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Abstract—For non-regenerative multi-hop multiple-input
multiple-output (MIMO) relay communication systems, the op-
timal source precoding matrix and the optimal relay amplifying
matrices have been recently established for a broad class of
objective functions subjecting to the transmission power con-
straint at each node. However, existing works do not consider
any quality-of-service (QoS) constraints, which are important
in practical communication systems. In this paper, we derive
the optimal source and relay matrices of a multi-hop MIMO
relay system that guarantee the predetermined QoS criteria be
attained with the minimal total transmission power. In particular,
we consider two types of receivers at the destination node: the
linear minimal mean-squared error (MMSE) receiver and the
nonlinear decision feedback equalizer (DFE) based on the MMSE
criterion. We show that for both types of receivers, the solution to
the original optimization problem can be upper-bounded by using
a successive geometric programming (GP) approach and lower-
bounded by utilizing a dual decomposition technique. Simulation
results show that both bounds are tight, and to obtain the same
QoS, the MIMO relay system using the nonlinear MMSE-DFE
receiver requires substantially less total transmission power than
the linear MMSE receiver-based system.

Index Terms—MIMO relay, QoS, multi-hop relay, linear non-
regenerative relay, MMSE, majorization.

I. INTRODUCTION

As an efficient solution for wireless backhaul networks,
non-regenerative multiple-input multiple-output (MIMO) relay
communication systems recently have attracted much research
interest [1]-[13]. For a two-hop MIMO relay system, the opti-
mal relay amplifying matrix is obtained in [1]-[4] to maximize
the mutual information (MI) between source and destination.
In [5]-[7], optimal algorithms are developed to minimize the
mean-squared error (MSE) of the signal waveform estimation
at the destination.

The works of [1]-[7] have been generalized by [8], where
a unified framework is established for two-hop linear non-
regenerative MIMO relay systems with a broad class of
objective functions. The framework in [8] has been further
extended to multi-hop non-regenerative MIMO relay systems
with arbitrary number of hops [9]. Both [8] and [9] consider
a linear minimal mean-squared error (MMSE) receiver at the
destination node. Recently, it has been shown in [10] that by
using a nonlinear decision feedback equalizer (DFE) based on
the MMSE criterion (referred to as the MMSE-DFE receiver)
at the destination node, the system bit-error-rate (BER) per-
formance can be significantly improved. Other recent works
on multi-hop non-regenerative MIMO relay systems are found
in [11]-[13].

Yue Rong is with the Department of Electrical and Computer Engineering,
Curtin University, Bentley, WA 6102, Australia. E-mail: y.rong@curtin.edu.au.

The aim of [1]-[13] is to optimize a given objective function,
subjecting to the transmission power constraint at each node.
However, the quality-of-service (QoS) constraints are not
addressed by [1]-[13]. Note that in practical communication
systems, QoS criteria are very important. In this paper, we
derive the optimal source and relay matrices of a multi-hop
MIMO relay system which guarantee that the predetermined
QoS criteria be attained with the minimal total transmission
power. Based on the strong link between the diagonal ele-
ments of the MMSE matrix and most commonly used MIMO
communication system objective functions [8]-[10], the QoS
criteria are set up as the upper-bound of the MSE of each
data stream. Moreover, we consider two types of receivers
at the destination node: the linear MMSE receiver and the
nonlinear MMSE-DFE receiver. For both receiver schemes, we
show that the optimal source precoding matrix and the optimal
relay amplifying matrices have a similar structure. In fact,
the optimal source precoding matrix is the product of three
matrices: the right singular matrix of the first-hop channel, a
diagonal power loading matrix, and a (semi)-unitary matrix.
The optimal amplifying matrix at any relay node is the product
of the right singular matrix of its direct forward channel, a
diagonal power loading matrix, and the Hermitian transpose
of the left singular matrix of the direct backward channel.
Compared with the linear MMSE receiver, an advantage of
using the nonlinear MMSE-DFE receiver is that there is no
constraint on the number of data streams. Note that the DFE
receiver is also well-known as the successive interference
cancellation (SIC) receiver [14].

After the optimal structure of the source and relay matrices
is determined, the relay design problems boil down to optimal
power loading problems with QoS constraints, which are
nonconvex for both types of receivers and the globally optimal
solution is difficult to obtain with a reasonable computational
complexity. We show that the solution to the original optimiza-
tion problems can be upper-bounded by using a successive
geometric programming (GP) approach and lower-bounded
by utilizing a dual decomposition technique. A theoretical
analysis of the tightness of the upper and lower bounds is
very difficult. Instead, we resort to numerical simulation to
study the tightness of the bounds. Interestingly, we find that
the upper and lower bounds are very close to each other. For
practical applications the successive GP approach is preferred,
since it has a lower computational complexity than the dual
decomposition technique. Simulation results also demonstrate
that to obtain the same QoS, the MIMO relay system using
the nonlinear MMSE-DFE receiver requires substantially less
total transmission power than the linear MMSE receiver-based
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system.
We would like to mention that the optimal source matrix

design for a single-hop (point-to-point) MIMO system under
QoS constraints is addressed in [15] for linear MMSE receiver,
and in [16] for nonlinear MMSE-DFE receiver. Both [15] and
[16] are summarized in [17]. Our paper generalizes the results
in [15]-[17] from single-hop MIMO channels to multi-hop
non-regenerative MIMO relay communication systems with
any number of hops. Note that due to the introduction of
multiple relay nodes, a rigorous proof of the theorems for
multi-hop MIMO relay system is much more challenging than
that for the single-hop MIMO channel, and is one contribution
of this paper. The generalization from a single-hop MIMO
system to multi-hop MIMO relay systems is significant.

The rest of this paper is organized as follows. In Section II,
we introduce the model of a multi-hop linear non-regenerative
MIMO relay communication system. The structures of the
optimal source and relay matrices are shown in Section III
for systems using the linear MMSE receiver and the non-
linear MMSE-DFE receiver, respectively. In Section IV, we
show some numerical examples. Conclusions are drawn in
Section V.

II. SYSTEM MODEL

We consider a wireless communication system with one
source node, one destination node, and L − 1 relay nodes
(L ≥ 2). We assume that due to the propagation path-loss, the
signals transmitted by the ith node can only be received by
its direct forward node, i.e., the (i+1)-th node. Thus, signals
transmitted by the source node pass through L hops until they
reach the destination node. We also assume that the number
of antennas at each node is Ni, i = 1, · · · , L + 1, and the
number of source symbols in each transmission is Nb. Like
[1]-[10], a linear non-regenerative relay matrix is used at each
relay.

The N1× 1 signal vector transmitted by the source node is

s1 = F1b (1)

where b is the Nb×1 source symbol vector, and F1 is the N1×
Nb source precoding matrix. We assume that E[bbH ] = INb

,
where E[·] stands for the statistical expectation, (·)H denotes
the Hermitian transpose, and In is an n × n identity matrix.
The Ni×1 signal vector received at the ith node is written as

yi = Hi−1si−1 + vi, i = 2, · · · , L + 1 (2)

where Hi−1 is the Ni × Ni−1 quasi-static MIMO fading
channel matrix between the ith and the (i − 1)-th nodes,
i.e., the (i − 1)-th hop, vi is the Ni × 1 independent and
identically distributed (i.i.d.) additive white Gaussian noise
(AWGN) vector at the ith node, and si−1 is the Ni−1 × 1
signal vector transmitted by the (i − 1)-th node. We assume
that the noises are complex circularly symmetric with zero
mean and unit variance.

The input-output relationship at node i is given by

si = Fiyi, i = 2, · · · , L (3)

where Fi is the Ni × Ni amplifying matrix at node i.
Combining (1)-(3), we obtain the received signal vector at
the destination node (the (L + 1)-th node) as

yL+1 = H̄b + v̄ (4)

where H̄ and v̄ are the equivalent MIMO channel matrix and
the noise vector, and given respectively by

H̄ = HLFL · · ·H1F1 =
1⊗

i=L

(HiFi)

v̄ = HLFL · · ·H2F2v2 + · · ·+ HLFLvL + vL+1

=
L∑

l=2

( l⊗

i=L

(HiFi)vl

)
+ vL+1.

Here for matrices Ai,
⊗k

i=l(Ai) , Al · · ·Ak.
From (1), we know that the power of the signals transmitted

by the source node is tr(F1FH
1 ), where tr(·) denotes the trace

of a matrix. Based on (2) and (3), the power of the signal
transmitted by the relay node i, i = 2, · · · , L, is given by

tr
(
E

[
sisH

i

])

=tr
(
FiE

[
yiyH

i

]
FH

i

)

=tr

(
Fi

(
i−1∑

l=1

( l⊗

k=i−1

(HkFk)
i−1⊗

k=l

(
FH

k HH
k

))
+ INi

)
FH

i

)

i = 2, · · · , L . (5)

III. OPTIMAL SOURCE AND RELAY MATRICES WITH QOS
CONSTRAINTS

In this section, we design non-regenerative multi-hop
MIMO relay systems that meet the QoS requirements with
the minimal (weighted) total transmission power. Based on
the strong link between the diagonal elements of the MMSE
matrix and most commonly used MIMO communication sys-
tem objective functions such as the system BER and the
source-destination MI [8]-[10], [15]-[17], the QoS criteria are
set up as the upper-bound of MSE of each data stream. In
particular, we derive the optimal source precoding matrix and
the optimal relay amplifying matrices for destinations with
the linear MMSE receiver, and the nonlinear MMSE-DFE
receiver, respectively.

A. Linear MMSE receiver at the destination

Using a linear MMSE receiver, the estimated signal vector
is

b̂ = WHyL+1 (6)

where W is the NL+1×Nb weight matrix of the linear MMSE
receiver given by [18]

W = (H̄H̄H + Cv̄)−1H̄ . (7)

Here (·)−1 denotes the matrix inversion, and Cv̄ = E[v̄v̄H ]
is the noise covariance matrix

Cv̄ =
L∑

l=2

( l⊗

i=L

(HiFi)
L⊗

i=l

(FH
i HH

i )
)

+ INL+1 . (8)
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Using (4) and (6)-(8), the MMSE matrix denoted as
M({Fi}) = E

[
(b̂− b)(b̂− b)H

]
, is given by [9]

M({Fi}) =
(
INb

+ H̄HC−1
v̄ H̄

)−1

=

[
INb

+
L⊗

i=1

(FH
i HH

i )

(
L∑

l=2

( l⊗

i=L

(HiFi)

L⊗

i=l

(FH
i HH

i )
)

+ INL+1

)−1 1⊗

i=L

(HiFi)



−1

(9)

where {Fi} , {Fi, i = 1, · · · , L}.
The QoS-constrained optimization problem for MIMO relay

systems using the linear MMSE receiver at the destination
node can be written as

min
{Fi}

c1tr
(
F1FH

1

)
+

L∑

i=2

citr

(
Fi

(
i−1∑

l=1

( l⊗

k=i−1

(HkFk)

i−1⊗

k=l

(
FH

k HH
k

))
+ INi

)
FH

i

)
(10)

s.t. d[M({Fi})] ≤ q (11)

where the objective function (10) is the weighted total trans-
mission power consumed by the source node and all relay
nodes in the relay network with ci > 0, i = 1, · · · , L, as
weighting coefficients, d[A] is a column vector containing all
main diagonal elements of A, and q = [q1, q2, · · · , qNb

]T is
the QoS requirement vector measured in terms of the MSE of
each data stream that must be satisfied. A larger ci over cj ,
j = 1, · · · , L, j 6= i, should be assigned to the ith node, if
saving the power of the ith node over that of other nodes is
desired. In the following, we focus on the objective function
(10) with ci = 1, i = 1, · · · , L. Nonetheless, the algorithms
developed in this paper can be straightforwardly extended to
the case of general weighting coefficients. Note that due to
the strong link between d[M({Fi})] and the system BER
and the source-destination MI [8]-[10], the QoS constraints
in (11) can be equivalently represented as the BER and/or the
MI constraint in each data stream. Obviously, from (9) we
can see that any meaningful q should satisfy 0 < qi < 1,
i = 1, · · · , Nb. Without loss of generality, we assume that
the elements of q are arranged in an increasing order. The
following definition from [19] is required in order to solve the
problem (10), (11).

DEFINITION 1 [19, 1.A.1, 1.A.2]: Consider any two real-
valued N × 1 vectors x,y, let x[1] ≥ x[2] ≥ · · · ≥ x[N ],
y[1] ≥ y[2] ≥ · · · ≥ y[N ] denote the elements of x and y
sorted in decreasing order, respectively, and x(1) ≤ x(2) ≤
· · · ≤ x(N), y(1) ≤ y(2) ≤ · · · ≤ y(N) denote the elements
of x and y sorted in increasing order, respectively. We say
that x is additively majorized by y, denoted as x ≺+ y, if∑n

i=1 x[i] ≤
∑n

i=1 y[i], for n = 1, · · · , N−1, and
∑N

i=1 x[i] =∑N
i=1 y[i]. We say that x is weakly additively submajorized by

y, denoted as x≺+(w) y, if
∑n

i=1 x[i] ≤
∑n

i=1 y[i], for n =
1, · · · , N . We say that x is weakly additively supermajorized
by y, denoted as x ≺+(w) y, if

∑N
i=k x[i] ≥

∑N
i=k y[i], or∑k

i=1 x(i) ≥
∑k

i=1 y(i), for k = 1, · · · , N .

Let us write the singular value decomposition (SVD) of Hi

as

Hi = UiΣiVH
i , i = 1, · · · , L (12)

where the dimensions of Ui, Σi, Vi are Ni+1 × Ni+1,
Ni+1 × Ni, Ni × Ni, respectively. We assume that the
main diagonal elements of Σi, i = 1, · · · , L, are ar-
ranged in the decreasing order. Let us introduce Rh ,
min(rank(H1), rank(H2), · · · , rank(HL)), where rank(·)
denotes the rank of a matrix. The following theorem estab-
lishes the structure of the optimal source precoding matrix and
relay amplifying matrices when the linear MMSE receiver is
applied at the destination node.

THEOREM 1: Assuming Nb ≤ Rh and rank(Fi) = Nb, i =
1, · · · , L, for the linear non-regenerative multi-hop MIMO
relay design problem (10), (11), the optimal source and relay
matrices Fi, i = 1, · · · , L, are given by

F1 = V1,1Λ1UH
F1

, Fi = Vi,1ΛiUH
i−1,1, i = 2, · · · , L

(13)
where Λi, i = 1, · · · , L, are Nb×Nb diagonal matrices, UF1 is
an Nb×Nb unitary matrix such that [M({Fi})]k,k = qk, k =
1, · · · , Nb, and Ui,1 and Vi,1 contain the leftmost Nb vectors
of Ui and Vi, respectively. Here for a matrix A, [A]k,k stands
for the kth main diagonal element of A.

PROOF: See Appendix A. ¤
The assumption of Nb ≤ Rh is motivated by the fact that

using a linear receiver at the destination, the maximal number
of independent data streams that can be sent from source to
destination for any given {Fi} is no more than Rh. Moreover,
the assumption of rank(Fi) = Nb, i = 1, · · · , L, is sufficient
to allow Nb independent data streams to be sent from source
to destination.

From Theorem 1 we find that the optimal source precoding
matrix, the optimal relay amplifying matrices, and the MMSE
receiver matrix jointly diagonalize the multi-hop MIMO relay
channel H̄ after a rotation UF1 of the source precoding
matrix. Substituting (13) back into (5), the transmission power
at the source and relay nodes can be respectively written as

tr
(
F1FH

1

)
=

Nb∑

k=1

λ2
1,k (14)

tr

(
Fi

(
i−1∑

l=1

( l⊗

k=i−1

(HkFk)
i−1⊗

k=l

(
FH

k HH
k

))
+INi

)
FH

i

)

=
Nb∑

k=1

λ2
i,k




i−1∑

j=1

i−1∏

l=j

λ2
l,kσ2

l,k +1


, i = 2, · · · , L (15)

where λi,k and σi,k, i = 1, · · · , L, k = 1, · · · , Nb, are the
kth main diagonal elements of Λi and Σi, respectively. Using
(14), (15), and (93) in Appendix A, the optimal power loading
parameters λ , [λ1,1, · · · , λL,Nb

]T can be obtained by solving
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the following problem

min
λ

Nb∑

k=1

λ2
1,k +

L∑

i=2

Nb∑

k=1

λ2
i,k




i−1∑

j=1

i−1∏

l=j

λ2
l,kσ2

l,k +1


 (16)

s.t. q≺+(w)





(
1 +

∏L
i=1 σ2

i,kλ2
i,k

1 +
∑L

i=2

∏L
l=i σ2

l,kλ2
l,k

)−1




k=1,··· ,Nb

(17)

λi,k > 0, i = 1, · · · , L, k = 1, · · · , Nb (18)

where in (17) for a scalar x, {xk}k=1,··· ,N ,
[x1, x2, · · · , xN ]T . Here the objective function (16) is
obtained from (14) and (15), while the constraint (17) is
obtained from (93) and (100) in Appendix A. Note that
due to the constraint (18), the rank of Fi, i = 1, · · · , L, is
guaranteed to be Nb.

To simplify notations, let us introduce the following variable
substitutions for k = 1, · · · , Nb

x1,k , λ2
1,k, ai,k , σ2

i,k, i = 1, · · · , L (19)

xi,k , λ2
i,k(ai−1,kxi−1,k + 1), i = 2, · · · , L . (20)

Applying (19), (20) to (16)-(18) and expanding (17) using
Definition 1, the optimization problem (16)-(18) can be equiv-
alently written as

min
x

L∑

i=1

Nb∑

k=1

xi,k (21)

s.t.
j∑

k=1

(
1−

L∏

i=1

ai,kxi,k

1 + ai,kxi,k

)
≤

j∑

k=1

qk,

j = 1, · · · , Nb (22)
xi,k > 0, i = 1, · · · , L, k = 1, · · · , Nb (23)

where x , [x1,1, · · · , xL,Nb
]T . It can be shown that the

Hessian matrix of
∑j

k=1

(
1−∏L

i=1
ai,kxi,k

1+ai,kxi,k

)
is indefinite

for L ≥ 2 and xi,k > 0, i = 1, · · · , L, k = 1, · · · , Nb. Thus,
the constraints in (22) are nonconvex and difficult to handle for
L ≥ 2. Consequently, the problem (21)-(23) is a nonconvex
optimization problem and the globally optimal solution is
difficult to obtain. In the following, we provide two numerical
methods to solve the problem (21)-(23). The first method is
based on a successive application of geometric programming
(GP) [20]-[22]. While the second method utilizes the dual
decomposition technique [23].

For the first method, let us introduce an auxiliary variable
vector z , [z1, · · · , zNb

]T with zk ≤
∏L

i=1
ai,kxi,k

1+ai,kxi,k
, k =

1, · · · , Nb. Then the problem (21)-(23) can be equivalently
written as

min
x,z

L∑

i=1

Nb∑

k=1

xi,k (24)

s.t.
j∑

k=1

zk ≥
j∑

k=1

(1− qk), j = 1, · · · , Nb (25)

zk

L∏

i=1

1 + ai,kxi,k

ai,kxi,k
≤ 1, k = 1, · · · , Nb (26)

xi,k > 0, i = 1, · · · , L, k = 1, · · · , Nb . (27)

The objective function (24) is a posynomial. The constraints in
(26) are posynomial upper-bound constraints [20]. However,
constraints in (25) make the problem (24)-(27) a signomial
programming (SP) problem, which is very difficult to solve
[22]. If the constraints in (25) can also be converted to
posynomial upper-bound constraints, then the problem (24)-
(27) becomes a GP problem. Towards this end, we apply the
geometric inequality to the left-hand side of (25) such that

j∑

k=1

zk ≥
j∏

k=1

(
zk

αj,k

)αj,k

(28)

where αj,k > 0, k = 1, · · · , j, j = 1, · · · , Nb, and∑j
k=1 αj,k = 1, j = 1, · · · , Nb. Note that an approach similar

to (28) has been applied to solve the power control problem in
multiuser communication [22]. The major difference between
[22] and the optimization problem (24)-(27) is that the power
control problem in [22] may have infeasible constraints, while
the problem (24)-(27) is always feasible. Substituting (25) with
the inequalities

∏j
k=1

(
zk

αj,k

)αj,k ≥ ∑j
k=1(1− qk), we have

min
x,z

L∑

i=1

Nb∑

k=1

xi,k (29)

s.t. βj

j∏

k=1

z
−αj,k

k ≤ 1, j = 1, · · · , Nb (30)

zk

L∏

i=1

(1 + a−1
i,kx−1

i,k ) ≤ 1, k = 1, · · · , Nb (31)

xi,k > 0, i = 1, · · · , L, k = 1, · · · , Nb (32)

where

βj ,
j∑

k=1

(1− qk)
j∏

k=1

α
αj,k

j,k . (33)

The problem (29)-(32) is a GP problem in standard form,
which can be converted to a convex optimization problem and
efficiently solved by the interior-point method [20].

The procedure of applying the successive GP approach to
solve the problem (21)-(23) is summarized in Table I. Here ε
is a small positive number close to zero and the superscript
(n) denotes the number of iterations.

TABLE I
PROCEDURE OF APPLYING THE SUCCESSIVE GP APPROACH TO SOLVE THE

PROBLEM (21)-(23).

1) Initialize the algorithm at a feasible x(0); Set n = 0.

2) Compute z
(n)
k =

∏L
i=1

ai,kx
(n)
i,k

1+ai,kx
(n)
i,k

, k = 1, · · ·Nb, α
(n)
j,k =

z
(n)
k∑j

k=1 z
(n)
k

and β
(n)
j in (33), j = 1, · · · , Nb.

Obtain x(n+1) by solving the standard GP problem (29)-(32).
3) If maxi,k

∣∣∣x(n+1)
i,k − x

(n)
i,k

∣∣∣ ≤ ε, then end.
Otherwise, let n := n + 1 and go to step 2).

Using (26) with zk = 1 − qk, k = 1, · · · , Nb, a feasible
x(0) can be obtained as x

(0)
i,k =

[
ai,k((1 − qk)−

1
L − 1)

]−1,
i = 1, · · · , L, k = 1, · · · , Nb. We use the MOSEK convex
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optimization MATLAB toolbox [24] to solve the problem (29)-
(32). Note that since the constraints in (30) are stricter than
those in (25), the solution to the problem (24)-(27) is upper-
bounded by that of the problem (29)-(32) before the conver-
gence of the successive GP procedure. The tightness of this
upper-bound depends on the coefficients αj,k, k = 1, · · · , j,
j = 1, · · · , Nb. By using the successive GP approach, αj,k are
adaptively chosen to match the value of zk, k = 1, · · · , Nb, at
each iteration. Moreover, when the successive GP procedure
converges, i.e., when x(n) .= x(n+1), we have

∑j
k=1 z

(n+1)
k

.=
∏j

k=1

(
z
(n)
k /α

(n)
j,k

)α
(n)
j,k . Thus, the problem (24)-(27) and the

problem (29)-(32) are equivalent at the convergence point of
the successive GP procedure, since at the convergence point,
the constraint (25) is identical to the constraint (30). A rigorous
analysis of the convergence of the successive GP algorithm
is not available. However, we observed in the numerical
simulations that a monotonic convergence of the successive GP
algorithm is always achieved. The successive GP approach is
also known as iterative monomial approximation in geometric
programming literature [21], and its convergence has been
observed for solving the power control problem in multiuser
communication [22].

Now let us have a closer look at the problem (21)-(23).
Interestingly, the variables xi,k are coupled only through the
summations in (21) and (22). Such structure facilitates the
application of the dual decomposition technique. First, the
Lagrangian function associated with the problem (21), (22)
can be written as

L(x, µ)

=
L∑

i=1

Nb∑

k=1

xi,k +
Nb∑

j=1

µj

(
j∑

k=1

(
1−

L∏

i=1

ai,kxi,k

1 + ai,kxi,k
− qk

))

=
Nb∑

k=1




L∑

i=1

xi,k +




Nb∑

j=k

µj




(
1−

L∏

i=1

ai,kxi,k

1 + ai,kxi,k
− qk

)


,
Nb∑

k=1

Lk(xk, µ̃k) + η (34)

where µj ≥ 0, j = 1, · · · , Nb, are the Lagrangian multipliers,
µ , [µ1, · · · , µNb

]T , µ̃k ,
∑Nb

j=k µj , η ,
∑Nb

k=1 µ̃k(1− qk),
xk , [x1,k, · · · , xL,k]T , and

Lk(xk, µ̃k) ,
L∑

i=1

xi,k − µ̃k

L∏

i=1

ai,kxi,k

1 + ai,kxi,k
, k = 1, · · · , Nb .

(35)
The dual function [20] associated with the original problem
(21)-(23) is given by g(µ) = minx L(x,µ). Now the opti-
mization of x is carried out in two levels. At the lower level,
we solve for xk, k = 1, · · · , Nb, from the following decoupled
subproblem with given µ̃k.

min
xk

Lk(xk, µ̃k) s.t. xi,k > 0, i = 1, · · · , L. (36)

The problem (36) does not have a closed-form solution. We
should resort to numerical methods such as the projected gra-
dient algorithm [25] to solve it. The projected gradient method
starts at an initial point x

(0)
i,k . At the nth iteration, x

(n)
i,k is

updated as x
(n+1)
i,k = x

(n)
i,k +δn

(
x̃

(n)
i,k −x

(n)
i,k

)
, where δn ∈ (0, 1]

is a step size and x̃
(n)
i,k =

[
x

(n)
i,k − sn∇iLk(x(n)

k , µ̃k)
]+

. Here
[x]+ , max(x, ε), sn is a positive scalar, ε is a small positive
number close to zero, and ∇iLk(x(n)

k , µ̃k) denotes the gradient
with respect to x

(n)
i,k . At the higher level, we update the dual

variable µ by solving the master dual problem

max
µ

g(µ) s.t. µi ≥ 0, i = 1, · · · , Nb. (37)

The problem (37) can be solved by the sub-gradient method
[23].

The procedure of applying the dual decomposition tech-
nique to solve the problem (21)-(23) is summarized in Ta-
ble II. Note that the constraints in (22) are absorbed into the
Lagrangian function (34), and when this algorithm converges,
(22) is always satisfied. Since the dual decomposition method
essentially solves the dual optimization problem, the result
we obtain is a lower-bound of the original problem (21)-(23).
Moreover, since the dual problem is always convex, the con-
vergence of the dual decomposition algorithm is guaranteed.

TABLE II
PROCEDURE OF APPLYING THE DUAL DECOMPOSITION APPROACH TO

SOLVE THE PROBLEM (21)-(23).

1) Initialize the algorithm at a feasible µ(0); Set n = 0.
2) Solve the subproblems (36) k = 1, · · · , Nb, using µ(n), to obtain

x(n).
3) Solve the master problem (37) with x(n) to obtain µ(n+1).
4) If maxi

∣∣∣µ(n+1)
i − µ

(n)
i

∣∣∣ ≤ ε, then end.
Otherwise, let n := n + 1 and go to step 2).

Both the successive GP and the dual decomposition algo-
rithms can be applied in wireless backhaul communications.
We assume that the source node has the channel state infor-
mation (CSI) knowledge of H1, the destination node knows
W, and the ith node, i = 2, · · · , L, knows the CSI of
its backward channel Hi−1 and its forward channel Hi. In
practice, the backward CSI can be obtained through standard
training methods [26]. The forward CSI required at the ith
node (Hi) is exactly the backward CSI at the (i+1)-th node,
and thus can be obtained by a feedback from the (i + 1)-
th node. It is shown that at high training signal-to-noise ratio
(SNR), the required CSI can be estimated with a high precision
[26]. The iteration computations can be carried out at any
node depending on the capability of all nodes. The selected
node first collects the information on rank(Hi) and σi,k from
the (i + 1)-th node, i = 1, · · · , L. Then it determines Nb

(Nb ≤ Rh) and performs the optimization and computes UF1 .
Finally, it sends the optimal λi,k, k = 1, · · · , Nb, to the ith
node, i = 1, · · · , L, and UF1 to the source node. At the ith
node, after the optimal λi,k, k = 1, · · · , Nb, are received,
the optimal matrix Fi is assembled using (13). Substituting
(13) back into (7), we have W = UL,1DsUH

F1
, where Ds

is a diagonal matrix with the diagonal elements given by
[Ds]k,k =

( ∑L
l=1

∏L
i=l λ

2
i,kσ2

i,k + 1
)−1 ∏L

i=1 λi,kσi,k, k =
1, · · · , Nb. Thus, at the destination node, UL,1 is estimated
through channel training, while Ds and UF1 are forwarded
by the selected node.
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Note that since Lk(xk, µ̃k) in (35) is non-convex with
respect to xi,k, i = 1, · · · , L, solving the subproblems
(36) has a higher computational complexity than solving the
GP problem (29)-(32), which can be converted to a convex
optimization problem and efficiently solved by the interior-
point method. Thus, in practice, the successive GP approach is
preferred. The contribution of the dual decomposition method
is that it establishes a lower-bound for the globally optimal
solution to the original optimization problem (21)-(23). It is
observed in Section IV through numerical simulations that this
lower-bound is very close to the upper-bound obtained by the
successive GP approach. Thus, the successive GP approach
can be used with confidence in practice.

A suboptimal MIMO relay scheme can be developed by
assuming a diagonal H̄, i.e., Fi, i = 1, · · · , L, are given by
(13) with UF1 = INb

. Thus, in this scheme the QoS constraint
(11) is equivalent to
(

1 +

∏L
i=1 σ2

i,kλ2
i,k

1 +
∑L

i=2

∏L
l=i σ2

l,kλ2
l,k

)−1

≤ qk, k = 1, · · · , Nb .

Using the variable substitutions in (19), (20), the power
loading problem for the suboptimal scheme is written as

min
x

L∑

i=1

Nb∑

k=1

xi,k (38)

s.t. 1−
L∏

i=1

ai,kxi,k

1 + ai,kxi,k
≤ qk, k = 1, · · · , Nb (39)

xi,k > 0, i = 1, · · · , L, k = 1, · · · , Nb . (40)

Note that constraints in (39) are equivalent to∏L
i=1

1+ai,kxi,k

ai,kxi,k
≤ 1

1−qk
, k = 1, · · · , Nb. Thus the problem

(38)-(40) can be converted to

min
x

L∑

i=1

Nb∑

k=1

xi,k (41)

s.t.
L∏

i=1

(
1 + a−1

i,kx−1
i,k

) ≤ 1
1− qk

, k = 1, · · · , Nb (42)

xi,k > 0, i = 1, · · · , L, k = 1, · · · , Nb . (43)

Since the objective function (41) is a posynomial and (42) are
posynomial upper-bound inequality constraints, the problem
(41)-(43) is a GP problem in standard form [20]. We use the
MOSEK GP optimization MATLAB toolbox [24] to solve the
problem (41)-(43).

It can be seen that the problem (38)-(40) has a smaller
feasible region than that of the problem (21)-(23). Thus, we
expect that the suboptimal scheme has a worse performance
than the optimal approach in (21)-(23). However, the compu-
tational complexity of solving (38)-(40) is in the same order of
one iteration of the successive GP approach in Table I. Such
performance-complexity tradeoff is very useful for practical
MIMO relay systems.

B. Nonlinear MMSE-DFE receiver at the destination

Using a nonlinear MMSE-DFE receiver and assuming that
there is no error propagation, the estimated signal can be

represented as [14]

b̂ = WHyL+1 −Bb =
(
WHH̄−B

)
b + WH v̄

where W and B are the feed-forward and feedback matrix of
the DFE receiver, respectively. In practice, the error propaga-
tion of the DFE receiver can be minimized by detecting the
substream with the smallest error probability first. To minimize
the MSE, the optimal B is given by B = U[

WHH̄
]
, where

U [A] denotes the strictly upper-triangular part of A. Let us
introduce the following QR decomposition [27]

G ,
[
C− 1

2
v̄ H̄
INb

]
= QR =

[
Q̄
Q

]
R (44)

where R is an Nb×Nb upper-triangular matrix, Q is an (Nb+
NL+1) × Nb semi-unitary matrix with QHQ = INb

, Q̄ is a
matrix containing the first NL+1 rows of Q, and Q contains
the last Nb rows of Q. It has been shown in [10], [17] that
W, B, and the MMSE matrix M can be represented as

W = C− 1
2

v̄ Q̄D−1
R , B = D−1

R R− INb
, M = D−2

R

where DR is a matrix taking the diagonal elements of R as
the main diagonal and zero elsewhere.

The QoS-constrained optimization problem for MIMO re-
lay systems using the nonlinear MMSE-DFE receiver at the
destination node can be written as

min
{Fi}

c1tr
(
F1FH

1

)
+

L∑

i=2

citr

(
Fi

(
i−1∑

l=1

( l⊗

k=i−1

(HkFk)

i−1⊗

k=l

(
FH

k HH
k

))
+ INi

)
FH

i

)
(45)

s.t.

[
C− 1

2
v̄ H̄
INb

]
= QR (46)

d[R] ≥ q−
1
2 (47)

where q−
1
2 ,

[
q
− 1

2
1 , · · · , q

− 1
2

Nb

]T

. In the following, we focus
on the objective function (45) with ci = 1, i = 1, · · · , L.
Nonetheless, the algorithms developed later can be straightfor-
wardly extended to the case of general weighting coefficients.

Let us introduce the following definition that will be used
to solve the problem (45)-(47).

DEFINITION 2 [17, p33]: For any two real-valued N × 1
vectors x and y, we say that x is multiplicatively majorized
by y, denoted as x ≺× y, if

∏n
i=1 x[i] ≤ ∏n

i=1 y[i], for
n = 1, · · · , N − 1, and

∏N
i=1 x[i] =

∏N
i=1 y[i]. We say that

x is weakly multiplicatively submajorized by y, denoted as
x ≺×(w) y, if

∏n
i=1 x[i] ≤

∏n
i=1 y[i], for n = 1, · · · , N .

The following theorem establishes the structure of the
optimal source precoding matrix and relay amplifying matri-
ces when the nonlinear MMSE-DFE receiver is used at the
destination node.

THEOREM 2: For the non-regenerative multi-hop MIMO
relay design problem (45)-(47), assuming that rank(Fi) =
M , min(Nb, Rh), i = 1, · · · , L, the optimal source and
relay matrices Fi, i = 1, · · · , L, are given by

F1 = V1,1∆1VH
F1

, Fi = Vi,1∆iUH
i−1,1, i = 2, · · · , L

(48)
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where ∆i = diag(δi,1, δi,2, · · · , δi,M ) are M × M diago-
nal matrices, and VF1 is an Nb × M semi-unitary matrix
(VH

F1
VF1 = IM ) such that the QR decomposition in (46)

holds. In particular, δ , [δ1,1, · · · , δL,M ]T is obtained by
solving the following optimization problem

min
δ

M∑

k=1

δ2
1,k +

L∑

i=2

M∑

k=1

δ2
i,k




i−1∑

j=1

i−1∏

l=j

δ2
l,kσ2

l,k +1


 (49)

s.t.
{
q−1
k

}
k=1,··· ,Nb

≺×(w)




{
1 +

∏L
i=1 σ2

i,kδ2
i,k

1 +
∑L

i=2

∏L
l=i σ2

l,kδ2
l,k

}T

k=1,··· ,M
,1Nb−M




T

(50)

δi,k > 0, i = 1, · · · , L, k = 1, · · · ,M (51)

where 1n denotes a 1× n vector with all 1 elements.

PROOF: See Appendix B. ¤

The motivation of the assumption rank(Fi) = M is to avoid
any transmission power loss at each node. In practice, the
node selected for performing the optimization first collects the
information on rank(Hi), i = 1, · · · , L. Then it determines
M = min(Nb, Rh) and performs the optimization by solving
the problem (49)-(51). Due to the constraint (51), the rank of
Fi, i = 1, · · · , L, is guaranteed to be M . Comparing (48)
with (13), we find that the optimal source and relay matrices
have a similar structure for both the linear MMSE and the
nonlinear MMSE-DFE receivers. The major differences are
the power loading matrices Λi and ∆i, i = 1, · · · , L, and
the rotation matrices at the source node UF1 and VF1 . An
intuitive explanation is that the structure of the relay matrices
in (13) and (48) minimizes the total transmission power, while
together with the relay matrices, the rotation matrix at the
source node is used to guarantee the QoS constraints for
different type of receivers. Moreover, as proved in [9] and
[10], the source and relay matrices structure in (13) and (48)
is optimal for most commonly used MIMO design criteria.
Thus, we expect that the optimal source and relay matrices
structure derived in this paper should be applicable in scenarios
where the objective function is not the total transmission
power (such as maximizing the source-destination mutual
information subjecting to the QoS constraint on the MSE of
each data stream). A rigorous proof of the optimal structure
in such scenarios is an important future research topic.

Interestingly, when the nonlinear MMSE-DFE receiver is
used at the destination, there is no constraint on Nb. In fact,
as can be seen from Appendix B, Nb can be greater than Rh.
Since the elements of q are arranged in an increasing order,
the elements of q−1 are sorted in a decreasing order. Using
the variable substitutions in (19), (20), and expanding (50)
using Definition 2, the problem (49)-(51) can be equivalently

rewritten as

min
x

L∑

i=1

M∑

k=1

xi,k (52)

s.t.
j∏

k=1

q−1
k ≤

j∏

k=1

(
1−

L∏

i=1

ai,kxi,k

1 + ai,kxi,k

)−1

,

j = 1, · · · ,M − 1 (53)
Nb∏

k=1

q−1
k ≤

M∏

k=1

(
1−

L∏

i=1

ai,kxi,k

1 + ai,kxi,k

)−1

(54)

xi,k > 0, i = 1, · · · , L, k = 1, · · · ,M (55)

where the constraint (54) is obtained since q−1
k > 1, k =

1, · · · , Nb, and thus maxj=1,··· ,Nb

∏j
k=1 q−1

k =
∏Nb

k=1 q−1
k .

Similar to Section III-A, the problem (52)-(55) can be
solved by the successive GP approach and the dual decom-
position method. We first discuss the successive GP approach.
By introducing the auxiliary variables zk ≤

∏L
i=1

ai,kxi,k

1+ai,kxi,k
,

k = 1, · · ·M , the problem (52)-(55) is equivalent to

min
x,z

L∑

i=1

M∑

k=1

xi,k (56)

s.t.
j∏

k=1

(1− zk) ≤
j∏

k=1

qk, j = 1, · · · ,M − 1 (57)

M∏

k=1

(1− zk) ≤
Nb∏

k=1

qk (58)

zk

L∏

i=1

1 + ai,kxi,k

ai,kxi,k
≤ 1, k = 1, · · · ,M (59)

xi,k > 0, i = 1, · · · , L, k = 1, · · · , M . (60)

Obviously, constraints in (57) and (58) are not yet posynomial
upper-bound constraints. Let us introduce an auxiliary variable
vector h , [h1, · · · , hM ]T , with 1− zk ≤ hk, k = 1, · · · ,M ,
the constraints in (57) and (58) can be equivalently written as

j∏

k=1

hk ≤
j∏

k=1

qk, j = 1, · · · ,M − 1 (61)

M∏

k=1

hk ≤
Nb∏

k=1

qk (62)

zk + hk ≥ 1, k = 1, · · · ,M. (63)

To convert the constraints in (63) to posynomial upper-bound
constraint, we apply the following geometric inequality zk +
hk ≥ (zk/γk)γk(hk/θk)θk , where γk > 0, θk > 0, and γk +
θk = 1. Now a tightened version of the problem (56)-(60) is
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given by

min
x,z,h

L∑

i=1

M∑

k=1

xi,k (64)

s.t.
j∏

k=1

hkq−1
k ≤ 1, j = 1, · · · , M − 1 (65)

M∏

k=1

hk

Nb∏

k=1

q−1
k ≤ 1 (66)

γγk

k θθk

k z−γk

k h−θk

k ≤ 1, k = 1, · · · ,M (67)

zk

L∏

i=1

(1 + a−1
i,kx−1

i,k ) ≤ 1, k = 1, · · · ,M (68)

xi,k > 0, i = 1, · · · , L, k = 1, · · · ,M . (69)

The problem (64)-(69) is a GP problem in standard form. In
a similar fashion to Section III-A, the power loading problem
(52)-(55) can be solved by a successive GP approach, where in
each iteration, the GP problem (64)-(69) is solved. The steps
are summarized in Table III.

TABLE III
PROCEDURE OF APPLYING THE SUCCESSIVE GP APPROACH TO SOLVE THE

PROBLEM (52)-(55).

1) Initialize the algorithm at a feasible x(0); Set n = 0.

2) Compute z
(n)
k =

∏L
i=1

ai,kx
(n)
i,k

1+ai,kx
(n)
i,k

, h
(n)
k = 1− z

(n)
k , γ

(n)
k = z

(n)
k ,

θ
(n)
k = h

(n)
k , k = 1, · · · , M .

Obtain x(n+1) by solving the standard GP problem (64)-(69).
3) If maxi,k

∣∣∣x(n+1)
i,k − x

(n)
i,k

∣∣∣ ≤ ε, then end.
Otherwise, let n := n + 1 and go to step 2).

To solve the problem (52)-(55) using the dual decomposition
technique, we first apply the log operation to both sides of the
constraints in (53) and (54). The problem (52)-(55) is now
equivalent to

min
x

L∑

i=1

M∑

k=1

xi,k (70)

s.t.
j∑

k=1

log

(
1−

L∏

i=1

ai,kxi,k

1 + ai,kxi,k

)
≤

j∑

k=1

log qk,

j = 1, · · · ,M − 1 (71)
M∑

k=1

log

(
1−

L∏

i=1

ai,kxi,k

1 + ai,kxi,k

)
≤

Nb∑

k=1

log qk (72)

xi,k > 0, i = 1, · · · , L, k = 1, · · · ,M . (73)

The Lagrangian function associated with the problem (70)-(72)

is

J (x,ν)

=
L∑

i=1

M∑

k=1

xi,k

+
M−1∑

j=1

νj

(
j∑

k=1

(
log

(
1−

L∏

i=1

ai,kxi,k

1 + ai,kxi,k

)
− log qk

))

+νM

(
M∑

k=1

log

(
1−

L∏

i=1

ai,kxi,k

1 + ai,kxi,k

)
−

Nb∑

k=1

log qk

)

,
M∑

k=1

Jk(xk, ν̃k) + ξ

where νj ≥ 0, j = 1, · · · ,M , are the Lagrangian multipliers,
ν , [ν1, · · · , νM ]T , ν̃k ,

∑M
j=k νj , k = 1, · · · ,M , ξ ,

−∑M
k=1 ν̃k log qk − νM

∑Nb

k=M+1 log qk, and

Jk(xk, ν̃k) ,
L∑

i=1

xi,k + ν̃k log

(
1−

L∏

i=1

ai,kxi,k

1 + ai,kxi,k

)

k = 1, · · · ,M . (74)

Now the decoupled subproblem with given ν̃k is

min
xk

Jk(xk, ν̃k) s.t. xi,k > 0, i = 1, · · · , L. (75)

The master dual problem is given by

max
ν

f(ν) s.t. νi ≥ 0, i = 1, · · · ,M. (76)

where f(ν) = minx J (x,ν). The procedure of applying the
dual decomposition approach to solve the problem (52)-(55)
is listed in Table IV.

TABLE IV
PROCEDURE OF APPLYING THE DUAL DECOMPOSITION APPROACH TO

SOLVE THE PROBLEM (52)-(55).

1) Initialize the algorithm at a feasible ν(0); Set n = 0.
2) Solve the subproblems (75) k = 1, · · · , M , using ν(n), to obtain

x(n).
3) Solve the master problem (76) with x(n) to obtain ν(n+1).
4) If maxi

∣∣∣ν(n+1)
i − ν

(n)
i

∣∣∣ ≤ ε, then end.
Otherwise, let n := n + 1 and go to step 2).

It will be shown in Section IV that although the succes-
sive GP and the dual decomposition approaches provide an
upper-bound and a lower-bound of the problem (52)-(55),
respectively, their performance are almost identical. Note that
since Jk(xk, ν̃k) in (74) is non-convex with respect to xi,k,
i = 1, · · · , L, solving the subproblems (75) has a higher
computational complexity than solving the GP problem (64)-
(69). Thus, in practice, the successive GP approach should be
used.

IV. NUMERICAL EXAMPLES

In this section, we study the performance of the proposed
algorithms. In the simulations, all channel matrices have i.i.d.
complex Gaussian entries with zero-mean and variances 1/Ni

for Hi, i = 1, · · · , L. All simulation results are averaged
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over 1000 independent channel realizations. Unless mentioned
explicitly, we set ci = 1, i = 1, · · · , L.

In the first example, we compare the performance of the
successive GP approach and the dual decomposition tech-
nique. We simulate a 2-hop (L = 2) relay system with
Ni = N = 3, i = 1, 2, 3. The MSE requirement at each
data stream is set to be identical, i.e., qi = q, i = 1, 2, 3.
Table V shows the performance of both approaches in terms
of total transmission power versus MSE for the linear MMSE
receiver and the nonlinear MMSE-DFE receiver. It can be seen
that the dual decomposition technique is only slightly better
than the successive GP approach. Since the former approach
provides a lower-bound and the latter approach establishes
an upper-bound for the system performance, the results in
Table V indicate that both bounds are tight. Thus, either of the
approaches can be applied to solve the original optimization
problem. In the following examples, for clarity, we only show
the performance of the successive GP approach.

In the second example, we compare the performance of
MIMO relay systems with the linear MMSE receiver, MIMO
relay systems using the nonlinear MMSE-DFE receiver, and
MIMO relay systems with the suboptimal scheme (38)-(40).
We choose N = 3, L = 2, and identical MSE requirement at
all streams. Fig. 1 shows the total transmission power required
by three systems versus MSE. From Fig. 1 we find that
the system using the nonlinear MMSE-DFE receiver requires
much less total transmission power than that using the linear
MMSE receiver, especially at low MSEs.

In the third example, we simulate a 3-hop (L = 3) MIMO
relay system with N = 3 and qi = q, i = 1, 2, 3. From
Fig. 2 we see that compared with L = 2, the total power

0.10.20.30.40.50.60.70.80.9
0

5

10

15

20

25

30

35

MSE

T
ot

al
 P

ow
er

 (
dB

)

 

 

Sub−Optimal
Linear MMSE
Nonlinear MMSE−DFE

Fig. 1. Example 2: Total power versus MSE (q); N = 3, L = 2, q1 =
q2 = q3 = q.

required by all three systems increases. This is expected, since
for non-regenerative relay systems, noises at all relay nodes
are amplified and superimposed at the destination node. Thus,
in order to achieve the same MSE, a three-hop relay system
requires more total transmission power than a two-hop system.
We also observe from Fig. 2 that the relay system using
the nonlinear MMSE-DFE receiver has the best performance
in terms of the required total transmission power. For this
example, the optimal power allocation (dB) among the first
three nodes (the source node and two relay nodes) is listed
in Table VI. It can be seen from Table VI that for both the
linear MMSE and the nonlinear MMSE-DFE receivers, each
node gets approximately the same amount of power.

TABLE V
EXAMPLE 1: COMPARISON OF THE SUCCESSIVE GP AND THE DUAL DECOMPOSITION APPROACHES; N = 3, L = 2.

MSE (q) 0.9 0.5 0.1 0.05 0.01 0.005 0.001
Successive GP (linear MMSE) 1.0050 14.2241 30.5001 33.1698 40.5201 43.5733 60.6046

Dual decomposition (linear MMSE) 1.0049 14.2106 30.4996 32.9231 40.1781 43.1298 60.1036
Successive GP (nonlinear MMSE-DFE) 0.5094 11.3751 23.4131 27.1305 34.8870 38.0352 55.4729

Dual decomposition (nonlinear MMSE-DFE) 0.5093 11.3708 23.4101 26.9713 34.6257 37.8921 55.1331

TABLE VI
EXAMPLE 3: POWER ALLOCATION AMONG THE FIRST THREE NODES; N = 3, L = 3, c1 = c2 = c3 = 1.

MSE (q) 0.9 0.8 0.65 0.5 0.4 0.25 0.1
Node 1, linear MMSE 0.9648 5.3437 9.1789 13.1696 17.1009 22.0624 27.3032
Node 2, linear MMSE 0.8909 5.2972 9.1538 13.1849 17.0505 21.6592 26.8234
Node 3, linear MMSE 1.0426 5.4596 9.3404 13.3707 17.2554 22.3598 27.7923

Node 1, nonlinear MMSE-DFE -0.0028 3.2947 7.3386 10.4884 12.5157 16.1756 22.3452
Node 2, nonlinear MMSE-DFE -0.0743 3.2212 7.2715 10.4546 12.4796 16.1474 22.3426
Node 3, nonlinear MMSE-DFE 0.0790 3.3848 7.4595 10.6315 12.6684 16.3411 22.5354

TABLE VII
EXAMPLE 3: POWER ALLOCATION AMONG THE FIRST THREE NODES; N = 3, L = 3, c1 = 10, c2 = 1, c3 = 0.1.

MSE (q) 0.9 0.8 0.65 0.5 0.4 0.25 0.1
Node 1, linear MMSE -3.9825 0.8589 5.1619 9.4453 13.0070 18.9301 24.9992
Node 2, linear MMSE 2.3116 7.1846 10.9855 15.0621 18.9840 23.4610 28.4922
Node 3, linear MMSE 7.7768 12.5774 16.1578 20.0893 24.1123 29.9148 35.5158

Node 1, nonlinear MMSE-DFE -4.5812 -0.8445 3.1894 6.6697 8.8369 12.5907 18.7554
Node 2, nonlinear MMSE-DFE 1.7211 5.0720 8.8818 12.3932 14.4077 17.8788 24.1208
Node 3, nonlinear MMSE-DFE 7.1740 10.2333 14.1305 17.4519 19.3862 22.8985 29.0905
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Fig. 2. Example 3: Total power versus MSE (q); N = 3, L = 3, q1 =
q2 = q3 = q.

To study the effects of unequal weighting coefficients to
the power allocation among different nodes, we simulate the
same three-hop MIMO relay system with c1 = 10, c2 = 1,
and c3 = 0.1 in the objective functions (10) and (45). The
power (dB) consumed by the first three nodes is listed in
Table VII. Compared with Table VI, it can be seen from
Table VII that the node with a larger coefficient (i.e., node
1) consumes less transmission power, while the node having
a smaller coefficient (i.e., node 3) requires more transmission
power.

A 3-hop MIMO relay system with different QoS require-
ment at each stream is simulated in our fourth example. We
set N = 3 and q1 = q/4, q2 = q/2, q3 = q. The total power
required by three systems is displayed in Fig. 3. It can be
seen that due to the stricter MSE constraints for the first two
streams, all systems require more power than those in the third
example. Similar to previous examples, the system using the
nonlinear MMSE-DFE receiver requires the least amount of
power. We also observe from Fig. 3 that the gap of the required
power between the system with the linear MMSE receiver
and the suboptimal scheme becomes smaller when the streams
have different QoS requirement. This is due to the fact that the
amount of performance gap between two algorithms depends
on the difference in the feasible regions of the optimization
problems (38)-(40) and (21)-(23) for two algorithms. When all
data streams have identical QoS constraints, such difference
is quite big. The feasible region difference becomes smaller
when each data stream has a different QoS constraint as in
this example1.

From Figs. 1-3, we find that the system using the MMSE-
DFE receiver requires less total transmission power than the
system with the linear MMSE receiver. A similar performance
difference can be expected if the QoS constraints are imposed
upon the rate/BER of each data stream. The reason is that
as we mentioned, the rate/BER of each stream can be directly

1As an intuitive explanation, for any q > 0, the difference between two
regions R1 = {(x1, x2)| 0 < x1 ≤ q, 0 < x2, x1 + x2 ≤ 2q} and R2 =
{(x1, x2)| 0 < x1 ≤ q, 0 < x2 ≤ q} is bigger than that of two regions
S1 = {(x1, x2)| 0 < x1 ≤ q/2, 0 < x2, x1 + x2 ≤ 3q/2} and S2 =
{(x1, x2)| 0<x1≤q/2, 0<x2≤q}.
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Fig. 3. Example 4: Total power versus MSE (q); N = 3, L = 3, q1 =
q/4, q2 = q/2, q3 = q.

represented as a function of the MSE of each stream, and thus,
the rate/BER constraint at each stream can be equivalently
converted to the MSE constraint at each stream. However,
if the QoS constraint is imposed upon the sum-rate of all
data streams, both systems require the same amount of total
transmission power. This is due to the fact that when the
sum-rate is used as the design metric, the optimal source
precoding matrix, the optimal relay amplifying matrices, and
the optimal feed-forward matrix W of the nonlinear MMSE-
DFE receiver jointly diagonalize the multi-hop MIMO relay
channel, and thus, the linear MMSE and the nonlinear MMSE-
DFE receivers have exactly the same performance.

From Figs. 1-3, we also see that both the system using
the linear MMSE receiver and the system with the nonlinear
MMSE-DFE receiver tremendously outperform the subopti-
mal scheme. However, the suboptimal scheme has a smaller
computational complexity than the former two schemes. Such
performance-complexity tradeoffs provide flexibility in practi-
cal MIMO relay systems.

V. CONCLUSIONS

We derived the optimal structure of source and relay matri-
ces for multi-hop MIMO relay systems with QoS constraints
using the linear MMSE receiver and the nonlinear MMSE-
DFE receiver at the destination node, respectively. The succes-
sive GP approach and the dual decomposition technique were
used to solve the optimization problem. We found that at the
same MSE level, the MIMO relay system using the nonlinear
MMSE-DFE receiver requires much less total transmission
power than the system with the linear MMSE receiver.

APPENDIX A
PROOF OF THEOREM 1

The following four lemmas are required to prove Theorem
1.

LEMMA 1 [19, 9.H.2]: For m N × N complex matrices
A1,A2, · · · ,Am, let B =

⊗m
i=1 Ai, then σb≺+(w) (σa1 ¯

σa2 ¯ · · · ¯ σam), where σb, and σai , i = 1, · · · ,m, denote
N × 1 vectors containing the singular values of B and Ai
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arranged in the same order, respectively, and ¯ denotes the
Schur (element-wise) product of two vectors.

LEMMA 2 [19, 9.B.1]: For a Hermitian matrix A with the
vector of its main diagonal elements d[A] and the vector of
its eigenvalues λ[A], it follows that d[A] ≺+ λ[A].

LEMMA 3 [19, 5.A.9.a]: For two vectors x and y with
x ≺+(w) y, there exists a vector u such that u ≤ x and
u ≺+ y.

LEMMA 4 [19, 9.H.1.h]: For two N ×N positive semidef-
inite matrices A and B with eigenvalues λa,i and λb,i,
i = 1, · · · , N , arranged in the same order, respectively, it
follows that tr(AB) ≥ ∑N

i=1 λa,iλb,N+1−i.
Now we set out to prove Theorem 1 by first considering the

constraint (11). Let us define

A1 = H1F1FH
1 HH

1 (77)
Ai = HiFi(Ai−1 + INi)F

H
i HH

i , i = 2, · · · , L (78)

and write Ai = UAi
ΛAi

UH
Ai

, i = 1, · · · , L, as the eigen-
decomposition of Ai, where ΛAi is an Nb × Nb diagonal
matrix containing all nonzero eigenvalues of Ai sorted in the
decreasing order for all i, and UAi

is the associated Ni+1×Nb

matrix of eigenvectors. From (77) and (78), we have

H1F1 = UA1Λ
1
2
A1

U0 (79)

HiFi = UAiΛ
1
2
Ai

Si(Ai−1 + INi)
− 1

2 , i = 2, · · · , L.(80)

where U0 is an Nb × Nb unitary matrix, Si, i = 2, · · · , L,
are Nb ×Ni semi-unitary matrices with SiSH

i = INb
. It will

be seen that the objective function (10) is invariant to U0 and
Si, i = 2, · · · , L. Substituting (79) and (80) into

X({Fi}) , H̄H
(
H̄H̄H + Cv̄

)−1
H̄ (81)

we have

X({Fi})

= UH
0 Λ

1
2
A1

UH
A1

L⊗

i=2

(
(Ai−1 + INi)

− 1
2 SH

i Λ
1
2
Ai

UH
Ai

)

×(AL + INL+1)
−1

2⊗

i=L

(
UAiΛ

1
2
Ai

Si(Ai−1 + INi)
− 1

2

)

×UA1Λ
1
2
A1

U0

= UH
0 Λ

1
2
A1

UH
A1

L⊗

i=2

(
UAi−1(ΛAi−1 + INb

)−
1
2 UH

Ai−1
SH

i

×Λ
1
2
Ai

UH
Ai

)
UAL(ΛAL + INb

)−1UH
AL

2⊗

i=L

(
UAiΛ

1
2
Ai

×SiUAi−1(ΛAi−1 + INb
)−

1
2 UH

Ai−1

)
UA1Λ

1
2
A1

U0 . (82)

Applying Lemma 1 to X({Fi}) in (82), we have

λ[X({Fi})]≺+(w)d
[
X̃

]
(83)

where X̃ is a diagonal matrix given by

X̃ , Λ
1
2
A1

L⊗

i=2

(
(ΛAi−1+ INb

)−
1
2 Λ

1
2
Ai

)
(ΛAL

+ INb
)−1

2⊗

i=L

(
Λ

1
2
Ai

(ΛAi−1+ INb
)−

1
2

)
Λ

1
2
A1

=
L⊗

i=1

(ΛAi(ΛAi + INb
)−1) . (84)

Applying the matrix inversion lemma to (9), the MMSE
matrix M({Fi}) can be written as

M({Fi}) = INb
−H̄H

(
H̄H̄H + Cv̄

)−1
H̄ = INb

−X({Fi}) .
(85)

From (83) and (85) we obtain

λ[M({Fi})] = λ[INb
−X({Fi})]≺+(w)d

[
INb

− X̃
]
. (86)

In (86), λ[INb
−X({Fi})] = d

[
INb

− X̃
]

is obtained at Si =
ΦUH

Ai−1
, i = 2, · · · , L, where Φ stands for an arbitrary Nb×

Nb diagonal matrix with unit-norm main diagonal elements,
i.e., |[Φ]i,i| = 1, [Φ]i,j = 0, i, j = 1, · · · , Nb, i 6= j. Without
affecting λ[M({Fi})], we choose Si = UH

Ai−1
, i = 2, · · · , L.

For any given {Fi}, there exists an Nb × Nb unitary
matrix UF1 such that UH

F1
X({Fi})UF1 is diagonal. In other

words, there exists F̃1 = F1UF1 such that the rotated
MMSE matrix M

(
F̃1,F2, · · · ,FL

)
is diagonal. Using F̃1

and UF1 , the original MMSE matrix M({Fi}) is equal to
UF1M

(
F̃1,F2, · · · ,FL

)
UH

F1
. The objective function (10) is

same for F̃1 and F1, and can be written as

P = tr
(
F̃1F̃H

1

)
+ tr

(
F2(H1F̃1F̃H

1 HH
1 + IN2)F

H
2

)

+
L∑

i=3

tr

(
Fi

(
i−1∑

l=2

( l⊗

k=i−1

(HkFk)H1F̃1F̃H
1 HH

1

i−1⊗

k=l

(
FH

k HH
k

))
+ INi

)
FH

i

)
. (87)

Now the problem (10)-(11) can be equivalently written as

min
UF1 ,F̃1,F2,··· ,FL

P (88)

s.t. X
(
F̃1,F2, · · · ,FL

)
is diagonal (89)

d
[
UF1M

(
F̃1,F2, · · · ,FL

)
UH

F1

]
≤q . (90)

Note that the steps of (87)-(90) are also used in [15] for single-
hop MIMO communication systems. From Lemma 2 we know
that

d
[
UF1M

(
F̃1,F2, · · · ,FL

)
UH

F1

]

= d[M({Fi})]≺+ λ[M({Fi})] . (91)

Based on Lemma 3 and (90), (91), a matrix UF1 satisfying
the QoS constraint (90) can be found if and only if

q ≺+(w) λ[M({Fi})] . (92)

Interestingly, combining (86) and (92), we find that for all
{Fi} that satisfy (92), the following inequality also holds

q≺+(w)d
[
INb

− X̃
]
. (93)
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In other words, (93) has a relaxed feasible region than that
of (92). Since (92) is equivalent to (90), we can replace the
constraint (90) by (93) without increasing the value of the
objective function (88).

Now we set out to consider the objective function (88).
First, we introduce some notations: for i = 1, · · · , L, ri ,
rank(Hi), Ui , [Ui,ri

,Ui,r̄i
], where Ui,ri

and Ui,r̄i
contain

the left singular vectors of Hi associated with the nonzero and
zero singular values of Hi, respectively, Σi,ri

is a diagonal
matrix containing the nonzero singular values of Hi, Σi,1

contains the largest Nb singular values of Hi sorted in the
same order as the diagonal elements of ΛAi . We also define
F̂i , VH

i Fi, i = 1, · · · , L. Substituting the SVD of H1 in
(12) into (79) and left multiplying by UH

1 on both sides, we
have[

Σ1,r1 0r1×(N1−r1)

0(N2−r1)×r1 0(N2−r1)×(N1−r1)

]
F̂1 = UH

1 UA1Λ
1
2
A1

U0 .

(94)
Obviously, (94) is true if and only if UH

1,r̄1
UA1 =

0(N2−r1)×Nb
and F̂1 has the following minimum norm so-

lution

F̂1 =
[
Σ−1

1,r1
0r1×(N1−r1)

]T
UH

1,r1
UA1Λ

1
2
A1

U0 . (95)

Similar to (94) and (95), from (80), we have that for i =
2, · · · , L, UH

i,r̄i
UAi = 0(Ni+1−ri)×Nb

and

F̂i =
[
Σ−1

i,ri
0ri×(Ni−ri)

]T

×UH
i,ri

UAiΛ
1
2
Ai

Si(Ai−1 + INi)
− 1

2 . (96)

Since F̃1, Fi, i = 2, · · · , L, and F̂i, i = 1, · · · , L, result
in the same objective function (88), to determine UA1 in (95)
and UAi in (96), i = 2, · · · , L, we substitute (95) and (96)
into the objective function (88) and have

P =
L∑

i=1

tr
(
Σ−1

i,ri
UH

i,ri
UAiΛAiU

H
Ai

Ui,riΣ
−1
i,ri

)
(97)

We note that the transmission power (97) is invariant to
U0 and Si, i = 2, · · · , L. Using Lemma 4, we know
that under rank(Fi) = Nb, (97) is minimized if and only
if UH

Ai
Ui,ri = [Φ,0Nb×(ri−Nb)], i = 1, · · · , L, and the

minimum is
∑L

i=1 tr(ΛAiΣ
−2
i,1 ). Without loss of generality,

we choose Φ = INb
. Therefore, we have UAi = Ui,1,

i = 1, · · · , L. From (95) we find that

F1 =V1

[
Σ−1

1,1Λ
1
2
A1

,0Nb×(N1−Nb)

]T

U0 =V1,1Σ−1
1,1Λ

1
2
A1

U0 .

(98)
Note that U0 will be determined later. Together with Si =
UH

Ai−1
, we obtain from (96) that

Fi = Vi,1Σ−1
i,1Λ

1
2
Ai

(ΛAi−1 + INb
)−

1
2 UH

i−1,1 i = 2, · · · , L .
(99)

Thus, the optimal structure of Fi, i = 2, · · · , L, is given by
(13) with Λi = Σ−1

i,1Λ
1
2
Ai

(ΛAi−1 + INb
)−

1
2 .

Finally, substituting (98) and (99) back into (81), we have
X({Fi}) = UH

0 X̃U0. Thus we obtain X
(
F̃1,F2, · · · ,FL

)
=

UH
F1

UH
0 X̃U0UF1 . In order for the constraint (89) to

hold, U0 should be UH
F1

. From (98), we obtain F1 =

V1,1Σ−1
1,1Λ

1
2
A1

UH
F1

. Thus we have proved that the optimal

structure of F1 is as in (13) with Λ1 = Σ−1
1,1Λ

1
2
A1

. Conse-
quently, using the optimal structure of Fi, i = 1, · · · , L, X̃ in
(84) can be represented as

X̃ = Dh(D2
h + Dc + INb

)−1Dh (100)

where Dh and Dc are Nb × Nb diagonal matrices with the
kth diagonal elements k = 1, · · · , Nb, given by [Dh]k,k =∏L

l=1 λl,kσl,k and [Dc]k,k =
∑L

l=2

∏L
i=l λ

2
i,kσ2

i,k, respec-
tively.

APPENDIX B
PROOF OF THEOREM 2

The following two lemmas are required to prove Theorem 2.
LEMMA 5 [19, 9.H.1.b]: For m N × N complex matrices

A1,A2, · · · ,Am, let B =
⊗m

i=1 Ai, then σb≺×(σa1¯σa2¯
· · · ¯σam

), where σb, and σai
, i = 1, · · · ,m, are defined in

Lemma 2.
LEMMA 6 [10]: For two N×1 vectors x and y, if x ≺× y,

then {(1− xi)−1}i=1,··· ,N ≺×(w) {(1− yi)−1}i=1,··· ,N .
Let us introduce the SVD F1 = ŨF1Λ̃F1Ṽ

H
F1

, where the
dimensions of ŨF1 , Λ̃F1 , ṼF1 are N1 × N1, N1 × Nb,
Nb × Nb, respectively. We assume that the main diagonal
elements of Λ̃F1 are arranged in the decreasing order. Since
rank(F1) = M , we also have F1 = UF1ΛF1V

H
F1

, where
UF1 =

[
ŨF1

]
1:M

, VF1 =
[
ṼF1

]
1:M

, ΛF1 =
[
Λ̃F1

]
1:M,1:M

.
From (44) we have

G =

[
C− 1

2
v̄ H̃ŨF1Λ̃F1Ṽ

H
F1

INb

]

=
[
INL+1 0NL+1×Nb

0Nb×NL+1 ṼF1

][
C− 1

2
v̄ H̃ŨF1Λ̃F1

INb

]
ṼH

F1

where H̃ =
⊗2

i=L(HiFi)H1. Let us write the generalized
triangular decomposition (GTD) [28] of Ψ as

Ψ ,
[
C− 1

2
v̄ H̃ŨF,1Λ̃F1

INb

]
= QΨRPH

Ψ (101)

where QΨ is an (NL+1 + Nb)×Nb semi-unitary matrix with
QH

ΨQΨ = INb
, and PΨ is an Nb×Nb unitary matrix. It can be

shown from [28] that (101) holds if and only if d[DR] ≺×σΨ,
where σΨ is a column vector containing singular values of Ψ.
Without affecting the power constraints, we take ṼF1 = PH

Ψ ,
or equivalently

VF1 =
[
PH

Ψ

]
1:M

. (102)

Then we can write the QR decomposition of G as

G = QR, Q =
[
INL+1 0NL+1×Nb

0Nb×NL+1 PH
Ψ

]
QΨ . (103)

Because Ψ and G have the same singular values, from (101)
and (103) we know that the constraint (46) can be equivalently
written as

d[DR] ≺×σG . (104)
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Applying Lemma 5 to (82) and taking into account that
rank(Fi) = M , i = 1, · · · , L, we obtain that

λX≺×
[(

d
[
X̃

])T
,01×(Nb−M)

]T

(105)

where λX is a column vector containing all eigenvalues of X.
Applying Lemma 6 to (105), we have

{(1− λX,i)−1}i=1,··· ,Nb

≺×(w)

[{
(1− x̃i,i)−1

}T

i=1,··· ,M ,1Nb−M

]T

(106)

where λX,i denotes the ith eigenvalue of X and x̃i,i denotes
the (i, i)-th element of X̃. From (44), we can write

GHG = INb
+ H̄HC−1

v̄ H̄

=
[
INb

− H̄H
(
H̄HH̄ + Cv̄

)−1
H̄

]−1

= (INb
−X)−1 (107)

where the matrix inversion lemma is applied to obtain the
second equation. From (107), we find that

{
σ2

G,i

}
i=1,··· ,Nb

={
(1 − λX,i)−1

}
i=1,··· ,Nb

, where σG,i is the ith singular
value of G. Using (106) we obtain

{
σ2

G,i

}
i=1,··· ,Nb

≺×(w)[{
(1− x̃i,i)−1

}T

i=1,··· ,M ,1Nb−M

]T

. Moreover, since (104) is
equivalent to d

[
D2

R

] ≺×
{
σ2

G,i

}
i=1,··· ,Nb

, we have

d
[
D2

R

] ≺×(w)

[{
(1− x̃i,i)−1

}T

i=1,··· ,M ,1Nb−M

]T

. (108)

We would like to mention that for all DR and {Fi} that satisfy
(104), inequality (108) also holds. In other words, (108) has a
relaxed feasible region than that of (104). Since (104) is equiv-
alent to (46), we can replace the constraint (46) by (108) with-
out increasing the value of the objective function (45). More-

over, from (82) we see that λX =
[(

d
[
X̃

])T
,01×(Nb−M)

]T

holds at Si = ΦUH
Ai−1

, i = 2, · · · , L. Without affecting the
objective function (45), we choose Si = UH

Ai−1
, i = 2, · · · , L.

Now let us consider the objective function (45). In a way
similar to (94), (95), (97), (98), by solving (79), we obtain the
optimal F1 as

F1 =V1

[
Σ−1

1,1Λ
1
2
A1

,0M×(N1−M)

]T

U0 =V1,1Σ−1
1,1Λ

1
2
A1

U0 .

Note that U0 does not affect λX . In fact, U0 should be chosen
as VH

F1
in (102) such that the QR decomposition of G in (103)

holds. Thus F1 = V1,1Σ−1
1,1Λ

1
2
A1

VH
F1

, and we have proved that

the optimal structure of F1 is as in (48) with ∆1 = Σ−1
1,1Λ

1
2
A1

.
In a way similar to (96), (97), (99), we obtain the optimal Fi,
i = 2, · · · , L as (99). Thus, we have proved that the optimal
structure of Fi is as in (48) with ∆i = Σ−1

i,1Λ
1
2
Ai

(ΛAi−1 +
IM )−

1
2 .

The constraint (47) is equivalent to q−1 ≤ d[D2
R], which

indicates that q−1 ≺×(w) d[D2
R]. From (108) we have

q−1 ≺×(w)

[{
(1− x̃i,i)−1

}T

i=1,··· ,M ,1Nb−M

]T

. (109)

Finally, by applying (48) to x̃i,i in (109) we obtain (50).
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