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Abstract 
 

This paper investigates the segmentation of 
multiple planar surfaces from 3D point clouds. A 
Principle Component Analysis (PCA) based 
covariance technique is used for segmentation which 
is one of the most popular approaches in point cloud 
processing. It is well known that PCA is very sensitive 
to outliers and does not give reliable estimates for 
segmentation. We propose a statistically robust 
segmentation algorithm using a fast-minimum 
covariance determinant based robust PCA approach 
to get the local covariance statistics. This results in 
more reliable, robust and accurate segmentation. The 
application of the proposed method to simulated and  
terrestrial laser scanning point cloud datasets gives 
good results for multiple planar surface extraction and 
shows significantly better performance than PCA 
based methods. The algorithm has the potential for 
non-planar complex surface reconstruction.  
 
 
1. Introduction 
 

Object recognition and modeling by surface 
reconstruction (classification, segmentation and 
fitting) in laser scanning 3D point cloud data has been 
considered an important branch of computer vision, 
pattern recognition and reverse engineering [2, 3, 5, 7].  
Segmentation is the process of separating the most 
similar surface points into single feature surfaces. It is 
a basic step for surface reconstruction and so for 3D 
modeling. Segmentation in point cloud data is difficult 
because the points are usually unorganized, 
incomplete, noisy, sparse, have inconsistent point 
density, and in addition the surface shape can be 
arbitrary with sharp features. The segmentation 
methods can be categorized into three: border based 

[5], region based [3] and hybrid [15]. In the border 
based approach, the boundary and edge points are first 
identified and then the extracted border points are used 
to segment the surface according to different saliency 
features (e.g. normal and curvature) while region 
based approaches use local neighborhood properties to 
seek the homogeneity within a specific feature or find 
variation among the features, and merge the spatially 
close points. Region based methods are more robust to 
noise than edge based ones [7] when using global 
information. Region based methods can result in over 
or under segmentation and the region border can be 
hard to locate. They are also sensitive to the choice of 
the initial seed points. Hybrid methods can overcome 
the limitations of both these methods [7].  

Local surface neighborhood based saliency features 
are used for segmentation. Principal Component 
Analysis (PCA) has been used rigorously for studying 
surfaces and to find local saliencies [1, 9].  Since PCA 
is sensitive to outliers, the saliency features based on 
PCA are not robust and results can be erroneous. To 
minimize the outlier effects on the estimates, this 
paper uses a robust PCA approach [6] based on robust 
location and covariance estimators from the Fast-
Minimum Covariance Determinant (FMCD) [12]. The 
FMCD is beneficial because of its high resistance to 
outliers and computationally efficiency. We propose a 
segmentation algorithm that can classify the edge, 
boundary and surface points (surfels), and segment 
multiple planes efficiently in 3D point cloud data. The 
proposed algorithm is a hybrid robust one, so it is able 
to localize region border and edge points accurately, 
efficiently handles over or under segmentation and 
reduces outlier effects for the whole process.  

Section 2 contains the relevant principles, Section 3 
proposes the algorithm and  in Section 4, experiments 
are performed to prove the efficiency of the algorithm 
followed by conclusions in Section 5.  



 

2. PCA, local covariance statistics and 
robust PCA  
 

Principal Components (PCs) are the small number 
of linear combinations of the original variables that 
rank the variability in the data through the variances, 
and produce the corresponding orthogonal directions 
using the eigenvectors of the covariance matrix, C. A 
ranked PC explains a part of the variance not 
expressed by previous PCs. PCA minimizes the 
variance from the data by subtracting the mean from 
the related variables and then performs singular value 
decomposition on that C, to find the required PCs.  

The saliency features are based on covariance 
techniques of local neighborhoods [2, 9].  The C for a 
point pi = (xi, yi, zi) (pi ∈P ∈R3; a point in a 3D cloud 
P) with k neighbours Npi is defined as:  
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where p is the centroid of Npi. The C can define local 
geometric information of the underlying surface. It is 
decomposed into PCs ordered by decreasing 
eigenvalues λ2 ≥ λ1 ≥ λ0 ≥ 0 with the corresponding 
eigenvectors v2, v1 and v0. Thus v0 approximates the 
surface normal n for pi and λ0 describes the variation 
along the surface normal. Most techniques [1, 8, 9, 10, 
11] use PCA to get the saliency features. 
Unfortunately PCA estimates for saliency features are 
sensitive to outliers and inaccuracies, because the 
mean, variance and the C matrix used in PCA all have 
a zero breakdown point.  

To get robust estimates, Robust PCA (RPCA) 
computes the eigenvalues and eigenvectors of a robust 
estimator of the covariance matrix. Many robust centre 
and covariance estimators have been introduced in the 
literature. We use the robust PCA proposed by Hubert 
and Rousseeuw [6] that combines the idea of 
Projection Pursuit (PP) with the FMCD. The PP is 
used to pre-process the data so that the transformed 
data are lying in a subspace whose dimension is less 
than the total number of data points, and then the 
FMCD estimator is used to get the robust centre and 
covariance matrix. In RPCA, at first the data is 
condensed to the PCs defining possible directions. 
Then, every direction is scored by its resultant value of 
outlyingness: 
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where the maximum is over all directions, v is a 
univariate direction and pivT denotes a projection of 
the ith observation pi on the direction v . For every 
direction a robust centre cMCD and covariance matrix  
ΣMCD of the projected data pivT are computed. Second, 

a fraction h (>n/2) of observations with the smallest 
values of wi are used to construct a robust Σ. Finally, 
RPCA projects the data onto the r- subspace by the r 
leading eigenvectors (PCs) of Σ and computes their 
centre and scale by the re-weighted FMCD. The 
eigenvectors of Σ then determine the RPCs.  

 
3. Segmentation   
 

The algorithm proposed in this section consists of 
three steps: classification, region growing and 
merging. It needs an estimation of local planar surface 
parameters n and λ0 . We use the K-D tree for finding 
the k nearest neighbors of an interest point pi, and 
construct the C for the neighborhood. Local surface 
parameters are estimated by PCA and RPCA.  
 
3.1. Classification 
 

Classification means the separation of a point cloud 
into border-line points, edge/corner points and surfels. 
We find the edge points first and then the boundary 
points since the boundary points will have the same 
homogeneity as the specific feature surface and the 
points on the edge will have a neighborhood from 
different adjacent feature surfaces and generally will 
have larger values for λ0. For planar surfaces, we find 
that λ0 gives sufficiently consistent results (Fig. 2(a)). 
We follow the general rule: (mean (.) + a × standard 
deviation (.)) (a =1 to 3) for getting larger λ0 values. 
We consider the ith point that has  

    )(deviationstandard1)(mean 000 λλλ ×+>       (3) 
to be an edge point. For boundary point detection, we 
use the Belton and Lichti [1] measure defined as:  
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where )(.1 ppv −= iis  and, )(.2 ppv −= iit . We consider 
the point that has value larger than the 90+ percentile 
of the c2 as the boundary point. It is known that the 
values of the above two measures are data and 
neighborhood size dependent so it is not recommended 
to use specific threshold. We can determine them by 
their histograms and/or index plots. If a point suddenly 
comes from both edge and boundary then it is 
classified as an edge point since an edge point is rarely 
a boundary point. The rest of the points are surfels.  
 
3.2. Region growing  
 

In region growing, points in the same surface 
region should have similar normals and low bias angle 
θ [8, 11, 13, 14]. Inaccurate normals for range points 
near region boundaries reduce the accuracy of 



 

segmentation [4]. We use RPCA to get accurate n, λ0 
and θ. The θ between a point and its neighbour is:  
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where 1n
  and 2n

 are the two unit normals for the ith 
point and one of its neighbours. We use the surfels set 
S and boundary points set B i.e. S∪B with the lowest 
λ0 value as the seed point (Sp) of the current region Rc. 
The points whose bias angles are less than an angle 
threshold θth are added to Rc and will be used as the 
next seed points for Rc. We fix an appropriate θth to 
avoid under segmentation and biasing to over 
segmentation. If necessary, the problem of over 
segmentation can be overcome by merging. After 
getting a complete region, we select a Sp for the next 
region from the remaining points in S∪B that has the 
minimum λ0. If a region has more than or equal to a 
minimum number m of points it will be considered for 
the next step otherwise it will be considered as an 
unexplained region. The same process of region 
growing will be continued until S∪B is empty. The 
region growing is shown in Algorithm 3.1.  
 

Algorithm 3.1. Region growing 
i. Find initial seed point from the S ∪ B, which has 

minimum λ0, and put it to Rc and current Sp list Sc , and 
remove it from  S∪B.  

ii. Find Sk nearest neighbors for each seed point in Sc.  
(a) Calculate θ between the Sp and its neighbours.  
(b) Find the points that exist in S∪B, which have 

thθθ ≤ .  
(c) Put them into Rc and Sc , and remove from S∪B.  

iii. If size Rc ≥m,  insert Rc into the region list R.   
iv. Repeat the process (i to iii) until S∪B is empty.   
v. Sort the regions in R. 
 
3.3. Merging   

 
This step merges the neighbouring co-planar 

regions that belong to a same feature surface. Merging 
a specific region with a larger and most appropriate 
neighboring one, should change the Mean Squared 
Error (MSE) less than for merging with any other 
region. The MSE for a region can be defined as [10]:  
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where l is the size, n is the unit normal and d is the 
bias (distance, origin to the plane) for the region.  
 

Algorithm 3.2. Under-grown region merging 
i. Find neighbouring regions Rij for each region RR i∈ .  
ii. Calculate the MSE for Ri and Ri∪Rij.  
iii. Calculate the 

ijijii RRRMSERMSEDMSE ∀∪−= |,)()(|  
iv. Merge Rij with Ri for which DMSE is the least and 

thDMSEDMSE ≤  , and remove Rij from R. 
v. Sort the merged regions in R as the final segments. 

To avoid faulty merging, a threshold is fixed so that 
the least Difference in MSE (DMSE) does not exceed 
the threshold (DMSEth). The merging is summarized in 
Algorithm 3.2. 
 
4. Experiments  
 

The method has been evaluated on several 
simulated and laser scanner point cloud datasets with 
two discussed here. Based on other experiments, we 
set k=30, Sk=15, θth =5°, m=10 and DMSEth=1.0e-04.   

 

Data set 1: To quantify and compare the accuracy 
between PCA and RPCA based local planar surface 
fitting used later for segmentation, we simulate 1000 
datasets (for statistically significant results). Every 
dataset is of 50 points with 1 to 20 % outliers from 3D 
Gaussian distributions. Regular points have means (2, 
8, 6) and variances (15.0, 15.0, 0.01) and outliers have 
means (15, 15, 10) and variances (10.0, 2.0, 0.1). We 
calculate average θ (Fig. 1(a)) for the 1000 datasets. 
Fig. 1(b) shows the accuracy performance for PCA 
and RPCA. Since RPCA is an iterative process it takes 
more time than PCA but this is justified in terms of 
accuracy. More information on computational cost and 
performance of RPCA can be found in [6, 14].    

 
 

 
 

Figure 1. (a) θ between the planes with and without 
outliers (b) Average θ versus outlier percentage. 

 
Data set 2: This is a point cloud consisting of 

2,021 points acquired using a moving vehicle-based 
mobile mapping system. It has four planar surfaces of 
road pavement, kerb, footpath and fence. In Fig.2(a), 
box plots for λ0 show that the values from RPCA are 
significantly more consistent than from PCA. We use 
the proposed algorithm to segment/extract the four 
planes.   

 

 
 

Figure 2. (a) Box plots of 0λ , PCA results: (b) 
classification (c) region growing (d) merging; and 

RPCA results: (e) classification (f) region growing. 



 

The colours (magenta for edge/corner points, blue for 
boundary points and gray for surfels) shows that PCA 
results in some surfels being misclassified as edge 
points (Fig.2(b)). The total number of regions is five 
(Fig.2(c)) and the final segmentation (after merging) 
(Fig.2(d)) extracts faulty and incomplete planes.  For 
RPCA, Fig.2(e) shows much better classification. 
Region growing generates four regions that match the 
four planes (Fig.2(f)) and so no merging is necessary. 
 
Data set 3: This mobile mapping point cloud consists 
of 28,289 points with three road side buildings, again 
captured from a mobile mapping system.  
 

 
 

Figure 3. PCA results: (a) classification (b) region 
growing (c) merging; RPCA results: (d) classification 

(e) region growing and (f) merging.  
 

Classification of edges and boundaries with RPCA 
(Fig.3(d)) is finer and more accurate than for PCA 
(Fig.3(a)). For region growing, PCA misses two 
bushes beneath the buildings, and does not find the 
two doors that RPCA finds. RPCA merges the under-
grown regions better than PCA. A small region next to 
the door of the right most building is merged 
accurately by RPCA (Fig.3(f)) but not by PCA.  
 
5. Conclusions  
 

A statistically robust segmentation algorithm is 
proposed for multiple planar surface extraction from 
3D point cloud data. Results show that robust PCA 
based segmentation outperforms classical PCA at 
every step. The robust method efficiently classifies 
edges, boundaries and surfels and is able to identify 
region borders accurately and better than PCA. Since 
the saliency features are estimated in a robust way, the 
possibility of over or under segmentation is reduced. 
Less sensitivity to outliers reduces the effects of 
neighborhood size and thresholds. As for other 
statistical robust methods, it has the limitation that it 
breaks down for more than 50% outliers, although in 
many applications this does not occur. The robust 
algorithm has potential for complex non-planar surface 
extraction and is the subject of further research.  
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