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Abstract

This paper explores techniques for multiple views target
tracking in a maritime environment using a mobile surveil-
lance platform. We utilise an omnidirectional camera to
capture full spherical video and use an Inertial Measure-
ment Unit (IMU) to estimate the platform’s ego-motion.
For each target a part of the omnidirectional video is ex-
tracted, forming a corresponding set of virtual cameras.
Each target is then tracked using a dynamic template match-
ing method and particle filtering. Its predictions are then
used to continuously adjust the orientations of the virtual
cameras, keeping a lock on the targets. We demonstrate the
performance of the application in several real-world mar-
itime settings.

1. Introduction
In high-risk, hazardous, inaccessible, or remote areas

surveillance systems play an important role to minimise
security threats. Fixed and pan-tilt-zoom (PTZ) cameras,
which have been traditionally used for surveillance, have
only limited fields of view (FOV) at any one time thus re-
quire multiple installations to cover larger areas. Using mo-
bile platforms for field surveillance minimises the need for
significant infrastructure. Furthermore, in remote or in-
accessible areas, their use is essential for full situational
awareness as they are able to navigate around obstacles and
cover areas where the line of sights are restricted. Coastal
and port surveillance can benefit from mobile maritime plat-
forms as they are capable of exploring the dynamic and fast
changing environment specific to this type of area. Once
potential security threats have been identified, their tracking
and mitigation is essential to ensure safety and security. As
there can easily be more than one object of interest, the use
of omnidirectional cameras is advantageous as they provide
continuous 360◦ video footage, which fixed or PTZ cam-
eras cannot match. When using omnidirectional cameras,
the correspondence between the cameras needs to be fused
into a single geometric domain. A natural representation is
the projection onto a unit sphere with the omnidirectional

Figure 1. Three Virtual Cameras extracted from the omnidirec-
tional camera video. Note that the virtual camera images look hor-
izontally flipped as they represent the view from within the sphere.

camera situated in the centre of the sphere [1]. With this, it
is possible to extract a multitude of target regions of inter-
est. This effectively forms a set of virtual cameras (Figure
1) that can be used to create focused views onto target ob-
jects.
On a mobile maritime platform the intended movement is
overlaid by disturbances caused by swell and waves. The
overall motion of the platform is called ego-motion. Due to
its erratic characteristics, ego-motion is not predictable and
hence needs to be measured. The rotational component can
be measured effectively using gyroscopes contained in an
Inertial Measurement Unit (IMU), which is rigidly attached
to the camera system. Applying the estimated change of
orientation to the set of virtual cameras results in an rota-
tion stabilised view for each camera. However, additional
effort is necessary to create focused views: the calibration
between camera system and IMU needs to be taken into
account [2], the translational component of the platform’s
ego-motion needs to be estimated, and finally, the trajectory
of the target objects needs to be computed. This way, the
operator is provided with a stabilised view onto the target
objects and assisted in evaluating the potential threat.

In this paper, we use the same camera system, equipped
with an omnidirectional camera and an IMU, as in [3] on
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a mobile surveillance platform. We utilise the platform for
multi view target tracking in a maritime environment. For
each target object, we extract a region with limited FOV
from the omnidirectional video, forming a set of virtual
cameras. We make use of the IMU to form estimates of the
platform’s ego-motion. We then use a particle filtered tem-
plate matching approach to track target objects in a global
coordinate space and continuously update the orientations
of the virtual cameras to keep each of the targets in view.
The probabilistic approach provides a suitable framework to
combine the measurements from the different sensors over
time and makes the tracker robust to noise, occlusions, and
synchronisation issues.

This paper is organised as follows: section 2 discusses
related work, whilst in section 3 notation and coordinate
systems are introduced and the tracking system is described.
The experimental setup and the results are discussed in sec-
tion 4 with conclusions given in section 5.

2. Related Work

Being able to selectively choose where to look attracted
much attention in the late 1980s and early 1990 and went
under the general term Active Vision [4]. Many systems
were built using motor-powered and servo-controlled cam-
eras, but it was recognised that high performance was
needed for such systems to function, e.g. a rotational speed
of 500◦s−1 and an acceleration of 5000◦s−2 [5], which was
expensive to obtain using hardware. Research has contin-
ued in this field as PTZ cameras became widely available.
A tracking system that uses a PTZ camera has been devel-
oped by Kumar et al. [6], their system mechanically adjusts
the orientation of the camera platform according to the po-
sition of the target object. As a change of orientation might
cause a second target to drop out of view, the system is not
capable of robustly tracking multiple objects. A tracking
system that uses a wide FOV to detect moving objects and
a high resolution PTZ camera with a narrow FOV to per-
form the tracking was reported by Bashir and Porikli [7].
In [8], Kang et al. demonstrated a system that fuses video
streams of stationary and PTZ cameras using an adaptive
background model for tracking.
Using an omnidirectional camera overcomes the mechani-
cal and FOV constraints as the camera does not have any
moving parts that restrict the angular velocity and provides
instantaneous 360◦ view. From the omnidirectional view, a
virtual camera representing a region of interest can be ex-
tracted. This concept was used by [3] to create a stabilised
window showing a region of interest within an omnidirec-
tional video, while the camera is subject to significant ego-
motion. Sun et al. [9] used a virtual camera to detect and
track a person in an indoor environment using a in a single
wide angle panoramic camera.

Note that the focus of this paper is the tracking of target ob-
jects using multiple views. However, multiple target track-
ing algorithms like [10] or [11] could be applied to the pre-
sented camera system as well.

3. System Description
We utilise the Ladybug 2, an omnidirectional camera

manufactured by Point Grey Research and an IMU, MTi,
manufactured by Xsens. The Ladybug 2 camera consists of
six individual cameras each capturing 1024× 768 pixels at
30 frames per second. Five cameras are horizontally aligned
in a ring, with the sixth pointing upwards. In this setup the
system can capture about 80% of the whole sphere. It is pre-
calibrated, and the geometry between the cameras is pro-
vided by the manufacturer. This allows for fast and precise
spherical mapping, negating the need to register all images.
The MTi IMU has acceleration, gyroscopic, and magnetic
sensors that are fused using a hardware-based Kalman fil-
ter. It outputs calibrated measurements of acceleration and
angular velocity, as well as a drift-free 3D orientation with
a static accuracy of ≤ 1.0◦, at a maximum sample rate of
100Hz.

3.1. Notation

The following notation is used in this paper: pA denotes a
point in a coordinate system A, pA the local vector from the
origin of A towards pA. The 3 × 3 rotation matrix RA

B de-
notes the orientation of A w.r.t. another coordinate system
B. The 3× 1 vector tA

B is the translational offset of A w.r.t.
B. Both are combined using homogeneous coordinates re-
sulting in the 4× 4 transformation matrix TA

B

TA
B =

(
RA

B tA
B

0 1

)
. (1)

TB
A subsequently defines the inverse transformation

(TA
B)−1.

3.2. Flat Earth

The shape of earth is unique. Thus, exact computations on
the earth’s surface can be complex. In this paper, we are
dealing with close range distances within the line of sight,
we adopt a flat earth approximation. The vicinity of a fixed
reference point (Φ0 , λ0) on the earth’s surface can be ap-
proximated using a planar projection, resulting in a map-
ping where the circles of latitude and the lines of longitude
are equidistant, straight and cross at right angles [12]. As
the circumference of the circles is dependent on Φ0, the
length of a radian r′(Φ0) and the radius of the curvature
r′′(Φ0) are computed as functions of the reference latitude
[12]. For the parameters for the equatorial radius and flat-
tening the earth, the World Geodetic System (WGS84) [13]
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Figure 2. The global coordinate system G represents an upright
unit-sphere projection at the current position of the mobile plat-
form within the earth coordinate system E. The orientation of the
sensor coordinate system w.r.t the global coordinate system G at
any one time step t, as measured by the IMU, is denoted as RS

G,t,
while camera C and sensor S coordinate systems are rigidly con-
nected, denoted by TC

S . Note that all coordinate systems are right-
handed.

is used. This maps a point (Φ , λ) at sea level altitude into
local Cartesian coordinates (x , y , z)xy

z

 =

r′(Φ0) 0
0 r′′(Φ0)
0 0

(Φ− Φ0

λ− λ0

)
. (2)

3.3. Coordinate Systems

The following five coordinate systems (Figures 1 and 2) are
used in this paper:

1. The earth coordinate system (E) uses the model of the
flat earth as described in section 3.2, with the origin
located at the reference point (Φ0 , λ0).

2. The global coordinate system (G) is a projection of
earth coordinates (Φ , λ) onto the unit sphere at the
current position (Φt=0 , λt=0)→ pG

t=0 of the platform.
The y-axis of G is aligned with the line of longitude at
(Φt=0 , λt=0) and pointing towards North.

3. The sensor coordinate system (S) is defined w.r.t. G. Its
orientation is measured by the IMU at every time step
t, denoted as the homogeneous transformation TS

G,t.

4. The camera coordinate system (C) is defined with the
origin in the centre of the omnidirectional camera. The
transformation of C w.r.t. S is denoted as TC

S . Note

that TC
S is constant as the camera and IMU are rigidly

connected; we use the method of [2] to compute an
estimate.

5. The virtual camera coordinate systems (V1...N ), where
N is the number of virtual cameras used, are defined
at the centre of each virtual camera w.r.t. C. TVn

C,t de-
scribes the transformation from C to the virtual camera
Vn at time step t. See section 3.4.

The transformation of a point pC into pG at time step t is
thus given as

pG = TG
S,t TS

C pC. (3)

3.4. Virtual Camera

A virtual camera (Figure 1) is a sub-window extracted from
a full spherical view. The virtual camera is defined by its
orientation RVn

C,t w.r.t. C and the FOV αn,t at time step
t. Applying the perspective projection with z1 and z2 as
the projection’s far and near clipping respectively yields the
transformation from C to the virtual camera coordinates Vn

as TVn

C,t at time step t

TVn

C,t =


cot αn,t

2 0 0 0
0 cot αn,t

2 0 0
0 0 z1+z2

z2−z1
2 z1 z2
z2−z1

0 0 −1 0

 (
RVn

C,t 0
0 1

)
.

(4)

A point pVn can thus be transformed into global coordinates
as

pG = TG
S,t TS

C TC
Vn,t pVn . (5)

3.5. Particle Filter Framework

We make use of a particle filter framework [14] to track
the target objects in global coordinates G and use the
predicted position pG

t|t−1 to adjust the orientation of the
virtual camera (see section 3.6). The state-space model
of the particle filter can be described with the state-
vector x = (x , y , z , ẋ , ẏ , ż)T containing the global 3D-
projection onto the unit sphere and velocity of the target
object.
The Ladybug 2 camera does not possess a hardware trigger
interface, thus data from the camera and other sensors are
not exactly synchronised. Following [3], we model this as
uncertainty of the position estimation.

3.6. Object Tracking

We manually initialise the tracking process by creating
virtual cameras Vn=1..N centred on each of the pC

n=1..N tar-
get objects and extract image templates Jn=1..N . The initial
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orientations RVn=1..N

C,t=0 can be computed using Rodrigues’
rotation formula

RVn=1..N

C,t=0 = RΩ̃(β) = I3 + sinβ · Ω̃ + (1− cosβ) · Ω̃2,

(6)

where the skew symmetric matrix Ω̃ is defined as

Ω̃ =

 0 −ω̃3 ω̃2

ω̃3 0 −ω̃1

−ω̃2 ω̃1 0

, with ω̃ = uC
0 × pC

n,t=0,

(7)

and β is the angle between the C-unit vector and the centre
of the virtual camera

β = ‖ uC
0 × pC

t=0 ‖2. (8)

In subsequent frames, t + 1, we compute for each target a
normalised correlation coefficient between the correspond-
ing template Jn and the image of the virtual camera Vn, as
described in [15]. For the search space, we select the region
of the predicted position of the target object within the vir-
tual camera. The position of the match is then transformed
into global coordinates, in which the required change of
orientation for the virtual camera is computed to keep the
target in the centre of the view. In global coordinates, the
change of position between frames can be described as

pG
n,t+1|t = RΩ̃ pG

n,t|t, (9)

where RΩ̃ can be computed using eqs. (6) with the param-
eters for the skew symmetric matrix (7)

ω̃ = pG
n,t+1|t × pG

n,t|t (10)

and

β = ‖ pG
n,t+1|t × pG

n,t|t ‖2. (11)

This results in the updated orientation for each virtual cam-
era as

RVn

C,t+1|t = RΩ̃ RVn

C,t|t. (12)

To take the change of perspective or environmental condi-
tions into account, we update Jn, once the matching quality
has dropped below a threshold of 95%, which proved to
be a resonable value. The new template is created at the
predicted position, pVn

n,t+1|t, thus this method is robust to
outlier measurements at the update time step.

4. Experiments
The camera system, consisting of an omnidirectional

camera rigidly attached to the IMU and GPS receiver, was

mounted at height of about 2.5m at the stern of a 6m boat.
We captured sequences with full resolution omnidirectional
video data at 30fps, inertial data sampled at 90Hz, and GPS
data sampled at 1Hz. The goal of the experiments was
to qualitatively evaluate the stability and robustness of the
multi view target tracking using the camera system in a real-
world scenario. In each sequence, we tracked the position
of the recording platform using the GPS. We created a vir-
tual camera out of the omnidirectional video for each of the
target objects, as described in section 3, to keep the target
objects in the centre of the view. Figure 3 shows selected
frames of the raw omnidirectional video while the record-
ing platform is subject to substantial ego-motion as well as
two virtual cameras tracking a stationary and a moving tar-
get respectively.
For visualisation, we geo-register the recording platform’s
trajectory onto a satellite image. We then present the results
of the tracker as the orientation of the virtual cameras as
lines of bearing from the current position of the recording
platform. For a static target object, the lines of bearing in-
tersect at the position of the target object, while in case of
a moving target, local intersections can aid in position es-
timation. As a reference, the position of the target objects
(and their trajectory, in case of a moving target object) has
been manually estimated as we do not have GPS-position
data for the target objects.
The following three experiments will be discussed in the
following:

1. A 35 second recording in the bay with an average
speed of 6.1ms−1 while keeping track of a stationary
and a moving boat (Figure 4).

2. A 60 second recording in the marina with an average
speed of 2.5ms−1 while tracking a moored up ship and
a moving ship exiting the marina (Figure 5).

3. A 60 second recording near the port facility with an
average speed of 6.4ms−1 while tracking two moored
ships (Figure 6).

In the first recording, we selected a stationary and a moving
boat as target objects. The recording platform was navi-
gated between the boats and made a turn after passing the
moving boat. The trajectory of the platform and the manu-
ally estimated positions of the two boats are shown in Figure
4. A frame of the raw omnidirectional image and the images
of the virtual cameras foveating towards the target objects
are shown in Figure 3. In the raw omnidirectional image,
the distortions, caused by the ego-motion of the recording
platform are clearly visible, while the virtual camera views
are stabilised onto the targets. At each time instance, we
compute bearings out of the orientation of the virtual cam-
eras and plot it as a ray emitted by the recording platform.
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(a) 0 seconds (b) 5 seconds (c) 10 seconds (d) 15 seconds

(e) 20 seconds (f) 25 seconds (g) 30 seconds (h) 35 seconds

Figure 3. Raw panoramic image (bottom) and stabilised virtual cameras tracking moving (left) and stationary boat (right) simultaneously.

Given that the virtual camera keeps the target object cen-
tred in the image, the point of intersection of the bearings
is a measurement on the quality of the tracker. Figure 4(a)
shows the bearings intersecting at the position of the station-
ary boat, and Figure 4(b) shows the bearings for the moving
boat. Note that as the boat is moving, the rays do not inter-
sect in a single point, but form a path of local intersections.

The recording platform was moving slowly in the second
recording and due to the sheltered marina, only moderate
disturbances were present. We selected a moored ship and
a ship exiting the marina as target objects. The trajectory of
the recording platform and the bearings towards both targets
are shown in Figure 5. While the rays of bearing towards
the moored ship intersect at the actual position of the target
object, the intersection of rays towards the moving ship are
much closer than the actual position of the ship, indicating
that the ship is in fact moving.

In the third recording, two moored ships near a port site
were tracked. Due to no speed restrictions in that area, the
recording platform was navigated at a higher speed. Fig-
ure 6 shows the trajectory of the platform and the rays of
bearings towards the target objects. Because both targets
are stationary, the rays of bearing intersect at the actual po-
sitions of the ships, indicating that the orientations of the
virtual cameras was computed correctly to keep the target
objects in the centre of the view.

5. Conclusion

In this paper, we demonstrated a multiple view camera
system consisting of an omnidirectional camera, an IMU,
and a GPS for a maritime surveillance platform. We cap-
tured several data sequences in real-world maritime scenar-
ios. In a qualitative evaluation, we have shown that the
probabilistic integration of IMU and omnidirectional cam-
era provides a robust multi target tracking system that is
able to compensate for the erratic ego-motion of a maritime
platform and to robustly track multiple maritime targets.
Our future work includes an extended quantitative evalua-
tion using multiple GPS equipped target objects and the de-
ployment of the camera system on a dedicated mobile mar-
itime surveillance platform.

Supplementary Material

Visualisiation of the recorded footage in Google Earth
and videos demonstrating the tracking are available on-
line at http://www.computing.edu.au/˜14133369/
multiviewtracking.
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(a) Trajectory of the platform (yellow) and bearings (white) towards
stationary target based on orientation of the virtual camera with the im-
age template of the target shown on the right.

(b) Trajectory of the platform (yellow) and bearings (white) towards
moving target based on orientation of the virtual camera with the image
template of the target shown on the right.

Figure 4. Bay. Trajectory of the platform and bearings towards
the moving and stationary target objects. The position of the sta-
tionary target, 4(a), and the trajectory of the moving target, 4(b),
have been registered manually. Note that 4(a) and 4(b) show the
same frame and time instance, the visualisation has been broken
into two figures for clarity.

Figure 5. Marina. Trajectory of the platform (yellow path) and
bearings (white lines) towards the stationary (red ship) and moving
(black ship) target objects. The position of the stationary target and
the trajectory of the moving target have been registered manually.

Figure 6. Port Facility. Trajectory of the platform (yellow path)
and bearings (white lines) towards the stationary target objects.
The positions of the stationary targets have been registered manu-
ally.
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