
NOTICE: this is the author’s version of a work that was 
accepted for publication in Journal of Constructional Steel 
Research. Changes resulting from the publishing process, such 
as peer review, editing, corrections, structural formatting, and 
other quality control mechanisms may not be reflected in this 
document. Changes may have been made to this work since it 
was submitted for publication. A definitive version was 
subsequently published in Journal of Constructional Steel 
Research, Vol. 94 (2014). DOI: 10.1016/j.jcsr.2013.11.011 
 



 

A NEW MODEL BASED ON EVOLUTIONARY COMPUTING FOR PREDICTING 

ULTIMATE PURE BENDING OF STEEL CIRCULAR TUBES 

 

Mohamed A. Shahin
†
 

BSc, MSc, PhD, MASCE, FIEAust. 

Associate Professor, Department of Civil Engineering, Curtin University,  

Perth WA, Australia 

Tel: +61-8-9266 1822; Fax: +61-8-9266 2681 

E-mail: m.shahin@curtin.edu.au 

 

 

 

Mohamed F. Elchalakani 

BSc, MSc, PhD, MIEAust, CPEng 

Faculty Civil Engineering Department, Higher College of Technology, Dubai, UAE   

Tel: +971-4-4038 544; Fax: +971-4-3260 303 

E-mail: mohamed.elchalakani@hct.ac.ae 

 

 

†
 Correspondence to: Department of Civil Engineering, Curtin University,  

GPO Box U1987, Perth, WA 6845, Australia 

E-mail: m.shahin@curtin.edu.au 

 

 

 

Submitted to: Journal of Constructional Steel Research 

 

 

 

mailto:m.shahin@curtin.edu.au
mailto:mohamed.elchalakani@hct.ac.ae
mailto:m.shahin@curtin.edu.au


2 

 

A new model based on evolutionary computing for predicting ultimate pure 

bending of steel circular tubes 

 

Mohamed A. Shahina, and Mohamed F. Elchalakanib 

a
Department of Civil Engineering, Curtin University, Perth, WA 6845, Australia 

b
Faculty Civil Engineering Department, Higher College of Technology, Dubai, UAE 

 

ABSTRACT 

In this study, the feasibility of using evolutionary computing for modelling ultimate pure 

bending of steel circular tubes was investigated.  The behaviour of steel circular tubes under 

pure bending is complex and highly non-linear, and the literature has a number of solutions, 

most of which are difficult to use in routine design practice as they do not provide a closed-

form solution.  This work presents a new approach, based on evolutionary polynomial 

regression (EPR), for developing a simple and easy-to-use formula for prediction of ultimate 

pure bending of steel circular tubes. The EPR model was calibrated and verified using a large 

database that was obtained from the literature and comprises a series of 104 pure bending 

tests conducted on fabricated and cold-formed tubes.  The predicted ultimate pure bending of 

steel circular tubes using this model can be obtained from a number of inputs including the 

tube thickness, tube diameter, steel yield strength and modulus of elasticity of steel.  A 

sensitivity analysis was carried out on the developed EPR model to investigate the model 

generalisation ability (or robustness) and relative importance of model inputs to its output. 

Predictions from the EPR model were compared with those obtained from artificial neural 

network (ANN) models previously developed by the authors, as well as most available codes 

and standards.  The results indicate that the EPR model is capable of predicting the ultimate 

pure bending of steel circular tubes with a high degree of accuracy and outperforms most 
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available codes and standards.  The results also indicate that the performance of the EPR 

model agrees well with that of the previously developed ANN models.  It was also shown that 

the EPR model was able to learn the complex relationship between the ultimate pure bending 

and most influencing factors, and render this knowledge in the form of a simple and 

transparent function that can be readily used by practising engineers.  The advantages of the 

proposed EPR technique over the ANN approach were also addressed. 

   

Keywords: Evolutionary polynomial regression; Steel circular tubes; Ultimate capacity; Pure 

bending 
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1. Introduction 

 Circular hollow steel tubes have good energy absorption characteristics under pure 

bending, thus, have been used in several large-scale engineering applications such as offshore 

pipelines and platforms; chemical and nuclear power plants; and land-based pipelines.  The 

deformation of circular tubes under bending exhibits significant changes to their cross section 

profile along the tube length through what is known as ovalisation [1, 2].  This phenomenon 

is highly non-linear and makes the behaviour of circular tubes under pure bending very 

complex.  An accurate prediction of the ultimate capacity of steel circular tubes under pure 

bending using the conventional analytical solutions requires rigorous mathematical 

procedures that are difficult to achieve from the pragmatic point of view.  Most available 

methods for predicting the ultimate pure bending of circular tubes [3-7] incorporate several 

assumptions to simplify the problem and to make it amenable to a solution, which in turn, 

affects the prediction accuracy.  In this respect, artificial intelligence (AI) techniques such as 

artificial neural networks (ANNs) and evolutionary polynomial regression (EPR) are more 

efficient, as they do not need incorporation of any assumptions or simplifications. Unlike 

most available statistical methods, AI techniques do not need predefined mathematical 

equations of the relationship between the model inputs and corresponding outputs and rather 

mainly use the data to determine the structure of the model and unknown model parameters, 

enabling the limitations of most existing modelling techniques to be overcome.   

In a previous paper by the authors published at the same journal [8], ANNs were 

successfully used to develop ANN-based models for predicting the ultimate pure bending of 

steel circular tubes.  However, ANNs have the advantage that the obtained network structure 

is usually complex as the acquired knowledge is represented in the form of a set of weights 

and biases that are difficult to interpret; thus, ANNs are always criticised of being black boxes 

[9].  Due to their lack of ability to provide insights of how model inputs affect outputs, ANNs 
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neither consider nor explicitly explain the underlying physical processes of the problem at 

hand. Consequently, ANNs usually fail to give a transparent function that relates the inputs to 

outputs, making it difficult to understand the nature of the input-output relationships that are 

derived [10].  The main objective of the current work is to explore the feasibility of utilising a 

relatively new AI technique, i.e. evolutionary polynomial regression (EPR), for developing an 

accurate, simple and transparent model for prediction of the ultimate pure bending of steel 

circular tubes.  The predictive ability of the developed EPR model was examined by 

comparing its results with experimental data, and with those obtained from the ANN models 

previously developed by the authors as well as most available codes and standards.   

Despite the fact that the EPR is similar to ANNs in the sense that both techniques are 

based on observed data (i.e. data driven approaches); however, unlike ANNs, EPR can return 

a simple mathematical structure that is symbolic and usually uncomplicated [11].  The nature 

of the obtained EPR models permits global exploration of expressions, which provides 

insights into the relationship between the model inputs and corresponding outputs, i.e. allows 

the user to gain additional knowledge of how the system performs.  An additional advantage 

of EPR over ANNs is that the structure and network parameters of ANNs (e.g. number of 

hidden layers and their number of nodes, transfer functions, learning rate, etc.) should be 

identified a priori and are usually obtained using ad hoc, trial-and-error approaches.  

However, the number and combination of terms, as well as the values of EPR modelling 

parameters, are all evolved automatically during model calibration.  At the same time, the 

prior physical knowledge based on engineering judgment or human expert can be 

incorporated into EPR to make hypotheses on the elements of the objective functions and 

their structure, enabling refinement of the final models.   
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2. Overview of evolutionary polynomial regression 

Evolutionary polynomial regression (EPR) is a hybrid regression technique that is 

based on evolutionary computing which was developed by Giustolisi and Savic [12].  In 

recent years, EPR has been applied successfully to some problems in civil engineering [e.g. 9, 

13, 14] and have shown high potential.  It constructs symbolic models by integrating the 

soundest features of numerical regression, with genetic programming and symbolic regression 

[15].  This strategy provides the information in symbolic form expressions, as usually defined 

in the mathematical literature.  The following two steps roughly describe the underlying 

features of the EPR technique, aimed to search for polynomial structures representing a 

system.  In the first step, the selection of exponents for polynomial expressions is carried out, 

employing an evolutionary searching strategy by means of genetic algorithms [16].  In the 

second step, numerical regression using the least square method is conducted, aiming to 

compute the coefficients of the previously selected polynomial terms. The general form of 

expression in EPR can be presented as follows [12]: 
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where: y is the estimated vector of output of the process; m is the number of terms of the 

target expression; F is a function constructed by the process; X is the matrix of input 

variables; f  is a function defined by the user; and aj is a constant.  A typical example of EPR 

pseudo-polynomial expression that belongs to the class of Eqn. (1) is as follows [12]: 
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where: 
^

Y is the vector of target values; m is the length of the expression; aj is the value of the 

constants; Xi is the vector(s) of the k candidate inputs; ES is the matrix of exponents; and f is a 

function selected by the user. 

EPR is suitable for modelling physical phenomena, based on two features [17]: (i) the 

introduction of prior knowledge about the physical system/process – to be modelled at three 

different times, namely before, during and after EPR modelling calibration; and (ii) the 

production of symbolic formulas, enabling data mining to discover patterns which describe 

the desired parameters.  In the first EPR feature (i) above, before the construction of the EPR 

model, the modeller selects the relevant inputs and arranges them in a suitable format 

according to their physical meaning.  During the EPR model construction, model structures 

are determined by following some user-defined settings such as general polynomial structure, 

user-defined function types (e.g. natural logarithms, exponentials, tangential hyperbolics) and 

searching strategy parameters.  The EPR starts from true polynomials and also allows for the 

development of non-polynomial expressions containing user-defined functions (e.g. natural 

logarithms).  After EPR model calibration, an optimum model can be selected from among 

the series of models returned.  The optimum model is selected based on the modeller’s 

judgement, in addition to statistical performance indicators, namely the coefficient of 

determination.  A typical flow diagram of the EPR procedure is shown in Fig. 1 [18], and 

detailed description of the technique can be found in Giustolisi and Savic [12]. 

 

3. Development of EPR model 

 In this work, the EPR model was developed using the computer-based software 

package EPR TOOLBOX Version 2.0 [19]. The following steps were used for model 

development.   
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3.1 Model inputs and outputs 

 Four variables were presented to the EPR as model inputs including the tube 

thickness, t, tube diameter, d, steel yield strength, fy, and modulus of elasticity of steel, E.  The 

single model output is the ultimate pure bending, Mu.   

 

3.2 Data division and pre-processing 

 The data used to calibrate and validate the EPR model were obtained from the 

literature and include a series of 104 ultimate pure bending tests, 49 tests were conducted on 

fabricated steel circular tubes and 55 tests on cold-formed tubes.  The 49 tests of fabricated 

tubes comprise a number of 27 tests reported by Sherman [2, 20], 10 tests by Schilling [21], 4 

tests by Jirsa et al. [22] and 8 tests by Korol and Huboda [23].  The 55 tests of cold-formed 

tubes were reported by Elchalakani et al. [24-27].  Details of the data used were previously 

published in Shahin and Elchalakani [8].  

 The available data were randomly divided into two sets: a training set for model 

calibration and an independent validation set for model verification.  As recommended by 

Masters [28] and Shahin et al. [29], the data were divided into their sets in such a way that 

they are statistically consistent and thus represent the same statistical population.  The 

statistics of the data used in the training and validation sets are given in Table 1, which 

include the mean, standard deviation, minimum, maximum and range.  In total, 80% of the 

data (i.e. 84 records) were used for model training and 20% (i.e. 20 records) for validation.  It 

should be noted that, like all empirical models, EPR performs best when they do not 

extrapolate beyond the range of the data used for model training; consequently the extreme 

values of the available data were included in the training set, as shown in Table 1.   

3.3 Model optimization   
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 Following the data division, they were presented to the EPR for model training and a 

set of internal model parameters was tried in an attempt to arrive at an optimal model, by 

selecting the related internal parameters for evolving the model.  The optimization phase was 

undertaken as follows.  Before presenting the data to the EPR for training, the input and 

output variables were pre-processed by scaling them between 0.0 and 1.0 so as to eliminate 

their dimension and ensure that all variables receive equal attention during training.  The 

structure of the EPR, i.e. Eqn. (1), was assumed polynomial in which each monomial term 

was consisted of elements from X that were raised to pre-specified power values. The natural 

logarithm was selected for the function f(X) type.  The assumed range of possible exponents 

of terms from X was (0; 0.5; 1; 2).  As explained by Giustolisi et al. [11], the exponent 0 is 

useful for deselecting the non-necessary inputs, the exponent 0.5 smoothes the effect of the 

inputs, the exponent 1 produces a linear effect of the inputs and the exponent 2 amplifies the 

inputs. The maximum length of the polynomial structure was assumed to be 5 terms and the 

bias term was assumed to be equal to zero. Finally, the least square search was performed for 

positive coefficients only, i.e. aj > 0,  and was obtained using the Singular Value 

Decomposition based solver [12].  The EPR returned five different models and the one 

selected to be optimum is given as follows: 

 

228 )1ln()1ln(100021.2   EfftdM yyu         (3) 

 

3.4 Model performance and comparison with other methods 

The performance of the optimum EPR model in the training and validation sets is 

shown graphically in Fig. 2, which presents the scattering around the line of equality between 

the measured and predicted tube bending capacities.  The EPR model performance is further 

confirmed analytically in Table 2, which contains four different performance measures 
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including the coefficient of correlation, r, the coefficient of determination (or efficiency), R
2
, 

root mean squared error, RMSE, and mean absolute error, MAE.  These performance measures 

and their governing formulae are expressed as follows [30, 31]: 
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where: N is the number of data points presented to the model; Oi and Pi are the observed and 

predicted outputs, respectively; and O and P are the mean of the predicted and observed 

outputs, respectively.   

The coefficient of correlation, r, is a measure that is used to determine the relative 

correlation between the predicted and observed outputs.  However, as indicated by Das and 

Sivakugan [32], r sometimes may not necessarily indicate better model performance due to 

the tendency of the model to deviate toward higher or lower values, particularly when the data 

range is very wide and most of the data are distributed about their mean.  Consequently, the 
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coefficient of determination, R
2
, was used as it can give unbiased estimate and may be a better 

measure for model performance.  The RMSE is the most popular error measure and has the 

advantage that large errors receive much greater attention than small errors [33].  However, as 

indicated by Cherkassky et al. [34], there are situations when RMSE cannot guarantee that the 

model performance is optimal, thus, MAE was also used.  The MAE eliminates the emphasis 

given to large errors, and is desirable when the data evaluated are smooth or continuous.  

In order to examine the prediction accuracy of the EPR model, its predictions in the 

validation set was compared with those obtained from ANN models previously developed by 

the authors [8], as well as with those obtained from most available design codes and 

standards.  The codes and standards considered include the Eurocode 3 [35], Australian New 

Zealand Standards AS/NZS 4600 [36], Australian Standards AS 4100 [37] and American 

Institute of Steel Construction ASIC [38].  Details of the ANN models as well as formulae 

and definitions of parameters used for each method of codes and standards can be found in 

Shahin and Elchalakani [8].   

The comparison results are shown graphically in Fig. 3, which in addition to the line 

of equality between the measured and predicted tube bending capacities, contains also two 

other dashed lines that indicate the ± 10 deviation from the perfect agreement.  Obviously, 

better performance is obtained for the method that provides less scattering around the 1:1 line, 

and better means of visual judgment can be made through the ± 10 deviation dashed lines.  In 

addition to the graphical comparison shown in Fig. 3, the comparison results are also given 

analytically in Table 3, which contains four different performance measures including R
2
, 

RMSE, MAE and μ (i.e. the average ratio of the measured to predicted ultimate bending 

capacities).  
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4. Results and Discussion 

 

The performance of the EPR model shown in Fig. 2 demonstrates that there is a little 

scatter around the line of equality between the measured and predicted values of the ultimate 

bending capacity predicted by the EPR model in both the training and testing sets.  As shown 

in the figure, the EPR model has a high coefficient of correlation, r, of 0.99 in both the 

training and validation sets, indicating an excellent performance.  The analytical performance 

measures of the EPR model in Table 1 indicates that the model performs well in both the 

training and validation sets, and has consistent performance in the training set with that of the 

validation set.   

The comparison results in Fig. 3 and Table 3 demonstrate that the performance of the 

EPR model in the validation set agrees well with that of the ANN models, and both the EPR 

model and ANN models outperform available codes and standards.  Fig. 3 shows that the 

predictions from the EPR and ANN models exhibit less scatter around the line of equality 

than those obtained from available codes and standards, especially at higher capacity values.  

It can also be seen that almost all available codes and standards seem to underestimate the 

ultimate bending capacity in most of the cases, and this is also confirmed by the analytical 

measures presented below.   

Table 3 shows that the EPR model and ANN models have excellent R
2
 close to unity, 

and have the least RMSE and MAE over the full range of ultimate bending predictions.  When 

the EPR model was used, the RMSE and MAE were found to be equal to 31.3 and 15.2 kN.m, 

respectively, whereas these measures were found to be equal to 25.2 and 13.3 kN.m, 

respectively, when the ANN models were used.  This indicates that the performance of the 

ANN models in the validation set in terms of the RMSE and MAE is slightly better than that of 

the EPR model.  However, as previously mentioned, the EPR model has the advantage over 
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the ANN models in that the EPR model (i.e. Eqn. 3) is simple, well-structured and 

transparent.  On the contrary, when available codes and standards were used, the RMSE and 

MAE ranged from 112 to 131.8 kN.m and from 55.2 to 71 kN.m, respectively, over the full 

range of ultimate bending predictions.  Table 3 also shows that the EPR model has the best 

average ratio of the measured to predicted ultimate bending capacities, , closer to unity (i.e. 

1.01), followed by the ANN models with  equal to 0.97, which indicates that the ANN 

models tend to slightly overestimate the ultimate pure bending in most of the cases.  This 

measure ranges from 1.29 to 1.59 when available codes and standards were used, indicating 

that the available codes and standards tend to significantly underestimate the ultimate bending 

capacity in most of the cases. 

 

5. Model robustness via sensitivity analysis 

To further examine the generalisation ability (or robustness) of the EPR model, a 

sensitivity analysis was carried out that demonstrates the response of predicted model ultimate 

bending to a set of hypothetical input data that lie within the range of the data used for model 

training.  For example, the effect of one input variable, such as tube thickness, t, was 

investigated by allowing it to change while all other input variables are set to fixed selected 

values.  The inputs were then accommodated in the EPR model, and the predicted ultimate 

pure bending was calculated.  This process was repeated for the next input variable and so on, 

until the model response has been examined for all inputs.  The robustness of the EPR model 

was determined by examining how well the predictions compare with available structural 

knowledge and experimental data, and with one would expect.  The results of the sensitivity 

analysis are shown in Fig. 4.  It can be seen that the prediction behaviour of the ultimate 

bending moment from the EPR model agrees well with the experimental results and with one 

would expect in the sense that the ultimate bending moment increases with the increase of the 
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tube thickness, tube diameter, steel yield strength and modulus of elasticity of steel.  These 

results indicate that the developed EPR model is robust and can be used with confidence.     

The data used in the sensitivity analysis were also utilised to explore and quantify the 

relative importance of model inputs to its output, by measuring the effects on the output when 

the inputs are varied through its range of values.  This approach allows a ranking of the inputs 

based on the amount of output changes produced due to disturbances in a given input, 

enabling the model to be more explained.  The quantification of this process was determined 

using the data obtained from holding all input variables at a fixed baseline values (i.e. their 

average values), except one input that was varied between its range (xi ϵ {x1, …, xn}).  The 

output, yi, for n levels of particular input, xi, was used to evaluate the relative importance of 

inputs using the sensitivity measure, Sg, of the average gradient over all the intervals, as 

follows [39]:  
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The results returned Sg equal to 13.6, 55.2, 3.2 and 0.06 for the tube thickness, t, tube 

diameter, d, yield strength of steel, fy, and modulus of elasticity of steel, E, respectively.  

These results indicate that over the range of the data used for model training (see Table 1), the 

tube diameter provides greater importance and considered to be the most significant factor 

affecting the tube bending capacity.  On the other hand, the results demonstrate that the 

modulus of elasticity of steel holds the least importance.  The results also indicate that the 

tube thickness provides the second most important factor affecting the tube bending capacity 

followed by the yield strength of steel.  
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6. Summary and conclusions 

 

 The applicability of evolutionary computing based on evolutionary polynomial 

regression (EPR) technique was investigated and assessed for predicting pure bending 

capacity of steel circular tubes.  An EPR model was developed in the form of a simple and 

well-structured equation that can be readily used by practicing engineers.  The database used 

for the development of EPR model (i.e. model calibration and verification) was obtained from 

the literature and comprised a series of 104 pure bending tests conducted on fabricated and 

cold-formed tubes.  The predictive ability of EPR model was examined by comparing its 

predictions with those obtained from experiments, and with those computed using a 

previously developed artificial neural network (ANN) models as well as most available codes 

and standards.  A sensitivity analysis was carried out on the EPR model to further explore the 

generalisation ability (or robustness) of the model, and to investigate the relative importance 

of model inputs to its output. 

   The results indicate that the EPR technique was capable of accurately predicting the 

ultimate bending capacity of steel circular tubes.  The results also demonstrate that predictions 

from the EPR are similar to those obtained from the previously developed ANN model but 

outperform most available codes and standards.  Over the full range of ultimate pure bending 

predictions of the validation set, the coefficient determination, R
2
, obtained from both the 

EPR model and ANN models was equal to 0.99, indicating high performance and good 

correlation between the measured and predicted values of the ultimate bending moment.  In 

contrast, R
2
 obtained from available codes and standards ranged from 0.89 to 0.92.  The root 

mean squared error, RMSE, and mean absolute error, MAE, obtained from the EPR model 

were found to be equal to 31.3 and 15.2 kN.m, respectively, whereas these values were found 

to be equal to 25.2 and 13.3 kN.m, respectively, for the ANN models indicating that the 
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performance of the ANN models in these two particular performance measures is slightly 

better than that of the EPR model.  On the other hand, these measures ranged from 112 to 

131.8 kN.m and from 55.2 to 71.0 kN.m, respectively, when available codes and standards 

were used.  In terms of the average ratio of the measured to predicted pure bending capacity, 

, it was found that the EPR model returned an excellent value of 1.01, and this measure was 

equal to 0.97 for the ANN models, indicating that the performance of the EPR model in this 

particular performance measure is better than that of the ANN models.  This result also 

indicates that the ANN model tends to slightly overestimate the ultimate pure bending 

moment of circular tubes.  On contrary, when available codes and standards were used, this 

measure ranged from 1.29 to 1.59, indicating that available codes and standards tend to 

significantly underestimate the ultimate pure bending moment of steel circular tubes.   

The sensitivity analysis indicated that predictions from the EPR model compare well 

with the current structural knowledge and experimental data, and reveals that the EPR model 

is robust and can be used for predictive purpose with confidence.  The sensitivity analysis also 

revealed that, over the range of the data used for model training, the tube diameter provides 

the most significant impact on the tube bending capacity, followed by the tube thickness, and 

that the modulus of elasticity of steel holds the least impact.  

It should be noted that the application of such an accurate and robust EPR model in 

the form of a simple, well-structured and transparent formula (i.e. Eqn. 3) helps in reinforcing 

our structural understanding of the mechanical behaviour of steel circular tubes under pure 

bending, and the sensitivity analysis presented herein confirmed this understanding. 
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Fig. 1. Typical flow diagram of the EPR procedure [18] 

 

 

 

 

 

 

 

 

 



 
 

Fig. 2. Graphical performance of the EPR model in the training and validation sets 
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Fig. 3. Graphical comparison of the EPR model and other available methods in the 

validation set 
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Fig. 4. Sensitivity analysis to test the robustness of the EPR model 



 

Table 1 

Statistics of the EPR model inputs and output 

 

Variables and data sets Statistical parameters 

Mean Standard 

deviation 

Minimum Maximum Range 

Tube thickness, t (mm) 

Training set 5.23 5.42 0.76 26.57 25.81 

Validation set 5.09 4.61 1.20 18.80 17.60 

Tube diameter, d (mm) 

Training set 207.5 181.7 33.7 610.0 576.3 

Validation set 209.6 165.4 60.2 458.0 397.8 

Yield strength of steel, fy (MPa) 

Training set 377.7 54.5 246.0 473.0 227.0 

Validation set 376.3 43.4 294.0 456.0 162.0 

Modulus of elasticity of steel, E (MPa) 

Training set 203367 9059 182000 218000 36000 

Validation set 203100 7691 182000 211000 29000 

Ultimate pure bending, Mu (kN.m) 

Training set 268.3 500.2 0.8 1892.7 1891.9 

Validation set 237.2 410.0 3.3 1391.7 1388.4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 2 

Analytical performance of the optimum EPR model 

 

Performance measure Training set Validation set 

r 0.99 0.99 

R
2
 0.99 0.99 

RMSE (kN.m) 29.4 31.3 

MAE (kN.m) 13.2 15.2 

 

 

 



 

Table 3 

Comparison of the EPR model and other available methods 

 

Performance 

measure 

Method 

EPR ANNs Eurocode 3 AS/NZS 4600 AS 4100 AISC 

R
2
 0.99 0.99 0.89 0.91 0.91 0.92 

RMSE (kN.m) 31.3 25.2 131.8 115.3 116.2 112.0 

MAE (kN.m) 15.2 13.3 71.0 56.6 58.5 55.2 

 1.01 0.97 1.59 1.30 1.34 1.29 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


