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Abstract 
This paper utilises a unique dataset comprising of a hundred years of Australian railway 
history to develop a cost function for Australia’s railways.  It explores two different 
functional forms, highlighting the advantages and disadvantages of each, and explores 
some of the ramifications of the cost models, both in terms of the economics of 
Australia’s railways and their economic regulation. 
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Introduction 
This paper endeavours to construct a cost function for Australia’s seven government-
owned railways, covering the period from 1900 to 1992.  It explores both translog and 
Symmetric Generalised McFadden (SGM) functional forms, and finds that the former 
provides a more robust set of estimates of the railways’ costs.  The paper also explores 
issues of economies of density, scale and scope for Australia’s railways, and provides 
estimates of long run marginal cost. 
 
Section Two of this paper provides some background literature review on the estimation 
of railway cost functions.  Section Three describes the data used, whilst Section Four 
describes the models and modelling results.  Section Five explores some implications of 
the modelling results, and Section Six concludes. 

Railway Cost Functions 
US railways have been regulated for more than one hundred years, and their economic 
regulators have, for most of that time, collected detailed, consistent data on their 
operating characteristics.  The ready public availability of this data has meant, in turn, 
that most of the advances in railway cost function construction and development have 
been based upon US data.  Winston (1985), Bitzan (2000) and Waters (2007) provide 
three historical overviews of the development of the literature, with the first and last 
beginning their analyses in the 19th Century and covering railway economics more 
generally, and Bitzan (2000) focusing on cost functions developed since World War Two.   
 
One can divide the development of the literature into three parts.  Prior to World War 
Two, there was a major focus on what drove railway costs, with early authors 
(Wellington, 1887 and Ripley, 1912) suggesting that up to half of railway costs were 
unrelated to traffic, a misconception which was not remedied until the 1920s, when more 
sophisticated statistical methods began to be used for the first time (Lorenz, 1923, Clark, 
1923).  In the post-war period, econometric analyses began to be undertaken, notably by 
Borts (1952, 1954, 1960) and Klein (1953), who focused upon cost and production 
functions, and the measurement of scale economies where over-capacity prevailed.  
However, as Keeler (1974) pointed out, many of these models were prone to error due to 
their linear construction, which meant a fixed relationship between inputs and outputs, 
regardless of scale.  Keeler (1974) used a Cobb-Douglas function, to obviate these 
concerns, estimating short-run cost functions and using their envelope to construct a 
long-run function.  He also distinguished between economies of scale, where above-rail 
output and track both increase, and economies of density, where greater above-rail traffic 
is accommodated on the same track.  However, the Cobb-Douglas function has problems 
of its own, in terms of flexibility, and thus the third stage of progress arguably did not 
begin until the advent of flexible functional forms; first the translog, and later the SGM. 
 
Translog functional forms, as noted by Waters (2007) first entered the railway cost 
function literature in the early 1980s, with work by Spady (1979), Friedlander & Spady 
(1981) and Cave Christiansen & Swanson (1980,1981a,b).  The studies were interested in 
productivity gains, but also explored more deeply the differences between economies of 
scale and economies of density.  Caves, Christiansen, Trethaway & Windle (1985) point 
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out that the use of firm dummies can distort measures of scale and density, because the 
dummies can often be correlated with these measures.  Brauetigam, Daugherty & 
Turnquist (1984) use data from a single firm to avoid these difficulties, but this is rare, 
because there are rarely enough observations from a single firm to render robust 
estimations of complex cost functions like the translog.  They use 35 months of data, 
accounting for serial correlation through the use of an AR(1) process and estimating a 
long-run cost function, with a particular focus on economies of density and of size.  They 
also eschew a test of exogeneity of output, arguing that, as common carriers, the railways 
(prior to the Staggers Act of 1980 when the industry was largely deregulated) were 
required to provide a service to any shipper at the going rate, and could not thus choose 
their own output.  Many earlier studies, they point out, make similar assumptions 
(although later studies usually use a Hausman test to test for it), and it is worth noting that 
the Australian railways were also common carriers for most of the 20th Century.1 
 
One problem associated with the use of the translog is that the log of zero is not defined; 
meaning firms with zero output within a particular class (say passenger trips) in a 
particular year are difficult to incorporate into the model.  Caves, Christensen, & 
Trethaway, (1980) addressed the issue of zero outputs by using a Box-Cox 
transformation.  They then applied this model to a cross-section of US railways from 
1963, consisting of 56 firms, 41 of which produce passenger and freight outputs and 15 
of which produce either on or the other alone. 
 
A broader issue than outputs of zero is the diversity of output commonly seen in railways, 
which can be obscured by narrow measures such as net tonne kilometres for freight or 
passenger journeys for passenger rail.  DeBorger (1991) presents what he claims is the 
first application of an hedonic output aggregation model to the railway industry, 
focussing on the railways of Belgium.  He uses a short-run translog cost function, 
whereby each output is a function of its attributes, and the hedonic output aggregator and 
the cost function are estimated jointly.  The approach allows for the incorporation of 
diversity without greatly expanding the number of parameters estimated, but for it to be 
appropriate each of the aggregators must be separable from all of the other arguments in 
the cost function; something which the author admits is empirically rare in transportation 
industries.  Each aggregator is a summation of the log of the relevant output, such as 
freight, and the sum of a vector of operating characteristics relevant to that output. 
 
The translog functional form is very versatile in that it can be adapted to accommodate 
outputs of zero, or a wide range of outputs.  It is also relatively easy to estimate, and its 
coefficients have an easily-understood meaning; they are elasticities.  It has thus proven 
popular.  In addition to the above studies, Friedlaender, Berndt, Shaw-Er Wang Chiang, 
Showalter and Vellturo (1993) use the translog to explore capital stock adjustments 
subsequent to industry deregulation in the US, finding that overcapacity still prevailed, 
whilst Wilson (1997) uses the model to explore cost reductions and productivity gains 
over the same period.  Bitzan (2000, 2003) uses the translog to explore cost subadditivity, 
and hence the impacts of vertical and horizontal separation, highlighting both the cost and 
welfare impacts.  Wills-Johnson (2008) performs a similar analysis for Australian 
                                                 
1 I do not perform a Hausman test here either, in part for this same reason and in part because obtaining the 
appropriate data to construct reliable instruments over the long timeframe involved would be difficult. 
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railways, using a much shorter version of the dataset used in this paper.  Bitzan & Keeler 
(2003) use the translog to narrow down sources of technical improvements since (US) 
industry deregulation, focusing on the consequences of removing cabooses from trains, 
whilst in a 2007 paper, the authors explore the effects of increased traffic density possible 
since deregulation, by developing a counterfactual translog cost function (Bitzan & 
Keeler, 2007).  Mizutani (2004) presents a rare example of the use of a translog model for 
urban passenger railways, into which he incorporates DeBorger’s (1991) hedonic 
approach, in order to compare the costs of public and private railways in Japan.  Finally,2 
Ivaldi & McCullough (2001) utilise the translog to examine vertical separation, using an 
ingenious characterisation of below-rail output; replacement ties.3 
 
However, in more recent times, some authors have begun to move away from the 
translog.  Crafts, Leunig & Mulatu (2008), estimate an efficient cost frontier for British 
railways around the turn of the 20th Century, and use a Cobb-Douglas function in 
preference to the translog because their statistical tests suggest that the added complexity 
of the translog is unwarranted.  More often, however, the move is to more complexity, 
and most particularly to the SGM.  This literature is still small.  Ivaldi & McCullough 
(2005, 2006) us the SGM to explore subadditvity, finding greater evidence of 
inefficiencies from vertical and horizontal separation than Bitzan (2000,2003), and also 
to explore the welfare effects associated with the many mergers that have characterised 
the US industry in recent decades.  Christopolous, Loizides & Tsionas (2001) use a 
single-output version of the SGM to explore the sources of inefficiency in European 
railways, by decomposing the error in each factor-demand equation into a random 
component, and one associated with the relevant factor.  This paper, to the knowledge of 
the author, thus represents the fourth paper to use the SGM in the context of the railways. 

Description of the Data 
Most of the literature covering railway cost functions detailed above had been developed 
using US data.  Australian data are not as comprehensive as those from the US, but the 
Australian Bureau of Statistics has collected reasonably consistent data on Australia’s 
railways for almost 100 years (from 1900 to the mid 1980s), and the author has used this 
data, along with data from annual reports and a small number of other studies (notably 
Hensher, Daniels & DeMellow, 1995 and BTRE, 2006) to construct the Australian 
Railways Database.  This free, publicly-available database can be downloaded from 
http://tiny.cc/ozrail, and its sources and construction details are provided with the 
database.  The Australian data, apart from not being nearly as rich as data from the US, 
are also characterised differently.  Whilst every attempt has been made to construct 
models with similar variables as have become common in the literature developed using 
US data, it is impossible to replicate these models exactly. 

Inputs 
The Database has operating expenditure divided as follows: 
• Maintenance of Ways and Works: upkeep of the permanent way (tracks), buildings, 

fences, signals and bridges. 

                                                 
2 See the three historical studies mentioned previously for more examples. 
3 That is, the clips which connect the track to the sleepers. 

http://tiny.cc/ozrail
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• Motive Power and Maintenance of Rolling Stock: fuel and lubricants for 
locomotives, wages for locomotive crews, maintenance of rolling stock. 

• Traffic: wages in stations and yards, vehicle cleaning, gate-keeping and train 
supplies. 

• Other Charges: refreshment room services, generation of electric power, 
administration and payroll expenses and stores. 

 
I roll traffic and other charges into a single category called “incidental expenses”, which 
roughly correlates with the “materials” category used by many models of the US 
railways, in that it is a catch-all for expenses not covered elsewhere.  Since labour 
numbers and costs are provided in the Database, I also add labour as an input, reducing 
each of the four cost categories above (which include labour expenses) by the proportion 
of labour costs in total expenses, which implicitly assumes unit labour costs are equal.  
The fifth input is fixed capital.  For this, I use a perpetual inventory method whereby the 
value of the asset base in the previous year is divided by 50 (to reflect straight-line 
depreciation over a 50-year period, not unreasonable for fixed capital in rail) and the 
capital expenditure in the given year is added to this figure, with the result multiplied by 
the long-term Treasury bond yield.4  Unlike most US models, I do not separately identify 
fuel costs as, whilst data exist for these in some years, they do not exist in enough years 
to make this a viable input.  To turn my five input categories into prices, I divide fixed 
capital and below-rail maintenance by route kilometres, rolling stock operations and 
maintenance and incidentals expenditure by train kilometres and staffing costs by total 
numbers of staff.  This gives five input prices:  
• PCAPM: the price of fixed capital. 
• PRS: the price of rolling stock operations and maintenance. 
• PINFM: the price of below-rail maintenance. 
• PL: the price of labour. 
• PINC: the price of incidentals. 
 
The division of prices is not as exact as it may appear.  Australian railways funded their 
operations and maintenance out of retained earnings and their capital expansion from 
government grants.  Earnings greater than operating expenditure were to be returned to 
government.  Since capital grants were often not forthcoming, the railways had an 
incentive to try and maintain rolling-stock rather than buy it anew, and also to put as 
much expenditure into operating expenditure accounts as they could.  For example, 
sleeper replacement was usually classed as maintenance even when replacing wooden 
sleepers with concrete ones.  The boundary was further blurred by the fact that rolling 
stock was often constructed in the same yards it was maintained in.  It is thus difficult to 
draw a distinct line between maintenance and capital expenditure.  Moreover, since the 
railways were government-owned, they never went bankrupt and capital assets stayed on 
the books based on their construction cost even when subsequent history proved that a 
particular line was worth nothing due to shifting demand.  In the US, such lines might 
have been sold, or written off, but, with the exception of a series of capital write-downs 
in the late 1920s and 1930s, this rarely happened in Australia.  Not much can be done 

                                                 
4 Sourced from http://www.wrenresearch.com.au/downloads/index.htm and based on Reserve Bank of 
Australia historical data. 
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about these data difficulties, but they may, for example, go some way to explaining why 
many of the model results point towards over-capitalisation.  

Outputs 
In the models below, I separate output into passenger and freight outputs.  The way in 
which I count passenger and freight output is a little different from measures used 
elsewhere.  Although I have some data on net tonne kilometres (ntk) of freight, I do not 
have any similar measure for passengers, such as passenger kilometres.  However, I have 
data on passenger journeys, passenger train kilometres, freight tonnes and freight train 
kilometres.  My measures are thus passenger journeys multiplied by passenger train 
kilometres (PASS) and freight tonnes multiplied by freight train kilometres (FRGT).  The 
latter is perfectly correlated with freight ntk in the years for which I have data, and is thus 
simply a scalar multiple of this variable. 

Technical and Dummy Variables 
I provide three technical variables in each model; the number of train kilometres per route 
kilometre (DEN), the number of years since dieselisation extended to cover 90 percent of 
locomotive kilometres (and thus became pervasive – denoted DIES) and the proportion of 
minerals freight tonnes in total freight tonnes (MINP).  The first of these captures the 
increased efficiencies which are possible through greater network utlisation.  The second 
attempts to capture the rather profound impact that changing from steam to diesel can 
have on the efficiency of rail operations.  Previous work (Mills & Wills-Johnson, 2008) 
suggests that this does not occur straight away, but rather that it can take some time for 
existing railway operations to adapt to a transformational new technology such as diesel, 
particularly when long-lived assets such as track are configured for steam.  Thus, rather 
than considering a simple dummy variable, I use what is in essence a time trend.  The 
final technical variable, also used in Freidlander et al (1993) is intended to capture the 
efficiency gains associated with the use of unit trains devoted to minerals traffic, which 
move large amounts of a single product from a mine to (usually in Australia) a port. 
 
I also have a dummy variable for each of the state railways.  In general, the models are 
not sensitive to which of these dummy variables is omitted.  As the models are estimated 
in first differences (see below) the effect of each of these dummies is to act as a time 
trend for each railway, and thus capture technological change not elsewhere captured.   

Stationarity 
Before undertaking any modelling, it is important to ascertain whether the relevant 
variables are stationary or not.  Table One presents the results of a Phillips-Perron unit 
root test, undertaken on the logged variables.  The variables are all as named above, 
except for TC, the total cost.  This form of unit root test is undertaken has higher power 
in the presence of serial correlation and heteroscedasticity, which the data exhibit.5 
 
 
 

                                                 
5 A simple OLS regression of the cost function, undertaken in levels, has a Durbin-Watson test statistic 
close to zero, whilst the Breusch-Pagan (1979) test statistic is 115. 
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Table One: Unit Root Test Results 

  

t no trend 
(crit value 
-2.57) 

t trend 
(crit value 
-3.13) 

z no trend 
(crit value 
-11.2) 

z trend 
(crit value 
-18.2)   

t no trend 
(crit value 
-2.57) 

t trend 
(crit value 
-3.13) 

z no trend 
(crit value 
-11.2) 

z trend 
(crit value 
-18.2) 

TC -1.645 -3.408 -2.220 -21.262 TC -1.371 -2.297 -2.320 -13.373 
PINFM -2.249 -3.968 -10.462 -26.260 PINFM -1.351 -2.435 -3.645 -8.578 
PRS -3.035 -4.205 -17.142 -29.588 PRS -2.180 -2.646 -9.000 -13.746 
PCAPM -0.035 -1.368 -0.071 -3.833 PCAPM -0.878 -2.048 -1.933 -5.790 
PL -0.132 -4.434 -0.256 -29.935 PL -0.365 -3.234 -0.789 -17.172 
PINC -2.091 -4.098 -8.956 -27.889 PINC -1.245 -2.984 -3.301 -14.413 
FRGT -1.751 -3.278 -2.871 -18.172 FRGT -0.548 -2.105 -0.741 -8.344 
PASS -4.277 -1.921 -3.866 -2.933 PASS -3.297 -4.046 -17.850 -23.117 
PJ -4.269 -2.223 -4.077 -3.500 PJ -2.696 -4.171 -11.459 -19.797 
DEN -1.408 -3.338 -4.063 -20.033 DEN -2.354 -3.072 -6.642 -8.424 

N
SW

 

MINP -1.981 -2.025 -8.415 -8.596 

W
A

 

MINP -1.200 -2.933 -3.572 -15.652 
TC -0.917 -3.557 -1.750 -21.768 TC -1.005 -4.412 -2.374 -30.348 
PINFM -0.899 -4.164 -3.254 -28.458 PINFM -1.297 -4.468 -4.219 -29.542 
PRS -1.869 -3.373 -9.735 -22.138 PRS -2.102 -5.915 -8.367 -47.559 
PCAPM -0.342 -1.292 -0.670 -3.095 PCAPM -1.225 -1.426 -4.215 -4.783 
PL -0.287 -4.322 -0.641 -29.812 PL -0.724 -3.959 -1.989 -25.098 
PINC -0.770 -3.242 -2.582 -19.367 PINC -1.496 -5.063 -5.126 -38.439 
FRGT -2.250 -1.089 -6.406 -4.421 FRGT -1.647 -3.151 -3.671 -17.704 
PASS -2.536 -1.593 -5.139 -3.767 PASS 1.182 1.586 3.082 3.446 
PJ -2.583 -2.205 -5.292 -4.325 PJ 1.805 2.156 4.947 4.820 
DEN -1.348 -2.963 -3.519 -16.463 DEN -1.285 -1.340 -3.272 -4.511 

V
ic

 

MINP -2.153 -2.196 -8.917 -9.167 

T
as

 

MINP -0.967 -1.762 -2.707 -5.639 
TC -1.075 -2.894 -1.436 -15.702 TC -1.389 -1.983 -1.827 -7.487 
PINFM -1.605 -4.404 -6.102 -26.878 PINFM -2.805 -2.947 -14.472 -16.175 
PRS -2.591 -4.885 -13.799 -37.634 PRS -4.900 -5.036 -39.159 -40.395 
PCAPM -0.120 -1.444 -0.221 -3.483 PCAPM -2.289 -2.121 -9.022 -8.471 
PL -0.531 -4.515 -1.105 -30.472 PL -0.303 -3.938 -0.709 -25.726 
PINC -2.094 -4.954 -9.672 -37.973 PINC -2.878 -3.902 -16.364 -25.978 
FRGT -0.518 -1.870 -0.568 -6.839 FRGT -1.558 -2.820 -2.941 -14.947 
PASS -2.231 -1.783 -3.894 -4.832 PASS -2.120 -1.806 -4.751 -7.026 
PJ -2.508 -2.112 -4.488 -5.740 PJ -1.930 -1.634 -4.266 -6.054 
DEN -1.193 -2.950 -3.018 -14.641 

C
w

lth
 

DEN -2.425 -2.084 -8.444 -8.331 

Q
ld

 

MINP 0.048 -1.860 0.083 -3.612 
TC -1.364 -3.289 -3.501 -18.575 
PINFM -3.411 -4.197 -20.793 -27.303 
PRS -3.263 -3.822 -18.601 -24.180 
PCAPM 0.277 0.576 0.861 1.695 
PL -0.870 -4.217 -2.532 -28.523 
PINC -2.117 -3.759 -9.015 -22.924 
FRGT -1.679 -2.593 -5.670 -12.638 
PASS -2.794 -2.014 -6.524 -5.247 
PJ -2.404 -2.375 -6.963 -6.488 
DEN -1.928 -1.296 -7.982 -5.999 

SA
 

MINP -3.484 -3.397 -17.949 -19.180   

 
In most cases, the null hypothesis of a unit root is not rejected.  A similar test undertaken 
on the first difference of each of the variables rejects the null in every case.  Due to the 
difficulties of fitting an error correction model to the complex functional forms used in 
the models here, I have instead chosen to undertake modelling in first differences.  The 
coefficients of this model, with the exception of the intercepts, are the same as would be 
the case in a levels model.  Due to the models using data in first differences, I have turned 
the DIES variable into a dummy, rather than a trend, which means that it can be 
interpreted as a trend in levels form. The same conclusion holds for the state dummies. 
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Models and Model Results 
Ideally, one would like a cost function which accords with theory, is flexible (in that it 
can approximate a wide range of true functional forms) and has a wide range of 
applicability.  Lau (1986) suggests that it is impossible to achieve all three; there is no 
“perfect” functional form, and each has its own restrictions in use.  It is for this reason 
that I use two different functional forms; the translog and the SGM.  The translog is an 
extension of the Cobb-Douglas production function, whilst the Symmetric Generalised 
McFadden production function extends the Leontieff production function.   
 
The translog was developed by Christensen, Jorgenson & Lau (1973).  It is a second-
order flexible meaning that it imposes no restrictions on levels or on the first or second 
derivatives itself (like, say, the Cobb-Douglas does) allowing any such restrictions to be 
imposed solely by theory.  It thus allowing the approximation of any arbitrary 
transformation function, provided concavity criteria are satisfied.  Moreover, it allows for 
freely variable elasticities between factors, meaning that economies of scale, density and 
scope are dependent upon the data, rather than having to be imposed.  It is also relatively 
simple, and has readily interpretable results; the coefficients are elasticities. 
 
The SGM was first posited by McFadden (1978), then extended by Diewert & Wales 
(1987) to render it symmetric, and finally, extended to the multi-output case by 
Kumbhakar (1994).  It is also second-order flexible and allows one to handle outputs of 
zero.  It is, however, computationally more complex, and its coefficients are not as easily 
interpretable as the translog.   
 
Diewert & Wales (1987), Terrell (1996) and Sauer, Frohberg & Hockmann (2004) 
provide more detailed comparisons between these two, and other flexible functional 
forms.  However, the main practical difference between the two from the perspective of 
empirical analysis is concavity.  If a cost function is not concave in input prices, then 
their factor input demand functions are not well-behaved (if indeed they exist at all) and 
the firm in question cannot be said to be cost-minimising.  Whilst both the translog and 
the SGM can suffer from concavity issues in a given empirical application, and whilst 
both can have this shortfall remedied by imposing concavity, imposing concavity on the 
SGM does not influence its flexibility, whilst it renders the translog inflexible.  This is an 
important reason to favour the SGM over the translog but, as Terrell (1996) points out, 
imposing concavity means that, whilst one is flexible at the set of prices where the cost 
function is estimated, this is not a guarantee that it will remain flexible over a range of 
prices.  Thus, imposing concavity should perhaps be done sparingly, and interpreted with 
caution when generalising results. 
 
Testing for concavity in each case is relatively simple.  Referring to Equations One and 
Two below, the translog is concave if the matrix sss ′−−Λ .ˆ is negative semi-definite, 
where ŝ  is a diagonal matrix containing the factor shares down the main diagonal and 
zeroes elsewhere, whilst s is a vector of factor shares.  The matrix is tested for each factor 
share in a dataset, meaning 592 such tests for each model analysed here.  For the SGM, 
referring to Equations Three and Four below, there is a single test of concavity for each 
model; an examination of whether the Λ matrix is negative semi-definite or not.  If it is 
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not, then concavity can be imposed on the SGM without loss of flexibility by substituting 
Λ for –A.AT, where is A is a lower triangular matrix (Diewert & Wales, 1987). 6 
 
Both the translog and the SGM can be expressed compactly in matrix form.  The translog 
is expressed thus: 
 

ttyytwywwwDtywDtwyC Γ′+Σ′+Θ′+Δ′+Λ′+′+′+′+′+= κγβαα 0),,,(ln  (1) 
 
Where y refers to the two outputs, w refers to the five inputs, t refers to the three technical 
variables and D to the seven dummy variables for each state plus the Commonwealth.  
The lower case Greek letters refer to vectors of coefficients, whilst the upper case Greek 
letters refer to appropriately dimensioned matrices of coefficients.  Note that Λ, Σ and Γ 
are symmetric whilst Δ and Θ are not. 
 
Applying Shephard’s Lemma gives the five factor share equations, which can again be 
written in matrix form as: 
 

tywSw Θ+Δ+Λ+= α         (2) 
 
As is standard practice in such analyses, to avoid a singular covariance matrix, one factor 
share equation is dropped, and a system of the cost function plus four factor share 
equations is estimated.  Also, to simplify the system, price homogeneity is imposed, 
meaning that the α vector sums to one and that the rows of Λ, Δ and Θ sum to zero.   
 
The generalised McFadden can also be summarised rather neatly in matrix form thus 
(Ivaldi & McCullough, 2005): 
 

( ) ( ) ( ) zzwzwy
w
wwwtywC Γ′′+Δ′+′

′
Λ′

+′= ϕβ
ϕ

α
2
1

2
1,, 2     (3) 

 
Here, α and β are again a vectors of coefficients, whilst φ is a vector of fixed parameters 
set at the average of each input price for each railway (following general practice, see for 
example, Ivaldi & McCullough, 2006).  The matrices Λ and Γ are symmetric, whilst Δ is 
not.  As previously, w refers to the input prices and y to outputs, whilst z is a vector which 
includes both y and the technical variables t.  Since this cost function is in ordinary 
numbers, rather than logs, the application of Shephard’s Lemma gives the factor demand 
equations, rather than the factor share equations, thus: 
 

( )
( )

( ) ( )zzzy
w
ww

w
wX w Γ′+Δ+′⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

′
Λ′

−
′

Λ
+= ϕβ

ϕ
ϕ

ϕ
α

2
1

2
1 2

2     (4) 

 
The five factor demand equations contain all of the variables of interest.  Thus one can 
simply estimate all of them in a system, without estimating the cost function.  Note that, 

                                                 
6 The translog has concavity imposed by replacing the Hessian matrix with its Cholesky decomposition, but 
this is rarely done, because it renders the model inflexible. 
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although similar Greek letters are used in the translog and McFadden cases, their 
meanings are not exactly the same. 
 
In both the translog and McFadden cases, the resultant models are estimated via Zellner’s 
(1962) Seemingly Unrelated Regression approach, using SHAZAM (2004).7 
 
In order to explore the cost functions in some detail, apart from experimenting with two 
functional forms, I also used four different manifestations of the input data (one in 
ordinary numbers, plus three indices; Paasche, Laspeyres and average), five different 
translog model forms based on omission of each of the factor share equations and seven 
different versions of each translog and SGM model based upon omission of one of the 
firm dummies.  Moreover, the maximum likelihood solution algorithm used by 
SHAZAM (2004) allows one to specify the starting values for each coefficient to be 
estimated, or use its default value of one.  I did both, for the index forms of the model, 
basing the chosen starting value on the results of an initial run where the starting value 
was one.  Finally, to provide some indication of how results might change when the SGM 
models were constrained to be concave, I chose six different Λ matrices to use as fixed 
values.  This gave rise to 280 different translog models, 64 different SGM models where 
Λ is not fixed, and 384 where it is; a total of more than 700 models, of which I present 
only the highlights below.  The full set is available from the author upon request. 

Translog Models 
I begin with the ordinary numbers cases.  Overall, this form of the model gave the best 
results, in terms of statistical significance.  Indicative results are provided in Table Two, 
which shows the results from the model form where PL is the omitted share equation and 
Commonwealth Railways the omitted state railway dummy.  Changing the omitted share 
equation influences coefficients (removing PL gives the best results in terms of the 
statistical significance and sign of coefficients), but changing the omitted dummy does 
not.  Note that, with PL removed, A1 refers to PINFM, A2 to PRS, A3 to PCAPM and A4 
to PINC.  The coefficients for output and technical variables do not change in Tables 
Two through Eight, and B1 refers to freight, B2 to passenger, G1 to density, G2 to the 
diesel dummy and G3 to the proportion of mineral freight traffic.  The dummy variables 
refer to each of the state railways, with D1 being NSW, D2 being Victoria, D3 being 
Queensland, D4 being South Australia, D5 being WA, D6 being Tasmania and D7 (here 
omitted) being the Commonwealth Railways.  These dummy variables are also defined 
similarly in Tables Two through Eight.  The double-subscripts and compound 
coefficients refer to the relevant second order effects.  Thus, A11, for example, refers to 
the impact of PINFM on itself, whilst B2G1 refers to the interaction between passenger 
outputs and the diesel dummy. 
 
                                                 
7 As noted previously, the data exhibit heteroscedasticity, which can be addressed via GLS if the error 
structure is known.  SHAZAM does not allow for GLS within its linear systems command.  It does, 
however, allow a non-linear regression with an option (called ACROSS, see SHAZAM, 2004, p249) which 
estimates a SURE model with vector autoregressive errors.  This allows for maximum likelihood estimation 
of the regression parameters, provided the model converges, and provides efficient and consistent estimates 
of the coefficients.  The model estimated is a linear model, but due to the nature of SHAZAM, it was 
estimated using a non-linear approach.  For this reason, some diagnostic results normally associated with 
linear models are not available. 
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Table Two: Levels Translog Results – PL Removed 
  Coefficient t-ratio   Coefficient t-ratio 
A1 0.1322 4.4288 A1G1 -0.0248 -10.7620 
A2 0.6471 3.8960 A1G2 0.0003 0.8152 
A3 3.4278 26.3220 A1G3 0.0011 0.8950 
A4 0.1962 1.1891 A2G1 0.0329 8.6949 
B1 0.2277 1.5807 A2G2 0.0006 0.8766 
B2 0.1907 2.0977 A2G3 -0.0006 -0.3177 
G1 -1.7567 -3.4385 A3G1 -0.1468 -21.2020 
G2 -0.0161 -2.4589 A3G2 0.0016 1.2646 
G3 0.4796 3.0917 A3G3 0.0075 2.2043 
D1 0.0020 0.3189 A4G1 0.0371 11.5410 
D2 -0.0003 -0.0373 A4G2 0.0005 0.8827 
D3 0.0000 0.0072 A4G3 -0.0035 -2.0827 
D4 0.0006 0.0805 B11 0.0217 4.3848 
D5 -0.0040 -0.5775 B12 -0.0342 -5.5487 
D6 0.0022 0.2975 B1G1 0.0085 0.4761 
A11 0.0384 39.1890 B1G2 -0.0053 -0.2654 
A12 -0.0080 -8.0800 B1G3 -0.0382 -3.2224 
A13 -0.0083 -10.6210 B22 0.0046 1.8858 
A14 -0.0123 -13.8960 B2G1 0.0525 5.1840 
A22 0.0644 41.9550 B2G2 0.0102 0.7741 
A23 -0.0128 -11.2620 B2G3 0.0278 3.8436 
A24 -0.0213 -17.6770 G11 0.0016 0.0448 
A33 0.1727 49.5450 G12 -0.0043 -0.1772 
A34 -0.0114 -10.0410 G13 -0.0449 -2.2724 
A44 0.0615 41.3100 G23 0.0447 1.2821 
A1B1 0.0002 0.4451 G33 0.0012 0.8473 
A1B2 0.0012 1.5794       
A2B1 0.0044 0.4526       
A2B2 0.0030 2.4952       
A3B1 0.0056 0.8377       
A3B2 -0.0018 -0.8598       
A4B1 0.0228 2.3755       
A4B2 0.0025 2.4377       

GtH^(-1)G 2.4609E-09 
Cost Function 

Durbin Watson 2.1901 
Rho -0.0999 

R-squared between obs and predicted 0.8533 
Runs Test 290.0000 

Normal Statistic -0.5319 
Share Functions PINFMS PRS PCAPMS PINCS 
Durbin Watson 2.0692 2.0848 2.0986 2.0474 

Rho -0.0353 -0.0433 -0.0495 -0.0257 
R-squared between obs and 

predicted 0.7383 0.7222 0.8748 0.7251 
Runs Test 288.0000 256.0000 279.0000 276.0000 

Normal Statistic -0.6917 -3.3347 -1.3999 -1.6171 
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The coefficients shown in Table Two are largely as expected; all of the inputs and 
outputs have positive coefficients, although PINC is not significant.  Note that the 
responsiveness of total costs to fixed capital is much larger than for any other input 
variable, highlighting the importance of fixed capital costs to the railways.  Note also that 
freight and passenger traffic imposes roughly similar costs (although freight is not 
statistically significant).  The technical variables are mostly as expected; density and 
dieselisation have reduced costs, but the proportion of minerals traffic here points to a 
cost increase, when one would expect a cost decrease if more traffic were hauled in unit 
trains with few origin and destination points, as minerals traffic commonly is.  The 
explanation for this anomaly might be that, early in the 20th Century, minerals were not 
hauled in unit trains and had many origins and destinations.  In other models, minerals 
traffic is often not significant, and hence it may be better to omit this from the model.  I 
have not done so, as I want to compare like model specifications across a number of 
different model types.  The second-order effects are mostly as expected as well, with 
own-price elasticities (for example, A11, B11 and G11) generally being positive and 
significant and cross price elasticities generally being negative and significant.  Finally, 
the limited model statistics afforded by SHAZAM in its non-linear mode all suggest that 
the model performs reasonably well. 
 
Although the ordinary numbers versions of the model perform well in terms of the 
statistical significance of their coefficients, they perform less well in terms of concavity.  
The version with PL removed shown in Table Two had only 51 of the 592 factor share 
equations available where the sss ′−−Λ .ˆ matrices which were negative semi-definite.  
The best performing of these models from the perspective of concavity, coincidentally 
the worst from the perspective of the accordance of the coefficient values with theory, 
was the model with PINFM removed, and this only had negative definiteness in 219 
cases, fewer than half of the total. 
 
Turning now to the index forms of the translog models, the best of these significantly 
outperformed the ordinary numbers versions above in terms of concavity.  The best 
models were those using the Paasche index form, with the PRS factor share equation 
omitted.  Of the total of 592 factor share equations available, 560 of these had negative 
semi-definite sss ′−−Λ .ˆ matrices when the starting point of the maximum likelihood 
algorithm was one, and 532 when it was the result of such a regression.  However, the 
coefficients are generally less robust than in the ordinary numbers version, as is shown in 
Table Two.  Note that, in this case, A2 refers to PCAPM and A3 refers to PL, whilst other 
variables are defined as previously. 
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Table Three: Paasche Index Form Translog Results – PRS Removed 
Coefficient Start Points = 1 Coefficient Start Points = Translog Levels Results 

  Coefficient t-ratio   Coefficient t-ratio   Coefficient t-ratio   Coefficient t-ratio 

A1 -0.0211 -0.0298 A1G1 0.0315 6.8554 A1 3.8212 0.9157 A1G1 0.0316 6.8505 

A2 0.3766 13.3470 A1G2 0.0000 0.7311 A2 0.3690 13.3300 A1G2 0.0000 0.7123 

A3 0.5257 16.1260 A1G3 0.0006 0.2401 A3 0.5363 16.7280 A1G3 0.0005 0.2280 

A4 -0.0217 -0.0306 A2G1 0.0113 3.2891 A4 -3.8798 -0.9298 A2G1 0.0114 3.3157 

B1 0.1336 7.3104 A2G2 0.0000 0.7651 B1 0.1157 5.5789 A2G2 0.0000 0.7591 

B2 0.1270 5.6312 A2G3 0.0031 1.8355 B2 0.1189 5.2109 A2G3 0.0031 1.7970 

G1 -0.0195 -0.3178 A3G1 0.0824 6.8289 G1 -0.0180 -0.2927 A3G1 0.0828 6.6919 

G2 -0.0001 -0.3820 A3G2 -0.0002 -0.8023 G2 -0.0004 -0.9104 A3G2 -0.0002 -0.8088 

G3 -0.0488 -1.8457 A3G3 -0.0195 -2.8721 G3 -0.0379 -1.4086 A3G3 -0.0198 -2.8782 

D1 -0.0134 -1.2439 A4G1 -0.0031 -0.2280 D1 -0.0132 -1.2387 A4G1 -0.0041 -0.2929 

D2 0.0007 0.1351 A4G2 0.0000 -0.2781 D3 0.0004 0.0760 A4G2 0.0000 -0.2454 

D3 -0.0002 -0.0469 A4G3 -0.0132 -1.6683 D4 0.0030 0.4758 A4G3 -0.0130 -1.6344 

D4 0.0028 0.4605 B11 -0.0044 -1.2757 D5 0.0043 0.7841 B11 -0.0052 -1.4899 

D5 0.0033 0.6265 B12 -0.0035 -0.5516 D6 -0.0027 -0.4544 B12 -0.0048 -0.7760 

D6 -0.0021 -0.3687 B1G1 0.0784 5.0414 D7 -0.0023 -0.3828 B1G1 0.0773 5.0037 

A11 -0.0500 -2.0755 B1G2 0.0040 2.7685 A11 -0.0427 -1.7463 B1G2 0.0048 3.2101 

A12 -0.0389 -10.5360 B1G3 -0.0022 -0.3776 A12 -0.0390 -10.5620 B1G3 -0.0009 -0.1444 

A13 0.0028 0.6863 B22 0.0008 0.1645 A13 0.0029 0.7041 B22 0.0035 0.6796 

A14 0.0039 0.1704 B2G1 -0.0157 -0.8984 A14 -0.0034 -0.1451 B2G1 -0.0166 -0.9698 

A22 -0.0187 -6.8140 B2G2 0.0027 2.4634 A22 -0.0188 -6.8199 B2G2 0.0028 2.6015 

A23 0.0002 0.0705 B2G3 -0.0211 -2.3784 A23 0.0003 0.1023 B2G3 -0.0225 -2.5275 

A24 0.0222 4.6754 G11 0.0018 0.0723 A24 0.0222 4.7083 G11 -0.0010 -0.0412 

A33 0.0170 4.0839 G12 -0.0121 -3.6679 A33 0.0164 3.9293 G12 -0.0118 -3.5742 

A34 0.0165 2.3152 G13 -0.0467 -2.7837 A34 0.0166 2.2940 G13 -0.0486 -2.9288 

A44 0.0224 1.0364 G23 0.0055 2.1419 A44 0.0296 1.3398 G22 0.0001 1.7727 

A1B1 0.0019 2.0278 G33 0.0013 0.4863 A1B1 0.0019 2.0333 G23 0.0050 1.9634 

A1B2 0.0052 2.9173       A1B2 0.0050 2.8103 G33 0.0021 0.6987 

A2B1 -0.0450 -5.6695       A2B1 -0.0452 -5.5839       

A2B2 0.0022 1.7373       A2B2 0.0022 1.6780       

A3B1 0.0351 4.1621       A3B1 0.0357 4.1353       

A3B2 -0.0200 -5.2418       A3B2 -0.0199 -5.1529       

A4B1 0.0218 1.6578       A4B1 0.0146 1.0612       

A4B2 0.0073 1.3825       A4B2 0.0084 1.5355       

GtH^(-1)G 1.65E-06 GtH^(-1)G 2.58E-08 

Cost Function Cost Function 

Durbin Watson 2.0029 Durbin Watson 2.0029 

Rho -0.0015 Rho -0.0015 

R-squared between obs and predicted 0.9554 R-squared between obs and predicted 0.9556 

Runs Test 265.0000 Runs Test 261.0000 

Normal Statistic -2.5861 Normal Statistic -2.9156 

Share Functions PINFMS PCAPMS PL PINCS Share Functions PINFMS PCAPMS PL PINCS 

Durbin Watson 2.0813 2.0479 2.0052 2.0301 Durbin Watson 2.081 2.0479 2.0047 2.0296 

Rho -0.0406 -0.0240 -0.0026 -0.0162 Rho -0.04052 -0.02393 -0.00234 -0.01598 
R-squared between 
obs and predicted 0.6805 0.5001 0.0940 0.2517 

R-squared between 
obs and predicted 0.6802 0.4997 0.0965 0.2528 

Runs Test 254 267 322 288 Runs Test 256 269 318 288 

Normal Statistic -3.4946 -2.4259 2.1331 -0.6917 Normal Statistic -3.3274 -2.2592 1.8033 -0.6966 
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The first-order coefficients are roughly the same, in terms of significance, as in Table 
Two, with the exception of PINFM.  However, the size of the PCAPM coefficient relative 
to the others has now decreased markedly, and it is roughly the same as that for labour, 
suggesting both influence costs roughly equally.  Again, both outputs have similar 
coefficients (but they are both statistically significant), which is interesting in the light of 
subsequent railway policy that saw horizontal separation in many states.  The second-
order coefficients perform much less well, which suggests these models do not estimate 
own and cross price elasticities particularly well. 
 
Crafts et al (2008) suggest that the additional complexity of the translog is not warranted 
in their examination of British railways in the early part of the 20th Century, a suggestion 
they make after testing whether the second-order coefficients are statistically different 
from zero in the translog functional form.  Undertaking the same test here highlights the 
fact that the same does not hold.  An F-test of the second-order coefficients being set to 
zero in the model in Table Two returns a chi-squared test statistic of 346, whilst for the 
models in Table Three, the chi-squared test statistics are 2021 and 2031.  Clearly, the 
translog is adding explanatory value to the understanding of Australian railways. 
 
Whilst the index forms of the models perform better in terms of concavity, they are not 
globally concave, and it is therefore useful to explore the SGM to see if global concavity 
exists for this model form, or can be imposed.  Before doing so, however, it is useful to 
explore whether there are some differences between the factor share combinations for 
which the sss ′−−Λ .ˆ matrix is negative semi-definite, and those for which it is not.  
Table Four shows the results of an analysis which splits the sample of (592) factor share 
observations in three of the models for each of the two different sets of starting points 
with the highest share of negative semi-definite results into those factor shares which are 
negative semi-definite and those which are not. 
 
Table Four: Concave and Non-Concave Factor Shares 

      PINFM PRS PCAPM PL PINC 

test stat   20.556109 -19.239268 9.603477 9.9525452 PINFM Out - 
Paasche difference   0.0391204 -0.1952555 0.1076973 0.0331366 

test stat 12.473405   -12.782877 3.6956352 32.216914 PRS Out - 
Paasche difference 0.0228211   -0.1691733 0.0527312 0.050452 

test stat 10.815224 10.574414 -6.6953818 1.0922061   
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PINC Out - 
Average difference 0.015341 0.0252784 -0.0696535 0.0097417   

test stat    21.192681 -18.445633  9.0887796  9.6914926  
PINFM Out - 

Average difference   0.0397955 -0.1922074 0.1040221 0.0328968 

test stat   21.56013 -21.993621 12.059076 10.574016 PINFM Out - 
Paasche difference   0.0370972 -0.1829533 0.1041417 0.0284178 

test stat 16.628305   -11.251238 2.2317018 33.177265 
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PRS Out - 
Average difference 0.028581   -0.1701655 0.0369969 0.0539958 

 
In almost every case, the differences between the averages for the concave and non-
concave factor shares are statistically significant.  Moreover, the results are surprisingly 
consistent; in every case the non-concave set has a larger share of fixed capital and a 
smaller share of all other inputs, whilst the converse is true for the concave set.  This 
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suggests that where railways have over-capacity in track, they are unlikely to be cost 
minimising; a not unreasonable conclusion.  Alternatively, it could reflect poor 
accounting of track infrastructure, which was generally recorded at its construction cost 
rather than its value in use.  Many branch lines were expensive to build, but later 
transpired to be practically worthless to their owners.  Thus, over-capitalisation could be 
an accounting issue, rather than one associated with levels of physical assets.  Whichever 
is the case, the models highlight problems with below-rail capital for Australian railways; 
problems which are far from unknown to the industry. 

SGM Models 
I now turn to the SGM models, looking first at the 64 models whereby concavity is not 
imposed.  For SGM models, the problem occurs one step before the estimation of 
coefficients and the determination of concavity, in model closure; very few of the 64 
models actually closed adequately (as measured by the GTH-1G score).  These results are 
shown in Table Five, with the models that closed adequately highlighted. 
 
Table Five: McFadden Model Closure Adequacy 

  GTH-1G GTH-1G
no start pt 91194 no start pt 484.75No state 

dummies start pt 1.41E+05
No state 
dummies start pt 1.37E-07

Cwlth out 1411.8 Cwlth out 1454.9
Tas Out 6609.4 Tas Out 821.61
WA Out 5952.8 WA Out 90.212
SA Out 859.43 SA Out 513.11
Qld Out 7748.8 Qld Out 629.87
Vic Out  1482.6 Vic Out  142.13no

 st
ar

t p
t 

NSW Out 2620

no
 st

ar
t p

t 

NSW Out 261.25
Cwlth out 2.53E+08 Cwlth out 6.14E-02
Tas Out 1.90E+07 Tas Out 1.28E-06
WA Out 3.70E+05 WA Out 1.55E-07
SA Out 1.55E+07 SA Out 2.00E-08
Qld Out 1.96E+07 Qld Out 2.54E-07
Vic Out  1.96E+07 Vic Out  8.16E-05
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NSW Out 2.27E+08
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e 
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NSW Out 1.94E-07
no start pt 1.75E+09 no start pt 372.69No state 

dummies start pt 1.26E+05
No state 
dummies start pt 2.48E-09

Cwlth out 1.75E+09 Cwlth out 138.25
Tas Out 1.75E+09 Tas Out 3726.3
WA Out 1.75E+09 WA Out 483.16
SA Out 1.75E+09 SA Out 438.82
Qld Out 1.75E+09 Qld Out 449.4
Vic Out  1.75E+09 Vic Out  55.535no

 st
ar

t p
t 

NSW Out 1.75E+09

no
 st

ar
t p

t 

NSW Out 153.74
Cwlth out 1614.3 Cwlth out 7.89E-09
Tas Out 288.35 Tas Out 5.75E-09
WA Out 1270.4 WA Out 3.39E-09
SA Out 1801.4 SA Out 3.91E-09
Qld Out 942.23 Qld Out 1.10E-09
Vic Out  3.17E+06 Vic Out  3.15E-09
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NSW Out 898.54
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t 

NSW Out 1.29E-09
 
Only those models which have used Paasche or Average indices, and begun with a start-
point garnered from the relevant translog model above have adequate closure, and it is 
thus these that I consider further in Table Six. 
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Table Six: McFadden Models Statistical Significance 
  A1 A2 A3 A4 A5 B1 B2 

no state dummy 0.5413 0.2661 -0.0293 0.7208 0.4400 6.4547 3.7298 
Cwlth out -9.2016 0.2230 -45.5720 -30.8870 -23.9610 -0.1101 3.8439 
Tas Out 0.3757 0.3010 -0.0507 0.6494 0.3546 -7.2985 1.1767 
WA Out 0.6858 0.3883 0.0018 0.5940 0.4457 5.0171 -6.0501 
SA Out 0.6365 0.3649 0.0975 0.7976 0.5445 -6.8264 -3.8930 
Qld Out 0.6007 0.3573 0.1149 0.7693 0.4985 -6.2611 -3.6447 
Vic Out  -0.1800 0.3107 -12.4310 -6.9911 -1.6383 -7.4059 6.1448 

Pa
as

ch
e 

NSW Out 0.4889 0.2583 -0.0120 0.6454 0.3076 -6.3917 -3.6976 
no state dummy -0.3928 0.3290 0.6132 1.4411 0.3563 1.9866 14.8740 
Cwlth out 1.7107 1.1556 1.2826 1.8594 1.2899 11.0540 8.5911 
Tas Out 1.2269 0.9514 1.1853 1.5969 1.0724 8.5509 12.6680 
WA Out 1.0831 0.8513 1.0438 1.8378 0.9528 2.4438 13.8400 
SA Out 0.9626 0.8866 1.0829 1.9266 1.0196 2.3756 14.7340 
Qld Out 1.0139 1.4323 1.5981 2.1592 1.6046 10.3770 9.7789 
Vic Out  1.5410 1.2896 1.3976 2.2371 1.4529 2.3842 15.3030 

A
ve

ra
ge

 

NSW Out 1.3854 0.5129 0.7671 1.4326 0.5588 2.0195 15.4420   
  G11 G12 G13 G14 G15 G22 G23 G24 

no state dummy -5.9900 5.2848 2.5853 4.1023 5.2661 -0.6001 -2.9644 1.3581 
Cwlth out -17.5880 -9.3540 -13.9520 24.1190 20.5080 23.4230 22.5230 16.7420 
Tas Out -11.3960 1.6546 34.8960 -7.0339 4.5346 4.3454 -4.1293 -0.1723 
WA Out -4.0128 0.3223 -0.5269 1.8738 2.5454 0.7804 -0.3254 -1.0979 
SA Out -10.0430 5.8935 1.7779 4.6605 8.0362 -0.6719 -3.0059 1.0891 
Qld Out -4.8328 4.1449 1.6605 3.4790 5.3740 -0.4301 -3.3742 1.2440 
Vic Out  -5.4204 0.3711 -0.9362 1.8007 3.0575 0.5428 -0.4815 -1.4179 

Pa
as

ch
e 

NSW Out -5.3685 4.5732 1.4994 3.5082 4.6672 -0.5935 -2.8398 1.0554 
no state dummy -0.8737 0.6225 -1.3329 2.1397 2.1046 -1.3613 0.8456 -0.0321 
Cwlth out -0.1508 -0.5414 -2.0535 1.9395 1.0820 -3.1778 6.2883 -4.1466 
Tas Out -0.1002 -0.3401 -1.1068 1.3449 0.6021 -0.8729 3.3555 -2.4796 
WA Out -0.8872 0.7189 -2.0481 2.6070 2.7710 -1.9153 0.8509 0.0323 
SA Out -1.2647 0.9781 -1.5407 2.5529 3.1089 -4.2600 0.9119 -0.0047 
Qld Out -0.0980 -0.3960 -1.1461 1.4029 0.6295 -1.1687 4.2389 -3.0617 
Vic Out  -1.3451 0.9008 -1.9690 2.7886 4.3205 -3.2968 0.9899 0.0004 

A
ve

ra
ge

 

NSW Out -0.9691 0.6498 -1.5147 2.3489 2.5768 -1.4036 0.8526 -0.0142 
  G25 G33 G34 G35 G44 G45 G55 

no state dummy -3.7023 2.9599 -1.7519 0.8839 -2.4477 -3.4095 -3.4927 
Cwlth out 22.9090 29.3760 -10.5170 17.2200 -26.4290 -23.8510 -26.4680 
Tas Out -3.2309 -50.0240 6.4480 -6.5337 -24.8700 6.7887 4.2367 
WA Out -1.3870 -0.7828 -2.2512 0.0888 -2.0804 -2.8217 -0.3050 
SA Out -4.1033 2.3263 -1.5348 0.6156 -2.3950 -5.1541 -4.3462 
Qld Out -3.1222 2.7815 -1.1954 1.1987 -2.6746 -4.6822 -3.4298 
Vic Out  -1.0565 -1.0465 -3.1307 -0.7132 -4.8244 -3.3474 -0.4098 

Pa
as

ch
e 

NSW Out -3.2791 2.0261 -1.4560 0.6919 -2.3293 -3.6663 -3.3563 
no state dummy 1.9982 -0.7579 -3.6143 1.4659 0.4407 -1.4847 -1.8686 
Cwlth out 1.0401 -2.5616 -6.4710 7.0514 5.2251 -1.1344 -2.1145 
Tas Out 0.7766 -1.1268 -3.8327 2.3819 3.9970 -0.7836 -2.1566 
WA Out 2.0779 -1.7851 -3.2916 1.7114 0.3437 -2.5985 -2.2004 
SA Out 3.0758 -0.9754 -3.8551 2.0072 0.3732 -1.7612 -3.0909 
Qld Out 0.8268 -1.8979 -5.6197 2.7231 4.5832 -0.7641 -2.2923 
Vic Out  3.0970 -1.3707 -3.9715 2.3473 0.4197 -1.7151 -3.6330 

A
ve

ra
ge

 

NSW Out 2.1551 -1.0861 -4.0825 1.9375 0.4475 -1.7337 -2.6170   
 



 18

The coefficients Ai are the five inputs (PINFM, PRS, PCAPM, PL, PINC), the Bi 
coefficients are the two outputs, whilst the Gi coefficients are the elements of the Λ 
matrix from Equation Three.  Cells coloured green are those which have the correct sign 
and are significant.  Those coloured red are significant with the incorrect sign.  There are 
no cases where all of the coefficients in a model are green.  This suggests that even 
models which close do not actually fit the data well.  It remains, then, to see if the SGM 
models are concave.  This requires one to examine whether the Λ matrices from Equation 
Three are negative semi-definite or not, which will hold if all the eigenvalues of these 
matrices are zero or negative.  Table Seven summarises these eigenvalues. 
 
Table Seven: Eigenvalues of McFadden Models 

  Eigenvalues 
no state dummy -4644.020 -1019.130 807.876 224.566 -123.989 
Cwlth out -2931.910 1295.640 1129.990 -568.826 10.149 
Tas Out -16198.800 4891.420 -2847.710 1158.830 -307.989 
WA Out -1873.250 -648.253 290.541 169.652 25.660 
SA Out -1049.240 -224.170 190.634 50.047 -29.326 
Qld Out -3107.720 -747.677 579.774 155.892 -110.243 
Vic Out  -1659.800 -851.683 280.556 135.895 30.045 

Pa
as

ch
e 

NSW Out -1585.610 -339.200 288.759 75.931 -44.223 
no state dummy -15.356 14.589 -7.255 -1.825 1.679 
Cwlth out 434.696 -261.273 -108.049 -38.644 12.870 
Tas Out -20.288 3.288 -2.032 -0.797 -0.070 
WA Out -27.045 21.257 -17.972 -14.744 9.489 
SA Out -55.315 45.984 -37.565 -31.359 18.754 
Qld Out 93.300 -56.316 -23.045 -8.799 2.814 
Vic Out  -28.154 22.964 -19.089 -13.818 9.307 

A
ve

ra
ge

 

NSW Out -46.640 45.092 -36.802 -16.817 11.744 
 
Clearly, none of the models is globally concave, so the SGM models do not perform 
better than the translog models either from the perspective of concavity or from the 
robustness of the estimation of their parameters.  However, concavity can be imposed 
upon the SGM without sacrificing flexibility. This I do below. 
 
In order to render the SGM model globally concave one must substitute the Λ matrix for 
–A.AT, where is A is a lower triangular matrix.  The elements of A are arbitrary, provided 
that if fulfils the relevant definiteness criteria.  I choose six different matrices A, based 
upon the best performing translog models. Three of these come from the translog models 
in ordinary numbers form, and one from each of the three index forms.  Since in the 
translog form, one of the factor share equations must be removed in order that the system 
can be reliably estimated, I had to combine models.  In levels form, more of the variables 
were statistically significant, which is why I have three estimates based on this family of 
five models, and only one each from the index forms.  In each case, I endeavoured to find 
the best coefficients; those which had the correct sign and were significant.  I also tried to 
obtain as many as possible from a single translog model.  There is no rigorous defence of 
why this approach was chosen to obtain elements of the A matrix.  It is merely an attempt 
to base the arbitrary matrices on extant knowledge about the coefficients. 
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The results in terms of model closure adequacy (as measured by the GTH-1G matrix) are 
much the same as those shown in Table Seven above in that only the Paasche and 
Average index models which use coefficients from the relevant translog models as 
starting points in the solution algorithm perform in any way adequately. 
 
The results in terms of the significance of the parameters of each of these models are 
shown in Table Five.  Note that, since the coefficients in the Λ matrix are fixed, there are 
no Gi results as there were in Table Six
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Table Eight: McFadden Models Statistical Significance – Fixed Λ Matrix 
  A1 A2 A3 A4 A5 B1 B2      A1 A2 A3 A4 A5 B1 B2 

No state dummies 0.3326 0.3393 -0.0845 0.6365 0.5279 0.0000 0.0000  No state dummies 0.3262 0.3369 -0.0855 0.6393 0.5087 0.0000 0.0000 
Cwlth out 0.2576 0.2970 -0.1015 0.5409 0.3033 -0.0001 0.0003  Cwlth out 0.2671 0.3065 -0.1047 0.5776 0.3185 0.0000 0.0000 
Tas Out 0.2877 0.3262 -0.0788 0.5635 0.3426 0.0000 0.0000  Tas Out 0.2949 0.3237 -0.0793 0.5844 0.3697 -0.0001 0.0001 
WA Out 0.3836 0.3739 0.0018 0.6696 0.5416 0.0001 -0.0001  WA Out 0.3939 0.3876 0.0018 0.6833 0.5344 -0.0010 0.0011 
SA Out 0.3259 -0.5365 13.1050 4.5513 1.5757 0.0000 0.0000  SA Out 0.3005 -0.7108 10.5350 4.3318 1.5360 0.0000 0.0000 
Qld Out 0.4127 0.4057 0.0386 0.6638 0.5035 0.0000 0.0000  Qld Out 0.4000 0.3860 0.0372 0.6648 0.5000 0.0000 0.0000 
Vic Out  0.4015 0.4008 0.0278 0.6533 0.4821 0.0000 0.0000  Vic Out  0.3996 0.3991 0.0283 0.6631 0.4970 0.0000 0.0000 

Pa
as

ch
e 

NSW Out 0.7462 -1.1402 21.8570 6.9373 1.9856 0.0043 -0.0061  

Pa
as

ch
e 

NSW Out 0.2767 0.3077 -0.0908 0.5606 0.3157 -0.0001 0.0001 
No state dummies 0.3796 0.3750 0.5097 1.2468 0.3867 -0.5058 -2.7137  No state dummies 0.3981 0.3390 0.5114 1.1443 0.3031 1.2988 1.5508 
Cwlth out 1.0177 1.0697 1.0928 1.9405 1.2359 0.4806 2.6721  Cwlth out 1.0880 1.0782 1.0942 1.9190 1.2507 1.3551 3.1162 
Tas Out 0.8679 0.9013 0.9246 1.6536 0.9862 0.4873 2.7391  Tas Out 0.8986 0.8806 0.9178 1.6584 0.9845 -1.3719 -3.2284 
WA Out 0.8708 0.8877 0.9445 1.7027 1.0006 0.5038 2.6285  WA Out 0.8932 0.8927 0.9720 1.7297 1.0266 -1.3275 -3.2129 
SA Out 0.8548 0.8888 0.9503 1.6858 0.9926 0.5001 2.6936  SA Out 0.8799 0.8711 0.9477 1.6718 0.9977 1.3849 3.1427 
Qld Out 1.2624 1.2956 1.3258 2.0447 1.4476 0.4756 2.8074  Qld Out 1.2861 1.3031 1.3134 2.0421 1.4783 1.3549 3.1939 
Vic Out  1.2332 1.2615 1.2605 2.0044 1.4113 0.4904 2.6683  Vic Out  1.2630 1.2595 1.2512 2.0262 1.4005 1.3641 3.1491 

Fi
rs

t F
ix

ed
 S

et
 

A
ve
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NSW Out 0.5881 0.5837 0.6758 1.2717 0.6180 -0.4947 -2.7217  

Fi
rs

t F
ix

ed
 S

et
 

A
ve

ra
ge

 

NSW Out 0.5969 0.5717 0.6911 1.2643 0.6360 -1.4050 -3.1757 
No state dummies 0.3353 0.3470 -0.0850 0.6422 0.5107 -0.0001 0.0005  No state dummies -10.379 34.0440 -32.899 -41.722 -33.498 -0.5708 0.6379 
Cwlth out 0.2598 0.3027 -0.0994 0.5272 0.3081 0.0000 0.0000  Cwlth out -0.3756 2.6227 -43.709 -15.268 -10.281 0.7288 -0.8198 
Tas Out 0.3035 0.3380 -0.0817 0.5673 0.3591 0.0000 0.0000  Tas Out 1.0183 5.8400 -52.562 -18.127 -33.818 -1.1974 1.4685 
WA Out 0.3851 0.3893 0.0018 0.6745 0.5189 0.0000 0.0000  WA Out 0.3887 0.3746 0.0014 0.6756 0.5244 0.4911 -0.5306 
SA Out 0.4245 0.4138 0.0284 0.7007 0.5820 -0.0002 0.0004  SA Out 0.4315 0.4432 0.0286 0.7190 0.5570 0.5277 -0.5726 
Qld Out 0.4169 0.4122 0.0383 0.6835 0.5162 0.0000 0.0000  Qld Out 0.4187 0.4133 0.0393 0.6749 0.4885 0.5028 -0.5465 
Vic Out  0.3895 0.3979 0.0274 0.6590 0.4759 0.0000 -0.0001  Vic Out  0.4066 0.3854 0.0290 0.6501 0.4810 0.4913 -0.5333 

Pa
as

ch
e 

NSW Out 0.2860 0.3156 -0.0897 0.5475 0.3110 0.0002 -0.0004  

Pa
as

ch
e 

NSW Out 0.3195 -0.6481 14.6960 4.9128 1.6631 0.7115 -0.8104 
No state dummies 0.3845 0.3672 0.5078 1.2463 0.3774 0.5885 2.7132  No state dummies 0.3737 0.3692 0.4973 1.2299 0.3761 0.6005 2.1605 
Cwlth out 1.0336 1.0604 1.0983 1.9464 1.2762 0.6085 3.0172  Cwlth out 1.0163 1.0216 1.0630 1.9110 1.1682 0.6427 2.1854 
Tas Out 0.8384 0.8616 0.9062 1.6827 0.9851 0.5995 2.9855  Tas Out 0.8295 0.8456 0.9319 1.6676 0.9635 0.6037 2.1836 
WA Out 0.8953 0.9000 0.9436 1.6712 1.0016 0.6048 2.8150  WA Out 0.8649 0.8762 0.9323 1.6522 0.9817 0.5918 1.9923 
SA Out 0.8907 0.9074 0.9705 1.7078 1.0242 0.6406 2.8767  SA Out 0.8776 0.9075 0.9696 1.7288 1.0111 0.6112 2.1626 
Qld Out 1.2627 1.2708 1.2763 2.0580 1.4288 0.6207 2.9301  Qld Out 1.2749 1.3237 1.2857 2.0504 1.4441 0.6101 2.1101 
Vic Out  1.2334 1.2615 1.2404 2.0004 1.3990 0.6024 2.9692  Vic Out  1.2077 1.2371 1.2512 2.0035 1.3645 0.6174 2.1678 

Se
co
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 F
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A
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NSW Out 0.5814 0.5807 0.7036 1.2753 0.6065 0.5882 2.9610  

Se
co

nd
 F
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ed
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et

 

A
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NSW Out 0.5764 0.5845 0.6633 1.2667 0.6097 -0.6112 -2.1788 
No state dummies -0.4160 32.8870 -36.222 -38.707 -21.270 0.0432 -0.0815  No state dummies 0.3539 0.3669 -0.0920 0.6393 0.5017 -1.1120 1.3152 
Cwlth out 0.2536 0.2864 -0.1015 0.5337 0.3047 0.0001 -0.0002  Cwlth out 0.2991 0.3207 -0.0997 0.5458 0.2997 -1.0345 1.2448 
Tas Out 0.2823 0.3213 -0.0830 0.5902 0.3513 -0.0003 0.0004  Tas Out 0.3181 0.3618 -0.0866 0.5522 0.3245 -1.0539 1.2558 
WA Out 0.3803 0.3770 0.0018 0.6795 0.5193 0.0000 0.0000  WA Out 0.4277 0.4050 -0.0040 0.6660 0.5027 -1.0610 1.2611 
SA Out 0.4261 0.4293 0.0280 0.7255 0.5691 0.0000 0.0000  SA Out 0.4663 0.4369 0.0296 0.7133 0.5580 1.0676 -1.2902 
Qld Out 0.3936 0.3998 0.0366 0.6897 0.4904 0.0000 0.0000  Qld Out 0.4335 0.4311 0.0417 0.6752 0.4892 -1.0393 1.2490 
Vic Out  0.3713 0.3997 0.0242 0.6050 0.4357 -0.0074 0.0070  Vic Out  0.4373 0.4100 0.0315 0.6474 0.4716 -1.0863 1.3187 

Pa
as

ch
e 

NSW Out 0.2791 0.3035 -0.0889 0.5462 0.3226 -0.0001 0.0001  

Pa
as

ch
e 

NSW Out 0.3107 0.3162 -0.0858 0.5437 0.3028 -1.0840 1.2946 
No state dummies 0.3819 0.3717 0.5005 1.2729 0.3839 0.6838 2.4393  No state dummies 0.3797 0.3694 0.5001 1.2683 0.3829 -0.6920 -2.3500 
Cwlth out 1.0574 1.0741 1.0724 1.8811 1.2357 -0.7146 -2.6158  Cwlth out 1.0460 1.0558 1.0055 1.8182 1.1984 0.7211 2.3736 
Tas Out 0.8625 0.8606 0.9391 1.6845 0.9901 0.7205 2.5129  Tas Out 0.8340 0.8421 0.8916 1.5913 0.9569 -0.7056 -2.3215 
WA Out 0.8821 0.8922 0.9360 1.6857 0.9916 -0.7371 -2.4065  WA Out 0.8786 0.9019 0.9450 1.6735 1.0087 -0.6802 -2.2252 
SA Out 0.8757 0.9003 0.9440 1.6809 0.9897 -0.7241 -2.4446  SA Out 0.9046 0.9183 0.9959 1.7469 1.0293 -0.7089 -2.3638 
Qld Out 1.3233 1.3553 1.3052 2.0943 1.4675 0.6935 2.4096  Qld Out 1.3277 1.2989 1.2914 2.0960 1.4258 0.6817 2.2609 
Vic Out  1.2182 1.2398 1.2406 1.9849 1.3641 0.6870 2.4734  Vic Out  1.2419 1.2681 1.2654 2.0463 1.4017 0.6893 2.3134 
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NSW Out 0.6008 0.5942 0.6742 1.2652 0.6250 0.7067 2.3466  
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NSW Out 0.5885 0.5864 0.6936 1.2082 0.6151 0.7050 2.2753 
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The 48 models presented here perform far worse than their counterparts where the Λ 
matrix was not fixed.  There are no versions of the model where more than a handful of 
coefficients are both significant and have the same sign.  That is not to say that it is not 
possible to find a lower-triangular matrix A such that the SGM model is both globally 
concave and has coefficients which conform to the theory behind the model.  However, it 
does seem that finding this matrix might be very difficult.  Overall, therefore, the SGM 
appears to have little to recommend it, compared with the translog, for this dataset. 

Model Implications 
To explore some of the implications of the models, I look at economies of density, scale 
and scope.  I then explore the long run marginal cost in some detail, as this is of 
importance to economic regulators.  In this section, I use the three best performing 
models from the previous section, detailed in Tables Two and Three. 
 
The literature on railway cost functions has been characterised by a distinction between 
economies of scale and economies of density.  Oum & Waters (1996) make the 
distinction between the two measures thus: 
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Where RTD refers to returns to density, RTS to returns to scale, C

Yi
ε  to the elasticity of 

the cost function with respect to each of the outputs, and N
Yi
ε  to the elasticity of the cost 

function with respect to network size.  In the models above, I do not include a variable 
for the quasi-fixed cost input of the network, but rather incorporate density directly into 
the cost function (see coefficient G3). 
 
The returns to density from the model in Table Two is 3.1407 (0.0010), whilst the two 
models in Table Three have returns to density of 3.8373 (0.0010) and 4.2626 (0.0019).8  
All are larger than one, which suggests considerable economies of density in Australia’s 
railways throughout the 20th Century.  This, in turn, suggests rather under-used track 
capacity, a finding alluded to previously.  It remains important today because, absent of 
certain bottlenecks, it suggests that Australia’s railways could expand quite substantially 
before economies of density are exhausted and track capacity needs to be expanded. 
 
In order to estimate returns to scale, it is necessary to re-estimate these models, using 
network size, rather than density as a technical variable.  Since these re-estimations are 
not directly comparable to the models above, I re-calculate returns to density as well.  
Note that I have implicitly assumed here that the three models performing best with 
density as a technical variable will also be the three which perform best with network size 
in its place.  The results are presented in Table Nine.  Note that the figures in brackets are 
the variances associated with the relevant numbers. 
 

                                                 
8 The numbers in the brackets are the variances of the estimates. 
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Table Nine: Economies of Density and Scale (Route km Model) 
Model  Density Scale 

Ordinary Numbers Translog Results – PL Removed 3.9473 
(0.1431) 

0.6222 
(0.1431) 

Coefficient Start Points = 1 4.6979 
(0.0033) 

1.2303 
(0.0033) Paasche Index Form 

Translog Results – PRS 
Removed Coefficient Start Points = Translog 

Levels Results 
4.6979 

(0.0033) 
1.2303 

(0.0033) 
 
Here, the economies of density are even more pronounced than is the case in the models 
presented in Tables Two and Three.  The more interesting result, though, is that for 
economies of scale.  The ordinary numbers results suggest declining economies of scale, 
whilst the Paasche index models both suggest increasing returns to scale.  It is not clear 
what to make of this anomaly; certainly the Paasche results would be more in line with 
the existing literature and, given that they are based upon models where the concavity is 
much better, they would appear to be the more believable results.  Thus, it would seem 
that the Australian railways are subject to increasing returns to scale; meaning they could 
reduce their costs by both expanding track and increasing output. 
 
As suggested by Baumol, Panzar & Willig (1988) economies of scope exist when the 
costs of producing two outputs together is less than the sum of the costs of producing 
them separately.  That is: 
 
( ) ( ) ( ){ }2121 ,00,, YCYCYYC +<        (7) 

 
In order to assess this, one must evaluate the above function at every data point, including 
points where output is zero for one or the other of the outputs.  Unfortunately, very few 
railways produce zero of either output, and they do not do so in the dataset used in this 
paper either.  This means that estimates of the cost of producing some of one output and 
zero of the other are unlikely to be very accurate.  Thus, as Oum & Waters (1996) point 
out, very few analysts actually calculate economies of scope in this fashion, at least in 
transport economics.  Instead, most use inter-product cost complementarity, which is the 
second cross derivative of the outputs with respect to the cost function.  That is: 
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If this is less than zero, then cost complementarity exists between the outputs, which is 
suggestive of economies of scope, albeit over a narrower range of outputs.  Here, the 
derivative will simply be the Bij terms from Tables Two and Three.  The first of these Bij 
terms is statistically significant, whilst the latter two are not.  These are summarised in 
Table Ten. 
 
Table Ten: Cost Complementarities 

Model  Bij 
Ordinary Numbers Translog Results – PL Removed (Table Two) -0.0342 

Coefficient Start Points = 1 -0.5516 Paasche Index Form Translog Results 
– PRS Removed (Table Three) Coefficient Start Points = Translog Levels Results -0.0048 
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The results suggest that there are indeed cost complementarities, and hence that 
economies of scope are also likely.  However, the rather small size of the statistically 
significant result suggests that such economies are likely to be small.  The result is 
interesting, however, for it suggests that Australia’s railways were less costly when they 
produced passenger and freight services together.  In the 1990s, reform many states 
implement horizontal separation, mainly to separate the generally unprofitable, 
subsidised passenger rail sector from the potentially profitable, largely unsubsidised 
freight sector.  This policy decision can be supported on the basis of revenues and profits, 
but it is likely to have increased the costs of the relevant railways according to the results 
of the models presented here. 

Calculating LRMC - Implications for Regulatory Models 
Regulators commonly use a model for determining prices (in Australia, of rail access) 
which seek to replicate the costs of an efficient operator.  Although the regulators 
routinely refer to long-run marginal costs in their determinations, they are in fact 
calculating average costs.  That is, they take the projected costs of the (efficient 
benchmark of the) railway over a time period, including operating and capital costs and 
divide it by the expected future demand.  This is not the same as estimating a cost 
function like those estimated above and taking its derivative, which is the correct way to 
determine marginal cost. 
 
This matters because, in general, marginal cost curves are U-shaped.  As marginal costs 
decrease, average costs will generally be above marginal costs, with the converse being 
true when marginal costs are increasing.  They will only be equal at the minimum of the 
average cost curve.9  Thus, depending upon the level of projected output, the regulator 
might over or understate its marginal cost estimates.  If it understates marginal cost, then 
the regulated firm will not be able to cover its costs, and will reduce output.  If the 
regulator overstates marginal costs, then the regulated firm will recover its costs, but 
pricing may be inefficient, and could be improved by properly estimating marginal costs, 
and then allowing the firm to recover the difference between marginal and average costs 
via a fixed fee.  If, however, marginal costs are flat, the average costs will equal marginal 
costs at every output level, rather than just at the minimum, and then the proxy for 
marginal costs used by regulators will in fact be accurate. 
 
In order to explore this further, I take the derivative of three of my translog cost 
functions, those shown in Tables Two and Three.  I then use the data (input prices, output 
levels and technical variables) to make 592 point estimates of long-run marginal costs; 
one for each year of observation for each railway in the sample set.  I then plot these 
point estimates against the relevant data on freight output, and fit a quadratic trend-line to 
the resulting scatter plots.  I did not use a linear trend-line for the obvious reason that I 
would like to pick out any minima which exist.  The results are shown in Figures One 
through Three. 
 
 
                                                 
9 Whilst regulators assume an optimal asset base and operating costs, they do not assume optimal output 
when determining price, but rather make assumptions about likely output over the coming regulatory 
period.  Thus, price caps will generally not correspond with the minimum of the average cost curve. 
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Figure One: LRMC Plot – PL Out, Levels Model 
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Figure Two: LRMC Plot – PRS Out, Paasche Model, Ones Start Point 
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Figure Three: LRMC Plot – PRS Out, Paasche Model, Levels Results Start Point 
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Of these three, the two based upon the Paasche index suggest that long-run marginal 
costs are in fact roughly flat, which would suggest that the approach commonly used by 
regulators, although theoretically incorrect, gives results which are roughly correct.  
Figure One, however, based upon the ordinary numbers model, gives the familiar long 
run marginal cost curve, and suggests that the regulatory approach might give erroneous 
results.  Moreover, since the minimum of the long-run marginal cost curve is much lower 
than current levels of rail output, it suggests that current pricing methodologies are 
unlikely to give railways sufficient revenues to recover their marginal costs, and also give 
prices that are inefficiently low. 
 
Two caveats need to be made in relation to these three figures.  The first is the obviously 
very large error band around each of the curves.  In particular, most of the observations 
are bunched down around lower levels of output, and is it not clear how valid projections 
outward are.  This is important as the outputs of railways today are generally larger than 
the historical figures used here. 
 
A more important caveat is, of course, that Australian regulators do not regulate the price 
of rail services, but rather control the price of access to track.  The models above do not 
provide any information on the marginal costs of providing below-rail services, for the 
obvious reason that there were no providers of these services on a stand-alone basis in the 
period under analysis, and it is generally not possible to separate out such costs from a 
model of an integrated railway.  Thus, even though the marginal cost curve of an 
integrated railway might be flat (or curved), it is not necessarily the case that below rail 
services would have the same cost curve if operated on a stand-alone basis. 
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Conclusions 
This paper has utilised a unique dataset to explore cost functions for Australia’s railways 
through the 20th Century.  It finds, overall, that translog cost functions give the best 
results, but there are clearly still some issues, most particularly associated with the 
treatment of below-rail capital.  This might be ameliorated by utilising a more 
comprehensive cost-function estimation approach, whereby a short-run cost function is 
first estimated, and the long-run function is estimated from the envelope of the short-run, 
as in Keeler (1974).  Such an extension would make for useful future work, as would 
changing the specification of inputs, to include more variety, perhaps through an hedonic 
approach such as that used by DeBorger (1991) and Mizutani (2004. 
 
However, as a first pass, this paper delivers some interesting results.  It highlights the 
importance of both fixed capital and labour to railway costs, and the relative equality of 
freight and passenger traffic in terms of their impact on costs.  It also highlights some 
shortcomings in available data, particularly in relation to fixed capital accounting; a fact 
which is anecdotally well-known in the industry.  The results for economies of density 
suggest that there is considerable scope for expansion of above-rail services on 
Australia’s rail track infrastructure, but these aggregate figures do not take into 
consideration the impacts of bottlenecks.  The results for economies of scope suggest that 
any decision to horizontally separate freight from passenger services could be based on 
revenue and profit considerations, but not on cost; separation actually makes both more 
costly to provide.  The economies of scale results are somewhat ambiguous, but the more 
reliable models from the concavity perspective would seem to point towards increasing 
returns to scale. 
 
Finally, calculation of long run marginal cost in a theoretically correct manner, apart 
from indicating that it can be done relatively easily, highlights the potential consequences 
of errors in the approach commonly used by regulators of proxying marginal costs with 
average costs.  There are some indications from the work herein, that regulatory practices 
may in fact have lead to prices which are inefficiently low in the railway industry.  There 
is therefore some utility in regulators developing models like those presented here to 
calculate long run marginal cost, rather than relying upon average cost models. 
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