
Stabilization of a Coupled Second Order ODE-wave System
ZHEN Zhiyuan1, WANG Ke2, ZHOU Zhongcheng1∗, Ryan LOXTON3

1. School of Mathematics and Statistics, Southwest University, Chongqing, China
E-mail: zhenzhiyuan@swu.edu.cn, zhouzc@amss.ac.cn

2. Department of Information and Computational Science, Chengdu Technological University, Chengdu, China
E-mail: wke1@cdtu.edu.cn

3. Department of Mathematics and Statistics, Curtin University, Perth, Australia
E-mail: r.loxton@curtin.edu.au

Abstract: This paper considers the stabilization of a coupled second order ODE-wave system, where the ODE dynamics contain
the solution of the wave equation at an intermediate point. We design a stabilizing feedback controller by choosing a suitable
target system and backstepping transformation. The backstepping transformation is defined in terms of several kernel functions,
for which we establish existence, uniqueness and smoothness properties. We also prove exponential stability for the resulting
closed-loop system. Finally, the effectiveness of the proposed feedback controller is verified via a numerical example.
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1 Introduction

In this paper, we consider the exponential stabilization of
the following coupled second order ODE-wave system:

y′′(t) = a2y(t) + bu(x0, t), t > 0,

utt(x, t) = uxx(x, t), 0 < x < 1, t > 0,

u(0, t) = 0, ux(1, t) = U(t), t > 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x), 0 < x < 1,

y(0) = y0, y
′(0) = y1,

(1)

where u(x, t) represents the wave equation’s state, y(t) rep-
resents the ODE’s state. It can describe the vertical displace-
ment of the string and the lower rigid body for the model
of two rigid bodies connected by a spring and hanging from
an elastic string. x0 ∈ (0, 1) is a given intermediate point;
a > 0 and b 6= 0 are constants; U(t) is the controller; and
u0(x), u1(x), y0, y1 are initial data. This system involves
two differential equations: a second order ODE in terms of
t, and a wave PDE in terms of x and t. The ODE is subject to
initial conditions at t = 0, and the PDE is subject to bound-
ary conditions at x = 0 and x = 1, and initial conditions at
t = 0.

Stabilization of PDEs is a fundamental problem in con-
trol theory. Many stabilization approaches have been pro-
posed for PDE control systems, including the control Lya-
punov function method, the damping method, the homo-
geneity method, the return method, the linear quadratic (LQ)
method and the backstepping method. These methods can
be used to deal with many kinds of PDEs (see [3] and the
relevant references therein). The backstepping method, in
particular, has several advantages in feedback controller de-
sign, such as being easy to understand and implement (see
[4, 5, 7, 9, 10, 12]). For the stabilization of PDEs with inte-
gral terms, several backstepping methods are available (see
[1, 2, 6, 11, 13]). References [1, 2] discuss stabilization via
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backstepping for ODE-wave and ODE-heat systems with in-
tegral terms. Recently, in [13], the stabilization of an ODE-
heat system in which the heat equation and ODE are coupled
at an intermediate point has been considered. Our goal in this
paper is to extend the work in [13] to ODE-wave systems in
the form of (1).

In system (1), the two differential equations are coupled
at an interior point x0 ∈ (0, 1) rather than a boundary point.
This makes designing the stabilization feedback controller
much more difficult than for ODE-wave systems coupled at
a boundary point (see [8]).

Generalizations of system (1) in which the term
bu(x0, t) is replaced by a non-local source term, i.e.,∫ 1

0
B1(x)u(x, t)dx, where B1(·) ∈ H1(0, 1), have been

discussed in [1]. When B1(x) = bδ(x − x0), where δ(x)
is the Dirac function, the non-local source term is exactly
bu(x0, t) as in (1). However, to prove closed-loop stability
using the results in [1], it is necessary to validate a complex
controllability condition and determine whether certain
matrices are invertible. For system (1), these matrices may
not be invertible for some choices of a and b. Therefore,
the results in [1] may not be applicable, motivating the new
results to be discussed in this paper. More importantly, our
new backstepping transformation yields kernel functions
with stronger regularity properties compared with the
continuous kernel functions in [1]. The main difference
with our stabilization procedure lies in the choice of target
system and backstepping transformation. Our choices
lead to different conditions for closed-loop stability. The
motivation for this paper comes from [1] and the main idea
is borrowed from [13]. The novelty of our work lies in
determining a suitable feedback matrix in the target system
and a corresponding backstepping transformation with
smooth kernels, and introducing new techniques to avoid
solving coupled kernel equations.

This paper is organized as follows. In Section 2, we show
how to design a stabilization feedback vector for system (1)
and define a forward backstepping transformation and target
system. In Section 3, we prove existence of smooth kernel
functions for the forward transformation in Section 2, and
design a feedback boundary controller to stabilize the orig-
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inal system. In Section 4, we show that the proposed back-
stepping transformation is invertible and prove exponential
stability of the closed-loop system. In Section 5, we present
some simulation results.

2 Backstepping transformation and target system

Set X(t) = (y(t), y′(t))T . Then we can rewrite system
(1) in matrix form as follows:

Ẋ(t) = AX(t) +Bu(x0, t), t > 0,

utt(x, t) = uxx(x, t), 0 < x < 1, t > 0,

u(0, t) = 0, ux(1, t) = U(t), t > 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x), 0 < x < 1,

X(0) = X0,

(2)

where

A =

(
0 1
a2 0

)
, B =

(
0
b

)
, X0 =

(
y0
y1

)
.

Since rank(B,AB) = 2, system [A,B] is controllable. In
fact, we have the following lemma proved in [13].

Lemma 2.1. For system [A,B], there exists a constant µ
and a vector K = µ(a 1), which is the left eigenvector cor-
responding to the positive eigenvalue a of matrix A, such
that A+BK is exponentially stable.

It is well-known that [A,B] being controllable implies the
existence of a vector K such that A + BK is exponentially
stable. Lemma 2.1 goes beyond the standard result to give
the explicit form of K.

To stabilize system (2), we seek a transformation
(X,u) 7→ (X,w) that converts system (2) into an exponen-
tially stable target system. Stability of the closed loop sys-
tem can then be established in terms of the boundedness of
the backstepping transformation and its inverse. We define
the backstepping transformation as

w(x, t) = u(x, t)−
∫ x

0

k(x, y)u(y, t)dy

−
∫ x

0

l(x, y)ut(y, t)dy − p(x)
∫ x0

0

q(y)u(y, t)dy

− p1(x)
∫ x0

0

q1(y)ut(y, t)dy − φ(x)X(t), (3)

where the kernels p(x), q(y), p1(x), q1(y), k(x, y), l(x, y)
and φ(x) are to be determined later. The target system is
chosen as

Ẋ(t) = (A+BK)X(t) +Bw(x0, t), t > 0,

wtt(x, t) = wxx(x, t), 0 < x < 1, t > 0,

w(0, t) = 0, wx(1, t) = −cwt(1, t), t > 0,

w(x, 0) = w0(x), wt(x, 0) = w1(x), 0 < x < 1,

X(0) = X0,

(4)

where c > 0 is a given number, K is as defined in Lemma
2.1, and w0(x) and w1(x) are the mappings of u0(x) and
u1(x) under transformation (3). The well-posedness of (4)
is well-known (see [7]). If the kernels in (3) can be chosen
to ensure that the transformation (X,u) 7→ (X,w) maps

system (2) into system (4), then the exponential stability of
the original system follows from the exponential stability of
(4). We now derive the equations for the kernels p(x), q(y),
p1(x), q1(y), k(x, y), l(x, y) and φ(x) in (3).

3 Kernel equations

By differentiating w(x, t) in (3) twice with respect to x
and t, then applying integration by parts, we obtain

wtt(x, t)− wxx(x, t)
=
(
φ′′(x)− φ(x)A2

)
X(t)− p1(x)q1(x0)uxt(x0, t)

+

∫ x

0

(
kxx(x, y)− kyy(x, y)

)
udy

+
(
l(x, 0) + p1(x)q1(0)

)
uxt(0, t) + 2l′(x, x)ut(x, t)

+

∫ x

0

(
lxx(x, y)− lyy(x, y)

)
utdy − p(x)q(x0)ux(x0, t)

+
(
p(x)q′(x0)− φ(x)AB

)
u(x0, t)

+

∫ x0

0

(
p′′(x)q(y)− p(x)q′′(y)

)
udy + 2k′(x, x)u(x, t)

+
(
p1(x)q

′
1(x0)− φ(x)B

)
ut(x0, t)

+

∫ x0

0

(
p′′1(x)q1(y)− p1(x)q′′1 (y)

)
utdy

+
(
k(x, 0) + p(x)q(0)

)
ux(0, t),

where

kx(x, x) =
∂k(x, y)

∂x

∣∣∣
y=x

, ky(x, x) =
∂k(x, y)

∂y

∣∣∣
y=x

and

k′(x, x) = kx(x, x) + ky(x, x).

According to (3) and w(0, t) = 0, we know that

u(0, t)−
∫ x0

0

(p(0)q(y)u+p1(0)q1(y)ut)dy−φ(0)X(t) = 0.

We choose

p(0) = 0, p1(0) = 0, φ(0) = 0.

Thus, by wx(1, t) = −cwt(1, t) and equations (2) and (3),
we obtain the control law

U(t) =

∫ 1

0

(clyy(1, y) + kx(1, y))udy − cly(1, 1)u(1, t)

+

∫ x0

0

(p′1(1)q1(y) + cp(1)q(y))utdy + φ′(1)X(t)

+

∫ x0

0

(p′(1)q(y) + cp1(1)q
′′
1 (y))udy + cφ(1)AX(t)

+

∫ 1

0

(lx(1, y) + ck(1, y))utdy − cut(1, t), (5)



which stabilizes the original system. On the other hand, from
(2), (3) and (4), we have

X ′(t) = AX(t) +Bu(x0, t)

= AX(t) +B
(
w(x0, t) +

∫ x0

0

(k(x0, y)u+ l(x0, y)ut)dy

+

∫ x0

0

(p(x0)q(y)u+ p1(x0)q1(y)ut)dy + φ(x0)X(t)
)

= B

∫ x0

0

(p(x0)q(y) + k(x0, y))udy + (A+Bφ(x0))X(t)

+B

∫ x0

0

(l(x0, y) + p1(x0)q1(y))utdy +Bw(x0, t)

= (A+BK)X(t) +Bw(x0, t),

if we choose φ(x0) = K, p(x0)q(y) + k(x0, y) = 0 and
l(x0, y) + p1(x0)q1(y) = 0. Therefore, based on (4), we
need to choose k(x, y), l(x, y), p(x), p1(x), q(y), q1(y) and
φ(x) to satisfy

kxx(x, y)− kyy(x, y) = 0,

k(x, x) = 0, k(x, 0) = −p(x)q(0),
lxx(x, y)− lyy(x, y) = 0,

l(x, x) = 0, l(x, 0) = −p1(x)q1(0),
p′′(x)q(y)− p(x)q′′(y) = 0,

q(x0) = 0, p(x)q′(x0) = φ(x)AB,

p(0) = 0, k(x0, y) + p(x0)q(y) = 0,

p′′1(x)q1(y)− p1(x)q′′1 (y) = 0,

q1(x0) = 0, p1(x)q
′
1(x0) = φ(x)B,

p1(0) = 0, l(x0, y) + p1(x0)q1(y) = 0,

φ′′(x)− φ(x)A2 = 0,

φ(x0) = K, φ(0) = 0.

(6)

To solve these equations, we first separate them into five sub-
systems as follows:{

kxx(x, y)− kyy(x, y) = 0,

k(x, x) = 0, k(x, 0) = −p(x)q(0),
(7)

{
lxx(x, y)− lyy(x, y) = 0,

l(x, x) = 0, l(x, 0) = −p1(x)q1(0),
(8){

p′′(x)q(y)− p(x)q′′(y) = 0,

q(x0) = 0, p(0) = 0,
(9){

p′′1(x)q1(y)− p1(x)q′′1 (y) = 0,

q1(x0) = 0, p1(0) = 0,
(10)

and {
φ′′(x)− φ(x)A2 = 0,

φ(x0) = K, φ(0) = 0,
(11)

with compatibility conditions{
k(x0, y) + p(x0)q(y) = 0,

l(x0, y) + p1(x0)q1(y) = 0,
(12)

and {
p(x)q′(x0) = φ(x)AB,

p1(x)q
′
1(x0) = φ(x)B.

(13)

Next, we solve each subsystem separately to obtain k(x, y),
l(x, y), p(x), p1(x), q(y), q1(y) and φ(x), with the solu-
tion parameters chosen to ensure the compatibility condi-
tions (12) and (13) are satisfied.

Using separation of variables, (9) and (10) can be written
as {

p′′(x)
p(x) = q′′(y)

q(y) = γ = λ2,

q(x0) = 0, p(0) = 0,
(14)

and {
p′′1 (x)
p1(x)

=
q′′1 (y)
q1(y)

= γ1 = λ21,

q1(x0) = 0, p1(0) = 0,
(15)

According to (11) and (13), we know parameters γ = λ2 >
0 and γ1 = λ21 > 0. Equations (14) and (15) can be solved
explicitly as {

p(x) = ξeλx − ξe−λx,
q(y) = ηeλy − ηeλ(2x0−y),

(16)

and {
p1(x) = ξ1e

λ1x − ξ1e−λ1x,
q1(y) = η1e

λ1y − η1eλ1(2x0−y),
(17)

where ξ, η, λ, ξ1, η1 and λ1 are parameters to be determined
later. Thus, the solutions of (7) and (8) are

k(x, y) = −ξη(1− e2λx0)(eλ(x−y) − e−λ(x−y)),
l(x, y) = −ξ1η1(1− e2λ1x0)(eλ1(x−y) − eλ1(y−x)).

We now need to choose suitable values for the parameters
ξ, η, λ, ξ1, η1 and λ1 so that the compatibility conditions
(12) and (13) are satisfied. From the first equation in (12),

p(x0)q(y) + k(x0, y)

= ξη(eλx0 − e−λx0)(eλy − eλ(2x0−y))

− ξη(1− e2λx0)(eλ(x0−y) − e−λ(x0−y))

= 0.

Similarly, from the second equation in (12),

p1(x0)q1(y) + l(x0, y) = 0.

From the first equations in (13) and (16) and φ(x0) = K, we
have

p(x0)q
′(x0)− φ(x0)AB

= 2λξηeλx0
(
eλx0 − e−λx0

)
−KAB = 0,

which holds when

ξη =
KAB

2λeλx0 (eλx0 − e−λx0)
. (18)

Similarly, using the second equation in (13) and (17), we
choose

ξ1η1 =
KB

2λ1eλ1x0 (eλ1x0 − e−λ1x0)
. (19)

When ξη and ξ1η1 are determined by (18) and (19),
k(x, y), l(x, y), p(x)q(y) and p1(x)q1(y) are determined
uniquely. Meanwhile, the compatibility condition (13) at



x = x0 is satisfied. Substituting (18) and (19) into (13),
we have

φ(x) =
eλx − e−λx

eλx0 − e−λx0
K =

eλ1x − e−λ1x

eλ1x0 − e−λ1x0
K. (20)

Therefore, if λ = λ1, compatibility conditions (13) hold. By
differentiating (20) twice with respect to x, we obtain

φ′′(x) = λ2
eλx − e−λx

eλx0 + e−λx0
K.

Substituting φ(x) and φ′′(x) into (11), we see that λ needs to
satisfy λ2K−KA2 = 0, which holds when λ2 = a2. Hence,
by setting T := {(x, y) ∈ R2| 0 ≤ x ≤ 1, 0 ≤ y ≤ x},
we have the following existence theorem for smooth kernel
functions.

Theorem 3.1. Equations (6) have unique smooth solution-
s k(·, ·) ∈ C2(T), l(·, ·) ∈ C2(T), p(·)q(·) ∈ C2([0, 1] ×
[0, x0]), p1

(·)q1(·) ∈ C2([0, 1] × [0, x0]) and φ(·) ∈
C2([0, 1]).

4 Inverse transformation and closed-loop stability

We now show that the backstepping transformation (3) is
invertible. The inverse transformation of (3) can be written
as

u(x, t)

= w(x, t) +

∫ x

0

n(x, y)w(y, t)dy +

∫ x

0

m(x, y)wt(y, t)dy

+ g(x)

∫ x0

0

h(y)w(y, t)dy + g1(x)

∫ x0

0

h1(y)wt(y, t)dy

+ ψ(x)X(t), (21)

where functions m(x, y), n(x, y), g(x), h(y), g1(x), h1(y)
and ψ(x) are to be determined later. Following the same
procedure as in Section 4 and applying u(0, t) = 0 and e-
quations (4) and (21), we obtain∫ x0

0

(g(0)h(y)w + g1(0)h1(y)wt)dy + ψ(0)X(t) = 0.

Thus,

g(0) = 0, g1(0) = 0, ψ(0) = 0.

Finally, we have

X ′(t) = AX(t) +Bu(x0, t)

= AX +B(w(x0, t) +

∫ x0

0

(n(x0, y)w +m(x0, y)wt)dy

+

∫ x0

0

(g(x0)h(y)w + g1(x0)h1(y)wt)dy + ψ(x0)X(t))

= (A+BK)X(t) +Bw(x0, t),

after choosing ψ(x0) = K, n(x0, y) + g(x0)h(y) = 0
and m(x0, y) + g1(x0)h1(y) = 0. To summarize, we need
to choose the kernels m(x, y), n(x, y), g(x), h(y), g1(x),

h1(y) and ψ(x) to satisfy

nxx(x, y)− nyy(x, y) = 0,

n(x, x) = 0, n(x, 0) = −g(x)h(0),
mxx(x, y)−myy(x, y) = 0,

m(x, x) = 0,m(x, 0) = −g1(x)h1(0),
g′′(x)h(y)− g(x)h′′(y) = 0,

h(x0) = 0, g(x)h′(x0) = ψ(x)(A+BK)B,

g(0) = 0, g(x0)h(y) + n(x0, y) = 0,

g′′1 (x)h1(y)− g1(x)h′′1(y) = 0,

h1(x0) = 0, g1(x)h
′
1(x0) = ψ(x)B,

g1(0) = 0, g1(x0)h1(y) +m(x0, y) = 0,

ψ′′(x)− ψ(x)(A+BK)2 = 0,

ψ(x0) = K, ψ(0) = 0.

(22)

Using the same solution as for (6), we obtain the following
existence theorem.

Theorem 4.1. Equations (22) have unique smooth solu-
tions m(·, ·) ∈ C2(T), n(·, ·) ∈ C2(T), g(·)h(·) ∈
C2([0, 1] × [0, x0]), g1(·)h1(·) ∈ C2([0, 1] × [0, x0]) and
ψ(·) ∈ C2([0, 1]).

Theorem 4.2. For the closed-loop system (2) with con-
trol law (5), if the initial conditions ux(·, 0) and ut(·, 0)
are square integrable in x and compatible with (3),
then the closed-loop system has a unique solution in
(u(·, ·), ut(·, ·), X(·)) ∈ C([0,+∞);H1(0, 1)×L2(0, 1))×
C1[0,+∞), which is exponentially stable in the sense that
there exists constants σ > 0 and ω > 0 such that

‖X(t)‖2 + ‖ut(·, t)‖22 + ‖ux(·, t)‖22
≤ σ

(
‖X(0)‖2 + ‖ut(·, 0)‖22 + ‖ux(·, 0)‖22

)
e−ωt,

where

‖u(·, t)‖2 :=

(∫ 1

0

u(x, t)2dx

) 1
2

and ‖ · ‖ denotes the Euclidean norm.

Proof. This result follows from the exponential stability of
target system (4) and the inverse transformation (21).

5 Numerical simulations

We simulated the closed-loop system for the following da-
ta: x0 = 0.5, µ = −2, a = 1, b = 1, c = 1, y0 = 1, y1 = 0,
w0(x) = 10(1 − x)2, w1(x) = (1 − x)x. The initial func-
tions u0(x) and u1(x) were obtained by applying the inverse
transformation (21) to w0(x) and w1(x). The simulation re-
sults for system (1) with U(t) = 0 and feedback control law
(5) are presented respectively in Figures 1-5. Figure 1 shows
the solution of the ODE with U(t) = 0, and Figure 2 shows
the solution of the wave equation with U(t) = 0. Figure 3
shows the stabilizing controller U(t), Figure 4, 5 show the
solution of the ODE and wave equation respectively with
feedback control law (5). Figures 4 and 5 clearly show that
the closed-loop system is stable as t −→ +∞, thus verifying
the theoretical results obtained in the previous sections.
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Fig. 3: Stabilizing controller U(t).

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t

y(
t)

Fig. 4: Closed-loop response of the ODE.

Fig. 5: Closed-loop response of the wave equation.
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