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Abstract

In this paper, we introduce a higher-order Mond–Weir dual for a set-valued optimization problem by virtue of higher-order
contingent derivatives and discuss their weak duality, strong duality and converse duality properties.
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1. Introduction

For various different types of convex minimization problems (for example, linear programming, convex programming
and optimal control), there are associated maximization problems (called dual), involving different variables, which
attain the same optimal value as the original problem (called primal). It is very important to discuss the relationship
between primal problem and dual problem.

Recently, one finds that many optimization problems encountered in economics and other fields involve vector-valued
(or set-valued) mappings as constraints and objectives. Then, optimization problems with vector-valued mappings (or
set-valued mapping) have received much attention in recent years. Several authors have discussed duality properties of
optimization problems with vector-valued mapping. In [16], Weir and Mond proved weak, strong and converse duality
for weak minima of multiple objective optimization problems under different pseudo-convexity and quasiconvexity
assumptions. In [8], Mishra et al. investigated a general Mond–Weir type of duality results in terms of right differentials of
generalized d-type-I functions involved in the multiobjective programming problem. In [9], Preda and Koller introduced
a Mond–Weir duality scheme for optimization problems involving set functions, i.e., defined on a measure space (with
the variables being measurable sets), and also studied the Mond–Weir type of duality results under generalized pseudo-
convexity and generalized quasiconvexity assumptions.
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There are also some investigations on duality properties of optimization problems with set-valued mappings. In [10],
Sach and Craven obtained Wolfe-type and Mond–Weir-type duality theorems of set-valued optimization problems
under the condition that set-valued mappings satisfy an invex property and by virtue of tangent derivative of set-valued
mapping introduced in [2]. In [11], Sach et al. discussed Mond–Weir-type and Wolfe-type weak duality and strong
duality results of set-valued optimization problems under the condition that set-valued mappings satisfy generalized
invex properties and by virtue of the codifferential of set-valued mappings introduced in [1]. It should be mentioned
that the Lagrangian duality for vector optimization with set-valued mappings in infinite dimensional spaces has been
considered in [3–5,7,12]. The conjugate duality has been investigated in [15,13].

In this paper, we recall mth-order tangent sets and mth-order contingent derivative of set-valued mappings (see
[2]) and some properties of higher-order derivatives for a S-convex set-valued mapping. Then, by virtue of the mth-
order contingent derivative, we introduce a kind of higher-order Mond–Weir-type duality, which is a generalization
of Mond–Weir duality for single-valued functions (see [16]). We establish weak duality, strong duality and converse
duality results for optimization problems with set-valued mappings.

The rest of paper is organized as follows. In Section 2, we recall some basic definitions, the mth-order contingent
set and the mth-order adjacent set. Then, we discuss their properties. In Section 3, we recall the mth-order contingent
derivative and discuss its important properties. In Section 4, we introduce a kind of higher-order Mond–Weir duality
for a set-valued optimization problem and study weak duality, strong duality and converse duality properties between
this set-valued optimization problem and its higher-order Mond–Weir duality problem.

2. Mathematical preliminaries and higher-order tangent sets

Let X be a Banach space and Y and Z be two ordered Banach spaces, in which relations are defined by pointed
closed convex cone S with int S �= ∅ and D with int D �= ∅, respectively. S+ and D+ are the polar cones of S and D,
respectively. Suppose that F : X → 2Y and G : X → 2Z are two set-valued mappings. A ⊂ X, set F(A)=⋃x∈A F(x).
For any B ⊂ Y and C ⊂ Y , we assume that

B − C�� ⇐⇒ y2 − y1 ∈ S ∀y2 ∈ B, y1 ∈ C.

Definition 2.1. Let B be a set of Y and y0 ∈ B.

(i) y0 is said to be a weakly maximal point of B if there is no y ∈ B such that y − y0 ∈ int S, and maxint S B denotes
the set of all weakly maximal points of B.

(ii) y0 is said to be a weakly minimal point of B if there is no y ∈ B such that y − y0 ∈ −int S, and minint S B denotes
the set of all weakly minimal points of B.

Definition 2.2. F is called S-convex if

�F(x1) + (1 − �)F (x2) ⊂ F(�x1 + (1 − �)x2) + S ∀x1, x2 ∈ X and � ∈ [0, 1].

Definition 2.3. F is called pseudo-Lipschitzian at (x0, y0), where y0 ∈ F(x0), if there exist M > 0 and neighborhoods
V of x0 and W of y0 such that

F(x1) ∩ W ⊂ F(x2) + M‖x1 − x2‖B ∀x1, x2 ∈ V .

Definition 2.4 (Tanino [14]). A compact base for S is a nonempty compact subset B of S with � /∈ B such that every
d ∈ S, d �= �, has a unique representation of the form �b, where b ∈ B and � > 0.

Let X be supplied with a distance d and K be a subset of X. We denote by

d(x, K) = inf
y∈K

d(x, y)

the distance from x to K, where we set d(x, ∅) = +∞.
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Definition 2.5. Let x belong to a subset K of X and v1, . . . , vm−1 be elements of X. We say that the subset

T
(m)
K (x, v1, . . . , vm−1) = lim sup

h→0+

K − x − hv1 − · · · − hm−1vm−1

hm

=
{
y ∈ X

∣∣∣∣lim inf
h→0+ d

(
y,

K − x − hv1 − · · · − hm−1vm−1

hm

)
= 0

}

is the mth-order contingent set of K at (x, v1, . . . , vm−1).

Definition 2.6. Let x belong to a subset K of X and v1, . . . , vm−1 be elements of X. We say that the subset

T
�(m)
K (x, v1, . . . , vm−1) = lim inf

h→0+
K − x − hv1 − · · · − hm−1vm−1

hm

=
{
y ∈ X lim

h→0+ d

(
y,

K − x − hv1 − · · · − hm−1vm−1

hm

)
= 0

}

is the mth-order adjacent set of K at (x, v1, . . . , vm−1).

Now we state some results of the mth-order contingent and adjacent sets, which have been obtained in [6].

Proposition 2.1. If K is a convex subset and v1, . . . , vm−1 ∈ K , then

T
�(m)
K (x0, v1 − x0, . . . , vm−1 − x0) = T

(m)
K (x0, v1 − x0, . . . , vm−1 − x0)

= cl

(⋃
h>0

K − x0 − h(v1 − x0) − · · · − hm−1(vm−1 − x0)

hm

)
.

Proposition 2.2. If K is convex, then T
�(m)
K (x0, v1, . . . , vm−1) is convex.

Corollary 2.1. If K is a convex subset and v1, . . . , vm−1 ∈ K , then sets T
(m)
K (x0, v1 − x0, . . . , vm−1 − x0) and

cl(
⋃

h>0 (K − x0 − h(v1 − x0) − · · · − hm−1(vm−1 − x0))/hm) are convex.

3. Higher-order derivatives of set-valued mappings

In this section, we shall recall the definitions of the mth-order contingent derivative for set-valued mappings in [2].
Then, we shall investigate its properties under the condition that the set-valued mapping is S-convex.

Definition 3.1. Let X, Y be normed spaces and F : X → 2Y be a set-valued map. The mth-order contingent derivative
D(m)F (x, y, u1, v1, . . . , um−1, vm−1) of F at (x, y) ∈ Graph(F ) for vectors (u1, v1), . . . , (um−1, vm−1) is the set-
valued map from X to Y defined by{

Graph(D(m)F (x, y, u1, v1, . . . , um−1, vm−1))

=T
(m)
Graph(F )(x, y, u1, v1, . . . , um−1, vm−1),

where Graph(H) denotes the graph of the set-valued mapping H, i.e., Graph(H) = {(x, y)|y ∈ H(x), x ∈ Dom(H)}.

We also define the S-directed mth-order contingent derivative D
(m)
S F (x, y, u1, v1, . . . , um−1, vm−1) of F at (x, y)

for vectors (u1, v1), . . . , (um−1, vm−1) to be the mth-order contingent derivative of the set-valued mapping

F(x) + S = {y + s|y ∈ F(x), s ∈ S}
at (x, y) for vectors (u1, v1), . . . , (um−1, vm−1). By Proposition 2.1, we have the following result.
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Proposition 3.1. Let F be S-convex on convex set A ⊂ Dom(F ), (x0, y0) ∈ Graph(F ) and let u1, . . . , um−1 ∈ A and
v1 ∈ F(u1) + S, . . . , vm−1 ∈ F(um−1) + S. Then, for any x ∈ A,

y ∈ D
(m)
S F (x0, y0, u1 − x0, v1 − y0, . . . , um−1 − x0, vm−1 − y0)(x)

if and only if for any sequence {hn} with hn → 0+ there exists sequence {(xn, yn)} with yn ∈ F(xn) such that

(xn, yn) − (x0, y0) − hn(u1 − x0, v1 − y0) − · · · − hm−1
n (um−1 − x0, vm−1 − y0)

hm
n

→ (x, y).

By similar proof method of Theorem 4.1 in [6], we have the following result.

Proposition 3.2. Let F be S-convex on convex set A ⊂ Dom(F ). Then, for all x′, x′′ ∈ A and any y′ ∈ F(x′),

F(x′′) − y′ ⊂ D
(m)
S F (x′, y′, u1 − x′, v1 − y′, . . . , um−1 − x′, vm−1 − y′)(x′′ − x′),

where u1, . . . , um−1 ∈ A and v1 ∈ F(u1) + S, . . . , vm−1 ∈ F(um−1) + S.

Proposition 3.3. Let F be S-convex on Dom(F ), (x0, y0) ∈ Graph(F ) and let u1, . . . , um−1 ∈ Dom(F ), v1 ∈ F(u1)+
S, . . . , vm−1 ∈ F(um−1) + S. Suppose that S has a compact base and that there exists an x̄ ∈ conv{x0, u1, . . . , um−1}
with x̄ ∈ int(Dom(F )). Suppose that there exists a pointed closed cone S̄ such that S\{�} ⊂ int S̄ and

conv{(x0, y0), (u1, v1), . . . , (um−1, vm−1)} ∩ int(Graph(F + S̄)) = ∅. (1)

Then,

D
(m)
S F (x0, y0, u1 − x0, v1 − y0, . . . , um−1 − x0, vm−1 − y0)(x)

⊂ D(m)F (x0, y0, u1 − x0, v1 − y0, . . . , um−1 − x0, vm−1 − y0)(x) + S ∀x ∈ A.

Proof. Let y ∈ D
(m)
S F (x0, y0, u1−x0, v1−y0, . . . , um−1−x0, vm−1−y0)(x). Then, there exist sequences {(xn, yn)} ⊂

Graph(F ), {hn} ⊂ R+\{0} with hn → 0+ and {dn} ⊂ S such that

(xn, yn + dn) − (x0, y0) − hn(u1 − x0, v1 − y0) − · · · − hm−1
n (um−1 − x0, vm−1 − y0)

hm
n

→ (x, y). (2)

Let us consider two possible cases for sequence {dn}.
Case 1: There exists n0 such that dn = �, for n�n0. By the definition of higher-order contingent derivative, we have

y ∈ D(m)F (x0, y0, u1 − x0, v1 − y0, . . . , um−1 − x0, vm−1 − y0)(x).

Case 2: There exists a subsequence without loss of generality we still write as dn such that dn �= �, for all n.
Now, we confirm that the sequence {‖dn‖/hm

n } is bounded. Indeed, suppose that sequence {‖dn‖/hm
n } is unbounded.

Without loss of generality, we assume that ‖dn‖/hm
n → +∞. Since S has a compact base, let

dn/‖dn‖ → d ′ ∈ S\{�}. (3)

It follows from the S-convexity of F on Dom(F ) that Graph(F + S̄) is a convex set. By (1) and a standard separation
theorem of convex sets, there exists a nonzero vector (�, �) ∈ X × Y such that

〈�, x̃〉 + 〈�, ỹ〉�〈�, x〉 + 〈�, y〉 (4)

for any (x̃, ỹ) ∈ conv{(x0, y0), (u1, v1), . . . , (um−1, vm−1)} and (x, y) ∈ Graph(F + S̄). Since there exists an x̄ ∈
conv{x0, u1, . . . , um−1} with x̄ ∈ int(Dom(F )), � �= 0. Take an arbitrary s ∈ S̄. It follows from (4) and (x0, y0 + s) ∈
Graph(F + S̄) that

〈�, s〉�0.
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This implies that

� ∈ (S̄)−\{�}. (5)

From (1), (3) and (5), we have

d ′ ∈ S\{�} ⊂ int S̄

and so

〈�, d ′〉 < 0. (6)

It follows from (2) that

xn − x0 − hn(u1 − x0) − · · · − hm−1
n (um−1 − x0)

‖dn‖ → � (7)

and

yn − y0 − hn(v1 − y0) − · · · − hm−1
n (vm−1 − y0)

‖dn‖ → −d ′. (8)

Obviously, when n is large enough, we have

(x0, y0) + hn(u1 − x0, v1 − y0) + · · · + hm−1
n (um−1 − x0, vm−1 − y0)

∈ conv{(x0, y0), (u1, v1), . . . , (um−1, vm−1)}. (9)

It follows from (4) and (7)–(9) that

〈�, d ′〉�0

which contradicts (6).
Thus, sequence {‖dn‖/hm

n } is bounded and we can assume that

‖dn‖/hm
n → ��0. (10)

By (2) and (10), we have

(xn, yn) − (x0, y0) − hn(u1 − x0, v1 − y0) − · · · − hm−1
n (um−1 − x0, vm−1 − y0)

hm
n

→ (x, y − �d ′). (11)

By (11) and the definition of the mth contingent derivative,

y − �d ′ ∈ D(m)F (x0, y0, u1 − x0, v1 − y0, . . . , um−1 − x0, vm−1 − y0)(x),

and so

D
(m)
S F (x0, y0, u1 − x0, v1 − y0, . . . , um−1 − x0, vm−1 − y0)(x)

⊂ D(m)F (x0, y0, u1 − x0, v1 − y0, . . . , um−1 − x0, vm−1 − y0)(x) + S

and the conclusion follows readily. �

4. Higher-order Mond–Weir duality

Consider the following generalized vector optimization problem:

(GVOP) min F(x)

s.t. G(x) ∩ (−D) �= ∅, (12)

i.e., to find all x0 ∈ Q for which there exists a y0 ∈ F(x0) such that y0 ∈ minint S F (Q), where Q = {x ∈ X|G(x) ∩
(−D) �= ∅}. A point (x, y) is a feasible solution of Problem (GVOP) if x ∈ Q and y ∈ F(x).
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Suppose that (u1, v1), . . . , (um−1, vm−1) ∈ Graph(F + S) and (u1, w1), . . . , (um−1, wm−1) ∈ Graph(G + D). We
introduce a dual problem (DGVOP) of (GVOP) as follows:

max y0

s.t. lD
(m)
S F (x0, y0, u1 − x0, v1 − y0, . . . , um−1 − x0, vm−1 − y0)(x)

+ �D
(m)
D G(x0, z0, u1 − x0, w1 − z0, . . . , um−1 − x0, wm−1 − z0)(x)�0, x ∈ �, (13)

�z0 �0, (14)

l ∈ S+, l �= 0, (15)

� ∈ D+, (16)

where z0 ∈ G(x0) and

� = Dom D
(m)
S F (x0, y0, u1 − x0, v1 − y0, . . . , um−1 − x0, vm−1 − y0)

∩ Dom D
(m)
D G(x0, z0, u1 − x0, w1 − z0, . . . , um−1 − x0, wm−1 − z0),

i.e., to find all (x0, y0, z0, l, �) which satisfy y0 ∈ maxint S H , where

H = {y0 ∈ F(x0)|(x0, y0, z0, l, �) satisfies conditions (13)–(16)}.
A point (x0, y0, z0, l, �) satisfying (13)–(16) is called feasible for (DGVOP).

Remark 4.1. Let Y =Rk, Z=Rn, S=Rk+, D=Rn+, m=1. Let F and G be single-valued functions f =(f1, f2, . . . , fk)

and g = (g1, g2, . . . , gn) where fi ∈ C1 and gj ∈ C1. We have

DSf (x0, f (x0))(x) = ∇f (x0)(x) + Rk+

and

DDg(x0, g(x0))(x) = ∇g(x0)(x) + Rn+.

The dual problem (DGVOP) becomes

max f (x0)

s.t. l∇f (x0)(x) + �∇g(x0)(x)�0, x ∈ �,

�g(x0)�0,

l ∈ S+, l �= 0

� ∈ D+.

This is exactly one of the dual problems considered in [16]. Thus, (DGVOP) is a generality of Mond–Weir duality.

Theorem 4.1 (Weak duality). Suppose that F and G are S-convex and D-convex on X, respectively. Let (u1, v1), . . .,
(um−1, vm−1) ∈ Graph(F +S) and (u1, w1), . . . , (um−1, wm−1) ∈ Graph(G+D). Then the feasible solution (x0, y0)

of (GVOP) and the feasible solution (x̂, ŷ, ẑ, l, �) of (DGVOP) satisfy

ly0 � lŷ.

Proof. It follows from Proposition 3.2 that

y0 − ŷ ∈ D
(m)
S F (x̂, ŷ, u1 − x̂, v1 − ŷ, . . . , um−1 − x̂, vm−1 − ŷ)(x0 − x̂) (17)

and

G(x0) − ẑ ⊂ D
(m)
D G(x̂, ẑ, u1 − x̂, w1 − ẑ, . . . , um−1 − x̂, wm−1 − ẑ)(x0 − x̂). (18)
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Since (x0, y0) is a feasible solution for (GVOP), G(x0) ∩ (−D) �= ∅. Take a z ∈ G(x0) ∩ (−D). Then, by (14), we
have that

�z − �ẑ�0. (19)

It follows from (13) that

ly0 − lŷ + �z − �ẑ�0.

Therefore, by (19), we get

ly0 � lŷ

and the proof is complete. �

Theorem 4.2 (Strong duality). Suppose that the following conditions are satisfied:

(i) F is S-convex on X and G is D-convex on X;
(ii) (x0, y0) is a solution for (GVOP);

(iii) z0 ∈ G(x0) and z0 /∈ minint D G(�);
(vi) G + D is pseudo-Lipschitzian at (x0, z0);
(v) (ui, vi − y0, wi) ∈ X × (−S) × (−D), for i = 1, . . . , m − 1.

Then, there exists (l, �) ∈ S+ × D+ such that (x0, y0, z0, l, �) is a solution of (DGVOP).

Proof. We first prove that

D
(m)
S×D(F, G)(x0, y0, z0, u1 − x0, v1 − y0, w1 − z0, . . . , um−1 − x0, vm−1 − y0, wm−1 − z0)(x)

= D
(m)
S F (x0, y0, u1 − x0, v1 − y0, . . . , um−1 − x0, vm−1 − y0)(x)

× D
(m)
D G(x0, z0, u1 − x0, w1 − z0, . . . , um−1 − x0, wm−1 − z0)(x). (20)

Naturally, we only need to prove

D
(m)
S F (x0, y0, u1 − x0, v1 − y0, . . . , um−1 − x0, vm−1 − y0)(x)

× D
(m)
D G(x0, z0, u1 − x0, w1 − z0, . . . , um−1 − x0, wm−1 − z0)(x)

⊆ D
(m)
S×D(F, G)(x0, y0, z0, u1 − x0, v1 − y0, w1 − z0, . . . , um−1 − x0, vm−1 − y0, wm−1 − z0)(x).

Suppose that

(y, z) ∈ D
(m)
S F (x0, y0, u1 − x0, v1 − y0, . . . , um−1 − x0, vm−1 − y0)(x)

× D
(m)
D G(x0, z0, u1 − x0, w1 − z0, . . . , um−1 − x0, wm−1 − z0)(x).

It follows from Proposition 3.1 that, for any hn → 0+, there exists (xn, yn) → (x, y) such that

y0 + hn(v1 − y0) + · · · + hm−1
n (vm−1 − y0) + hm

n yn

∈ F(x0 + hn(u1 − x0) + · · · + hm−1
n (um−1 − x0) + hm

n xn) + S. (21)

Similarly, for any hn → 0+, there exists (x̄n, z̄n) → (x, z) such that

z0 + hn(w1 − z0) + · · · + hm−1
n (wm−1 − z0) + hm

n z̄n

∈ G(x0 + hn(u1 − x0) + · · · + hm−1
n (um−1 − x0) + hm

n x̄n) + D. (22)
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By the assumption (iv), there exist M > 0, and neighborhoods W of z0 and N of x0 such that

(G(x1) + D) ∩ W ⊂ G(x2) + D + M‖x1 − x2‖B ∀x1, x2 ∈ N. (23)

Naturally, there exists N > 0 satisfying

x0 + hn(u1 − x0) + · · · + hm−1
n (um−1 − x0) + hm

n xn ∈ N ∀n�N

and

z0 + hn(w1 − z0) + · · · + hm−1
n (wm−1 − z0) + hm

n z̄n ∈ W ∀n�N . (24)

It follows from (22)–(24) that

z0 + hn(w1 − z0) + · · · + hm−1
n (wm−1 − z0) + hm

n z̄n

∈ G(x0 + hn(u1 − x0) + · · · + hm−1
n (um−1 − x0 + hm

n x̄n) + D) ∩ W

⊂ G(x0 + hn(u1 − x0) + · · · + hm−1
n (um−1 − x0) + hm

n xn) + D + hm
n M‖x̄n − xn‖B ∀n�N .

Then, there exists zn → z such that for any n�N ,

z0 + hn(w1 − z0) + · · · + hm−1
n (wm−1 − z0) + hm

n zn ∈ G(x0 + hn(u1 − x0)

+ · · · + hm−1
n (um−1 − x0) + hm

n xn) + D. (25)

It follows from (21) and (25) that

(y, z) ∈ D
(m)
S×D(F, G)(x0, y0, z0, u1 − x0, v1 − y0, w1 − z0, . . . , um−1 − x0, vm−1 − y0, wm−1 − z0)(x),

and (20) holds.
Define

B =
⋃
x∈�

D
(m)
S×D(F, G)(x0, y0, z0, u1 − x0, v1 − y0, w1 − z0, . . . , um−1 − x0, vm−1 − y0, wm−1 − z0)(x)

+ (�, z0).

It follows from the convexity of Graph(F + S, G + D) and Proposition 2.2 that

T
(m)
Graph(F+S,G+D)((x0, y0, z0), (u1 − x0, v1 − y0, w1 − z0), . . . , (um−1 − x0, vm−1 − y0, wm−1 − z0))

is a convex set. Therefore, by similar proof method for the convexity of B in Theorem 5.1 in [4], we have that B is a
convex set.

We next prove that

B ∩ [−int S × int D] = ∅. (26)

To arrive at a contradiction, we assume that there exists (x̂, ŷ, ẑ) such that

(ŷ, ẑ) ∈ D
(m)
S×D(F, G)(x0, y0, z0, u1 − x0, v1 − y0, w1 − z0, . . . , um−1 − x0, vm−1 − y0, wm−1 − z0)(x̂) (27)

and

(ŷ, ẑ + z0) ∈ −int S × int D. (28)

It follows from (27) and the definition of the mth-order contingent derivative that there exist sequences {hn} with
hn → 0+ and {(xn, yn, zn)} with

yn ∈ F(xn) + S, zn ∈ G(xn) + D
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such that

(xn, yn, zn) − (x0, y0, z0)

hm
n

− hn(u1 − x0, v1 − y0, w1 − z0)

hm
n

− · · · hm−1
n (um−1 − x0, vm−1 − y0, wm−1 − z0)

hm
n

→ (x̂, ŷ, ẑ). (29)

From (28) and (29), there exists N > 0 such that hn + · · · + hm
n < 1 and

(yn, zn) − (y0, z0) − hn(v1 − y0, w1 − z0) − · · · − hm−1
n (vm−1 − y0, wm−1 − z0)

hm
n

+ (�, z0) ∈ −int S × int D

for n�N. Thus, we have

yn − y0 − hn(v1 − y0) − · · · − hm−1
n (vm−1 − y0) ∈ −int S for n�N

and

zn − z0 − hn(w1 − z0) − · · · − hm−1
n (wm−1 − z0) + hm

n z0 ∈ −int D for n�N .

Since z0, w1, . . . , wm−1 ∈ −D and v1 − y0, . . . , vm−1 − y0 ∈ −S,

(1 − hn − · · · − hm
n )z0 + hnw1 + · · · + hm−1

n wm−1 ∈ −D

and

hn(v1 − y0) + · · · + hm−1
n (vm−1 − y0) ∈ −S.

Thus, zn ∈ −int D and yn − y0 ∈ −int S. Since zn ∈ G(xn) + D and yn ∈ F(xn) + S, there exist z̄n ∈ G(xn), dn ∈
D, ȳn ∈ F(xn) and sn ∈ S such that

zn = z̄n + dn and yn = ȳn + sn for n�N .

Naturally, z̄n ∈ G(xn) ∩ −D and ȳn − y0 ∈ −int S, which contradicts that x0 is a weak minimal solution at y0. Thus,
(26) holds. It follows from a standard separation theorem of convex sets and similar proof method of Theorem 5.1 in
[4] that there exist l ∈ S+and � ∈ D+, not both zero functionals, such that

�(z0) = �, (30)

l(y) + �(z)�0, (31)

for all

(y, z) ∈ D
(m)
S×D(F, G)(x0, y0, z0, u1 − x0, v1 − y0, w1 − z0, . . . , um−1 − x0, vm−1 − y0, wm−1 − z0)(x)

and x ∈ �.
It follows from (20), (30) and (31) that (x0, y0, z0, l, �) satisfies (13, (4) and (16). Now we prove that the functional

l satisfies (15), i.e., l �= 0.
In fact, from the assumption (iii) and Proposition 3.2, there exists an x̄ ∈ � such that

D
(m)
D G(x0, z0, u1 − x0, w1 − z0, . . . , um−1 − x0, wm−1 − z0)(x̄) ∩ −int D �= ∅,

i.e., there exists z̄ ∈ D
(m)
D G(x0, z0, u1 − x0, w1 − z0, . . . , um−1 − x0, wm−1 − z0)(x̄) and z̄ ∈ −int D. Since � ∈ D+,

we have �(z̄) < 0 if � �= 0. Then, it follows from (31) that l �= 0. So, (x0, y0, z0, l, �) is a feasible solution.
Finally, we prove that (x0, y0, z0, l, �) is a solution of (DGVOP). Suppose that (x0, y0, z0, l, �) is not a solution of

(DGVOP). Then, there exists a feasible solution (x̂, ŷ, ẑ, l′, �′) such that

ŷ > y0.
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By l′ ∈ S+ and l′ �= 0, we have

l′ŷ > l′y0. (32)

Since (x0, y0) is a feasible solution for (GVOP), by Theorem 4.1, we have that l′y0 � l′ŷ, which contradicts (32). Thus,
the proof is complete. �

Theorem 4.3 (Converse duality). Suppose that the following conditions are satisfied:

(i) F is S-convex on X and G is D-convex on X;
(ii) (u1, v1), . . . , (um−1, vm−1) ∈ Graph(F + S) and (u1, w1), . . . , (um−1, wm−1) ∈ Graph(G + D);

(iii) there exist x0 ∈ X, y0 ∈ F(x0), z0 ∈ G(x0) ∩ (−D), nonzero l ∈ S+ and � ∈ D+ such that (x0, y0, z0, l, �) is a
solution of (DGVOP).

Then, (x0, y0) is a solution of (GVOP).

Proof. Suppose that x ∈ Q. Then, there exists d ∈ G(x) ∩ (−D). It follows from Proposition 3.2 that

d − z0 ∈ D
(m)
D G(x0, z0, u1 − x0, w1 − z0, . . . , um−1 − x0, wm−1 − z0)(x − x0).

By (14), we have that �z0 �0. It follows from z0 ∈ G(x0) ∩ (−D) that �z0 �0. So

�z0 = 0

and

�(d − z0) = �(d) − �(z0) = �(d)�0. (33)

Therefore, it follows from (13) and (33) that

lD
(m)
S F (x0, y0, u1 − x0, v1 − y0, . . . , um−1 − x0, vm−1 − y0)(x − x0)�0, x ∈ Q. (34)

From Proposition 3.2 and (34), we have

l(F (Q) − y0)�0.

Since l is a nonzero positive functional, we get that y0 ∈ minint S F (Q). Thus, (x0, y0) is a solution of (GVOP) and
this completes the proof. �

Note that the following inclusion relation always holds:

D(m)F (x0, y0, u1 − x0, v1 − y0, . . . , um−1 − x0, vm−1 − y0)(x) + S

⊂ D
(m)
S F (x0, y0, u1 − x0, v1 − y0, . . . , um−1 − x0, vm−1 − y0)(x). (35)

However, converse inclusion relation may not hold. The following example explains the case.

Example 4.1. Suppose that S = R+, m = 1 and

F(x) =
{ {0} if x�0,

{0, −√
x} if x > 0.

Then,

DF(0, 0)(x) =
{ {0} if x �= 0,

{y|y�0} if x = 0
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and

DSF(0, 0)(x) =
{ {y|y�0} if x < 0,

R if x�0.

Obviously, when x > 0, we have

DSF(0, 0)(x)�DF(0, 0)(x) + R+.

Thus, if we use lD(m)F (x0, y0, u1 − x0, v1 − y0, . . . , um−1 − x0, vm−1 − y0)(x) + �D(m)G(x0, z0, u1 − x0, w1 −
z0, . . . , um−1 − x0, wm−1 − z0)(x)�0 instead of the inequality relation in (13), we obtain the following dual problem
(DGVOP1) of (GVOP):

max y0

s.t. lD(m)F (x0, y0, u1 − x0, v1 − y0, . . . , um−1 − x0, vm−1 − y0)(x)

+ �D(m)G(x0, z0, u1 − x0, w1 − z0, . . . , um−1 − x0, wm−1 − z0)(x)�0, x ∈ �,

�z0 �0,

l ∈ S+, l �= 0,

� ∈ D+.

It follows from (35) that the feasible set of (DGVOP1) includes one of (DGVOP). Thus, under the assumptions of
Theorem 4.2, strong duality theorem also holds for the dual problem (DGVOP1). It follows from Proposition 3.3 that
if F and G satisfy the assumptions of Proposition 3.3, respectively, then the weak duality also holds for (GVOP) and
(DGVOP1) under the assumptions of Theorem 4.1. Naturally, if F and G satisfy the assumptions of Proposition 3.3,
respectively, then the converse duality also holds for (GVOP) and (DGVOP1) under the assumptions of Theorem 4.3.
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