, (i, j) ∈ B+ \B.

The subspace Ri,j is the reachable subspace from zero boundary condition of the local
state x at (i, j). The sequence gives rise to the subspace with greatest dimension at
i = j = n− 1. Therefore, we can define the reachability subspace from zero boundary
condition as R� = Rn−1,n−1. When R� = Rn, the system is completely reachable
from zero boundary conditions. Application of the 2-D Cayley–Hamilton theorem
[5, 8, 11] leads to the following result, which provides a simpler and computationally
attractive characterization of R�.

Theorem 7.1. R� is the smallest subspace of Rn that is simultaneously invariant
with respect to A0, A1, and A2 and that contains the image of B. Moreover, R� is
the last term of the monotonically nondecreasing sequence

{Ri}i :
{
R0 = im B,

Ri =
∑2

j=0 Aj Ri−1 + im B, i ∈ {1, 2, . . . , kr},

where the value of kr ≤ n− 1 is determined with the condition Rkr+1 = Rkr . Hence,
R� = Rkr .

It is easy to see that the set of A0-, A1-, and A2-invariant subspaces containing
the image of B is closed under both subspace intersection and addition; therefore, its
maximum is Rn and its minimum is given by the intersection of all its elements. The
algorithm for R� then follows as a particular case of Lemma 4.2 with C equal to the
null matrix.

Corollary 7.2. Given zero initial conditions xi,j = 0 for (i, j) ∈ B, for any
ui,j with (i, j) ∈ B+ we have xi,j ∈ R� for all (i, j) ∈ B+.

If we change coordinates using a basis of Rn adapted to R�, i.e., we consider a
nonsingular matrix T =

[
T1 T2

]
∈ Rn such that im T1 = R�, we find

T−1Ai T =

[
A11

i A12
i

O A22
i

]
, T−1B =

[
B1

O

]
,

where the submatrices are partitioned conformably with T1 and T2. In these new co-
ordinates, the second block of components of the local state is structurally unaffected
by the input, while the dynamics of the subsystem described by (A11

0 , A
11
1 , A

11
2 ;B1)

are completely reachable from zero boundary condition. Such subsystem can there-
fore be referred to as the reachable part of Σ (in a local sense). Dual arguments
can be used to define the nonobservability subspace of Σ as the limiting subspace Q�

obtained with the recursion

{Qi}i :
{
Q0 = ker C,

Qi =
⋂2

j=0 A
−1
j Qi−1 ∩ ker C, i ∈ {1, 2, . . . , k},

so that an analogue of the Kalman canonical decomposition can be established.
Now, the concept of self-boundedness defined in [2] is extended to 2-D systems

in Fornasini–Marchesini form. With no loss of generality, we can assume that B is of
full column-rank.3

3If B has a nontrivial kernel, a subspace U0 of the input space exists that does not influence the
local state state dynamics. By performing a suitable (orthogonal) change of basis in the input space,
we may eliminate U0 and obtain an equivalent system for which this condition is satisfied.
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Definition 7.3. The output-nulling subspace V is self-bounded if for any V-
valued boundary condition, any control yielding zero output is such that xi,j ∈ V for all
(i, j) ∈ B+. Likewise, the output-nulling subspace of feedback type W is self-bounded
of feedback type if for any W-valued boundary condition, any control ui,j = F xi,j
yielding zero output is such that xi,j ∈ W for all (i, j) ∈ B+.

In other words, given a boundary condition on a self-bounded subspace, there are
no inputs that enable the local state to escape this subspace without leaving the kernel
of C, i.e., without causing the output to become different from zero. Clearly, V� is
self-bounded and W� is self-bounded of feedback type, since by definition these are
the largest subspaces to which each boundary condition of Σ must belong so that the
existence of an input (in the second case having the form ui,j = F xi,j) is guaranteed
to maintain the output of Σ at zero. The following result provides a characterization
of self-boundedness, similar to the one in [2].

Theorem 7.4. An output-nulling subspace V is self-bounded if and only if
V�∩ imB ⊆ V.

Proof. (If). Suppose V� ∩ im B ⊆ V . Consider a V-valued boundary condi-
tion for Σ. The update equation that delivers the local state on B1 is (2.1), where
xi,j , xi+1,j , xi,j+1 ∈ V . Since V is a 2-D controlled invariant subspace, A0 xi,j can be
decomposed into ξi,j + ωi,j , where ξi,j ∈ V and ωi,j ∈ im B. The same is true for
A1 xi+1,j and A2 xi,j+1, so that xi+1,j+1 = φi,j + ψi,j + B ui,j , where φi,j ∈ V and
ψi,j ∈ im B. In order for the local state in B1 to be contained in kerC, ψi,j +B ui,j
must not cause xi+1,j+1 to leave V�, so we need ψi,j +B ui,j ∈ V� ∩ im B. However,
if V� ∩ im B ⊆ V , the local state in B1 is still in V , as it is given by the sum of two
vectors in V . This argument can be repeated for all boundary regions Bk, and by
induction the statement holds on B+.

(Only if). Consider a vector η ∈ V� ∩ im B such that η /∈ V . Consider a V-
valued boundary condition for Σ, and let us use the local state update equation to
compute the local state over B1; using the same argument of the (If) part, we can
write xi+1,j+1 = φi,j + ψi,j +B ui,j , where φi,j ∈ V and ψi,j ∈ im B. We can always
choose ui,j to be such that B ui,j = η − ψi,j , since η ∈ im B and ψi,j ∈ im B, and
with this choice ψi,j + B ui,j is equal to η, which is an element in V� but not of V .
Performing this operation recursively for all sets Bk, we construct a control input
that generates a local state solution of (2.1) contained in V� but not in V . Therefore,
V is not self-bounded.

Now we focus our attention on self-bounded subspaces of feedback type.
Lemma 7.5. Let W and W̃ be two output-nulling subspaces of feedback type for

(2.1) such that W ⊇ W̃ ⊇ W� ∩ im B. Then, any friend of W is also a friend of W̃.
Proof. Let F be a friend of W . Since W̃ is output-nulling, A0 W̃ ⊆ W̃ + im B,

which we add to the obvious inclusion B F W̃ ⊆ im B to get

(A0 +B F ) W̃ ⊆ W̃ + im B.(7.1)

Moreover, since W contains W̃ , we find

(A0 +B F ) W̃ ⊆ (A0 +B F )W ⊆ W .(7.2)

The intersection of (7.1) and (7.2) and application of the modular rule [23, p. 16] yield

(A0 +B F ) W̃ ⊆ W ∩ (W̃ + im B) = W̃ + (W ∩ im B).(7.3)

Since W̃ ⊇ W� ∩ im B ⊇ W ∩ im B, from (7.3) we find (A0 +B F )W̃ ⊆ W̃ .
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The following theorem provides a geometric characterization for self-boundedness,
which is a direct extension to 2-D systems of the one given in [2].

Theorem 7.6. An output-nulling subspace of feedback type W is a self-bounded
subspace of feeedback type if and only if W� ∩ im B ⊆ W.

The proof of Theorem 7.6 follows as a simple adaptation of that of Theorem 1 in
[20].

As a result of Lemma 7.5 and Theorem 7.6, we have the following corollary, whose
proof is now obvious.

Corollary 7.7. Let F be a friend of W�. Then, F is a friend of any self-
bounded subspace of feedback type.

We denote by Φ(Σ) the set of self-bounded subspaces of feedback type of (2.1)–
(2.2):

Φ(Σ)
def
= {W ∈ W(Σ) |W ⊇ W� ∩ im B}.

Proposition 7.8. The set Φ(Σ) is closed under sum and intersection.
Proof. The fact that Φ(Σ) is closed under sum is obvious, since such is also

W(Σ). Let us prove that it is closed under intersection. Let W1,W2 ∈ Φ(Σ), and let
F be a friend of W�. By Corollary 7.7, F is also a friend of W1 and W2. Therefore,
(A0 +B F )(W1 ∩W2) ⊆ W1 ∩W2. Therefore, W1 ∩W2 is a 2-D controlled invariant
subspace of feedback type. It also contains W� ∩ im B and it is contained in ker C
because both W1 and W2 are.

Now, givenW1,W2 ∈ Φ(Σ), it is easily seen that their sumW1+W2 is the smallest
element of Φ(Σ) containing both W1 and W2, and W1 ∩ W2 is the largest element
of Φ(Σ) contained in both W1 and W2 . Hence, (Φ(Σ),+,∩;⊆) is a nondistributive
modular lattice. As such, it admits a maximum element, which is trivially W�, and a
minimum element, which we now want to characterize. In the 1-D case, such minimum
coincides with the intersection of the largest output-nulling and the smallest input-
containing subspaces of the system, [19]. We show that the corresponding element in
the 2-D case, i.e., W� ∩Z�, is self-bounded of feedback type. We first show that it is
output-nulling. Since W� ⊆ ker C, we find

A0(W� ∩ Z�) = A0(W� ∩ Z� ∩ ker C) ⊆ A0 W� ∩ A0(Z� ∩ ker C),(7.4)

where the last inclusion holds in view of the modular rule, since W� ⊆ ker C. Since
Z� is a 1-D conditioned invariant subspace with respect to (A0, C) and W� is a 1-D
controlled invariant subspace with respect to (A0, B), relations A0(Z� ∩ kerC) ⊆ Z�

and A0 W� ⊆ W� + im B can be used on (7.4) to get

A0(W� ∩ Z�) ⊆ (W� + im B) ∩ Z� ⊆ (W� ∩ Z�) + (im B ∩ Z�) = (W� ∩ Z�) + im B

since Z� ⊇ im B. Therefore W� ∩ Z� is a 1-D controlled invariant subspace for
(A0, B). Trivially, it is also A1- and A2-invariant. Moreover, W�∩Z� ⊆ W� ⊆ ker C,
which means that W� ∩Z� is output-nulling. Finally, since Z� ⊇ im B, we also have
that W� ∩ Z� ⊇ W� ∩ im B. Then, W� ∩ Z� ∈ Φ(Σ).

Even if W� ∩Z� seems to satisfy the analogous properties of its 1-D counterpart,
in the 2-D case this subspace does not coincide with the minimum of Φ(Σ), as the fol-
lowing example shows. Consider Σ with the matrices A0, A1, A2 given in Example 5.1
with

B =

⎡
⎣ 2 0
−1 0
0 2

⎤
⎦ and C =

[
1 0 0

]
.
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The sequence {Wi}i becomes stationary at k = 0, i.e., W0 = W� =
[

0 0
1 0
0 1

]
, whereas

the sequence {Zi}i becomes stationary at k = 1, and it yields Z� = Z1 = R3. It
follows that the intersection W� ∩ Z� is equal to W�. Such intersection is therefore
self-bounded, as it will certainly contain W� ∩ im B. A friend of W� is given by
F = 4

5

[
0 0 0
0 0 −1

]
. Hence, F is also a friend of W� ∩ Z�, the latter being equal to W�.

However, W� is not the smallest self-bounded subspace. In fact, it is easy to see that
the subspace H = im [ 0 0 1 ]� is also an element of Φ(Σ). Indeed, it is output-nulling
(as (A0 + B F )H = H, A1 H = A2 H = {0} and H ⊆ ker C), and it coincides with
W� ∩ im B, so that H ⊇ W� ∩ im B.

To find the right way to compute the minimum of Φ(Σ), we prove the following
result.

Lemma 7.9. The set Φ(Σ) coincides with the set of A0 + B F , A1- and A2-
invariant subspaces containing W� ∩ im B, where F is any friend of W�.

Proof. Given W ∈ Φ(Σ) and a friend F of W�, by Corollary 7.7 matrix F
is also a friend of W . Hence, W is an A0 + B F , A1- and A2-invariant subspace
containing W� ∩ im B. Conversely, if W is A0 +B F , A1- and A2-invariant subspace
containing W� ∩ im B, then it is output-nulling of feedback type for Σ and also self-
bounded.

As a consequence of Lemma 7.9, we can compute the minimum of Φ(Σ) as the
minimum of the set of A0+B F , A1- and A2-invariant subspaces containingW�∩im B,
where F is a friend of W�.

Lemma 7.10. Let F be a friend of W�. The monotonically nondecreasing se-
quence

{Hi}i :{
H0 = W� ∩ im B,
Hi = (W� ∩ im B) + (A0 +B F )Hi−1 +A1 Hi−1 +A2 Hi−1, i ∈ {1, . . . , kh},

does not depend on the particular friend F of W�. The smallest element H� of Φ(Σ)
can be computed as the last term of the sequence {Hi}i, where the integer kh ≤n− 1
is determined by the condition Hkh +1 =Hkh

, i.e., H� = Hkh
.

Proof. The algorithm follows from that of {Ri}i. We need to prove that this
minimum is well-defined and does not depend on the particular choice of F (provided
F is a friend of W�). We prove by induction that the sequences {Hi}i and {H̃i}i
obtained as above but using two different friends F1 and F2 of W�, respectively,
coincide. This statement is true for i = 0. Assume Hi−1 = H̃i−1, and let us prove
that Hi = H̃i. It is sufficient to show that (W� ∩ imB) + (A0 + B F1)Hi−1 =
(W�∩ imB)+(A0+B F2)H̃i−1, and, since Hi−1 = H̃i−1, this is equivalent to proving
that

[(A0+B F1)− (A0+B F2)] Hi−1 ⊆ W� ∩ im B.(7.5)

The two friends F1 and F2 can be written as Fi = −ΩiW
†, where W is a basis for

W� and Ωi is a solution of A0W = W X i
0 + B Ωi for suitable matrices X i

0, so that
(7.5) is equivalent to B (Ω1 − Ω2)W

†Hi−1 ⊆ W� ∩ im B. From (6.8) it follows that[
X1

0−Xi
0

Ω1−Ω2

]
=

[
H0

H1

]
(K1

1 − K2
1 ), where K

i
1 are arbitrary and H0 and H1 are such that

W H0 + BH1 is zero. Hence,

BH1 (K
1
1 −K2

1 )W
†Hi−1 ⊆ W� ∩ im B.(7.6)
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The left-hand side of the former is clearly a subspace of im B. It is easy to see that
it is also a subspace of W�. Since W H0 + BH1 = 0, (7.6) becomes BH1 (K

1
1 −

K2
1 )W

†Hi−1 =W H0 (K
2
1 −K1

1 )W
†Hi−1, and thus the left-hand side of (7.6) is also

a subspace of W�.
By duality, we can define the concept of self-hidden subspaces. The set of self-

hidden subspaces of Σ can be defined as Ψ(Σ)
def
= {Z ∈ Z(Σ) | Z ⊆ Z� +ker C}. This

set is closed under addition, and its maximum is given by Z� +Q�, where Q� is the
largest invariant with respect to A0, A1, and A2 contained in kerC.

8. Reachability subspaces on 2-D controlled invariant subspaces. A 2-
D controlled invariant subspace of feedback type W is such that from any W-valued
boundary condition, at least one local state solution of (2.1) can be maintained on W
by means of a suitable control action ui,j = F xi,j . As in the 1-D case, however, it is
not possible to reach any point of W from any other point (in particular, from zero
boundary condition) with a W-valued solution of (2.1), but only a subspace RW of
W , which we name the reachable subspace on W . The following theorem provides a
method to characterize and compute this subspace.

Theorem 8.1. Let W be a 2-D controlled invariant subspace of feedback type.
Let F be a friend of W. The smallest element of the set of invariant subspaces with
respect to A0 +B F , A1, and A2 which contain W ∩ im B does not depend on F , and
is RW .

Proof. Consider a W-valued boundary condition. The input ui,j that generates a
W-valued solution of Σ can always be written as ui,j = F xi,j + vi,j . In fact, we can

always define the input vi,j
def
= ui,j − F xi,j . Then,

xi+1,j+1 = (A0 +B F )xi,j +A1 xi+1,j +A2 xi,j+1 +B vi,j .(8.1)

If we want xi+1,j+1 ∈ W , we need B vi,j to be an element of W , and therefore also
an element of W ∩ im B. Hence, vi,j ∈ B−1 W for all (i, j) ∈ B+. The reachable
subspace of (8.1) relative to the input vi,j is by definition the smallest invariant with
respect to A0 + B F , A1, and A2, containing the subspace of the local state space
spanned by the input action on the local state, which in this case is im B ∩ W .
We call such minimum RW(F ). Now we show that RW(F ) does not depend on
F . Let F 1 and F 2 be two friends of W . Let xi,j , xi+1,j , xi,j+1 ∈ W and define
xii+1,j+1 = (A0 + B F i)xi,j + A1 xi+1,j + A2 xi,j+1 + B vii,j for i ∈ {1, 2}, where

vii,j ∈ B−1 W for all (i, j). We can always choose v2i,j such that x1i+1,j+1 = x2i+1,j+1.

In fact, it is sufficient to choose v2i,j = v1i,j + (F 1 − F 2)xi,j . Now, using the same

argument of the proof of Lemma 7.10, we can show that v2i,j ∈ B−1 W for all (i, j).
Thus, RW (F1) = RW(F2).

As a consequence of Theorem 8.1, we have that
• RW is a 2-D controlled invariant subspace of feedback type and has the same
friends of W ;

• RW ⊆ R�; and
• RW� = minΦ(Σ).

While in the 1-D case the reachable subspace on a controlled invariant subspace V
can be computed as the intersection of V with the smallest subspace S such that
A(S ∩ V) ⊆ S containing im B as shown in [19], this is not necessarily true for 2-D
systems. Thus, in general, RW does not coincide with W ∩ T �, where T � is the
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limiting subspace of

{Ti}i :
{
T0 = im B,
Ti = im B +A0(Ti−1 ∩W) +A1 Ti−1 +A2 Ti−1, i ∈ {1, 2, . . . , kt}.

In fact, even if W ∩ T � is invariant with respect to A0 + B F , A1, and A2 and
contains W ∩ im B, it is not the smallest and therefore contains only RW . In view of
Theorem 8.1, the subspace RW can be computed by first computing any friend F of
W and then applying the recursion given in Theorem 7.1 with A0 + B F in place of
A0 and a basis matrix for the subspace W ∩ imB in place of B.

Concluding remarks. In this paper, fundamental structural invariants of 2-D
systems have been introduced and discussed. The most remarkable differences with
respect to the 1-D case are (i) the need for a distinction between 2-D controlled
invariance and controlled invariance of feedback type in order to fully characterize
the trajectories of a 2-D system generated by arbitrary and feedback controls, and (ii)
the fact that the minimum self-bounded subspace of a 2-D system—which is expected
to play a pivotal role in the solution of disturbance decoupling problems with stability
as the 1-D counterpart—does not coincide with the intersection of the largest output-
nulling with the smallest input-containing subspaces of a 2-D system. An algorithm
is also given for the computation of such a minimum.
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