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Abstract

In this paper, we consider the existence and uniqueness of solutions of
piecewise non-linear systems. We will present some necessary and sufficient
conditions for the existence and uniqueness of solutions of this class of systems.
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1 Introduction

Piecewise system is an important class of hybrid systems. The study of this class
of systems dates back to the early works of Andronov on oscillation in non-linear
systems, Kalman on saturated linear systems in 1950s. This field has received much
attention over the past two decades [1-12]. However, most of these works are based
on the assumption that this class of systems is well-posed.

In [11], the authors have studied the well posedness of piecewise linear systems
in the sense of Carathéodory. They first used the lexicographic inequalities and the
smooth continuation to derive necessary and sufficient conditions for the well posed-
ness of a bimodal system with single criterion. They then extended those results
to a multi-modal system with multiple criteria. In [11], an algorithm is proposed
for solving these conditions. In [12], some sufficient conditions are obtained for the
well posedness of the switch based control systems. In [13], necessary and sufficient
conditions for the well posedness of piecewise linear systems with multiple modes
and multiple criteria are derived. A computational procedure is then developed to
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solve these necessary and sufficient conditions by using the Fourier-Motzkin elimina-
tion rather than the linear programming method as in [11]. However, all the above
results are for linear systems. It appears that few results are available for cases in-
volving non-linear systems. In this paper, we study the existence and uniqueness of
solutions of piecewise non-linear systems. Some necessary and sufficient conditions
for this class of systems will be derived. Our results generalize those obtained in
[11] and [13].

The organization of the paper is as follows. In Section 2, we formulate the
problem. Section 3 is devoted to developing necessary and sufficient conditions.
Some concluding remarks are given in Section 4.

In the following, we will use the lexicographic inequalities of x ∈ Rn, i.e.,

x º 0 ⇔ for some i, xj = 0 (j = 1, 2, · · · , i− 1) , xi > 0 or x = 0.

2 Piecewise non-linear system with Multi-modal

and multi-criteria

First, let us carefully examine the following system:

[
ẋ1

ẋ2

]
=





f1 (x1, x2) , if x2 − x2
1 ≥ 0,

f2 (x1, x2) , if x2 − x2
1 ≤ 0, x2 + x2

1 ≥ 0, x1 ≤ 0,
f3 (x1, x2) , if x2 − x2

1 ≤ 0, x2 + x2
1 ≥ 0, x1 ≥ 0,

f4 (x1, x2) , if x2 + x2
1 ≤ 0.

(1)

Here, R2 is partitioned into four parts Ri, i = 1, · · · , 4, which is shown in Figure 1.
In each Ri, the system is evolved according to the model ẋ = fi (x) .

x
1

x
2

R1

R2

R3

R4

Figure 1: The partition of the system (1).
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A question emerges naturally: when does the system (1) admit a unique solution
in some sense for any initial condition x0 ∈ R2.

To address this question, let us consider a general system given by

Σ : ẋ (t) = fi (x) , if y =
[
h1

i , h2
i , · · · , hpi

i (x)
] ≥ 0, (2)

where x ∈ Rn, y ∈ R, fi : Rn → Rn, i = 1, · · · ,m, and hj
i : Rn → R, i = 1, · · · ,m,

j = 1, · · · , pi, are real functions defined on Rn.
When m = 2, the system (2) is called bimodal. For a bimodal system, if p1 =

p2 = 1, then the system is called a bimodal system with a single criterion.
Suppose that x (t) satisfies hj

i (x) = 0, j = 1, · · · , pi, and hl
k (x) = 0, l =

1, · · · , pk, at some time t̂. Then, which mode is to be applied is determined by
the behavior of x (t) in the time interval

[
t̂, t̂ + ε

]
, where ε > 0 is a small constant.

Let us first recall some definitions given in [11].
Definition 2.1. For a given initial state x (t0) , suppose that x (t) satisfies

x (t) = x (t0) +

∫ t

t0

f (x (τ)) dτ (3)

and is absolutely continuous on each compact subinterval of [t0, t1) , where f (x) is
the vector field given by the right hand of (2). If there exists no left-accumulation
point [11] of event times on [t0, t1) , then x (t) is said to be a solution of system (2)
on [t0, t1) in the sense of Carathéodory for the initial state x (t0) .

Definition 2.2. Let S be a subset of Rn. If for a given initial state x0, there
exists an ε > 0 such that for all t ∈ [0, ε] , x (t) ∈ S, then we say that the system
has the smooth continuation property at x0 with respect to S. Moreover, if from
any x0 ∈ S, the smooth continuation is possible with respect to S, then the system
is said to have the smooth continuation property with respect to S.

Throughout the paper, we assume that the following conditions are satisfied:

Assumption A. 1). fi, hj
i , i = 1, · · · ,m; j = 1, · · · , pi, are analytic functions.

2). For each i = 1, · · · ,m, and any M > 0, there exists a Ki,M such that

‖fi (x)‖ ≤ Ki,M (1 + ‖x‖) , for any x ∈ {x ∈ Rn : ‖x‖ ≤ M} , (4)

where ‖·‖ denotes the usual norm of Rn.

3 Main Results

In this section, we will give some necessary and sufficient conditions for the existence
and uniqueness of solutions of system (2).

Lemma 3.1 If fi, i = 1, · · · ,m, satisfy (4), then the following two statements are
equivalent.
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i) The system (2) admits a unique solution on [0,∞) for any initial state x0.
ii) For the system (2), the smooth continuation from every initial state x0 ∈ Rn is
possible only in one of the m modes. In other words, the smooth continuation is
possible only in one of the sets

{
x ∈ Rn : h1

i (x) ≥ 0, h2
i (x) ≥ 0, · · · , hpi

i (x) ≥ 0
}

, i = 1, · · · ,m. (5)

The exception is for cases where solutions in any two of the sets above are the same
in some time interval.

Proof. i)⇒ii). Since the system (2) admits a unique solution, it follows from
Definition 2.1 that there exists no left-accumulation point of event times. Thus, the
smooth continuation exists only in one of the m models.

ii)⇒i). From Definition 2.1 and Definition 2.2, we only need to prove that for
any initial state x (t0), the system (2) has a unique absolutely continuous solution
x (t) satisfying (3) for any interval [t0, t1] ⊂ [0,∞) . From ii) and Assumption A (ii),
there exists a local unique solution from every initial state. Thus, we can construct
a successively connected solution as follows.

x (t) = xi (t) , t ∈ [τi−1, τi] , i = 1, 2, · · · , N, · · ·
where, τi, for each i = 1, 2, · · · , N, · · · , is the switching time, and xi (t) is the
part of the connected solution driven by the i-th m mode. If limi→∞ τi = τ <
t1, then it follows from (4) that {x (τi) , i = 1, 2, · · · , N, · · · } is a bounded set and
x (t) is uniformly continuous on [t0, τ) . Thus, {x (τi)} has a well-defined limit at τ.
From x (τ) , there exists a unique solution again. Repeat this process, we obtain a
unique state x (t) satisfying (2) on [t0, t1]. The absolutely continuity of x (t) is easily
obtained from Assumption A and (3).

Finally, we shall verify that there exist no left-accumulation point of event times
in {τi} . On a contrary, we suppose that there exists a left-accumulation point τ .
Then, x (t) has a well-defined limit at that point. However, this contradicts to the
fact that the smooth continuation is possible in only one of the m modes. Therefore,
there exists a unique solution on [t0, t1] for every initial state x0. Thus, the system
(2) exists a unique solution on [0,∞) for any initial state x0.

Note that f and h are analytic functions. We recursively define the Lie deriva-
tive, Lk

fh : Rn → R, of h along f as

Lk
fh (x) =





h (x) , if k = 0,
(

∂
∂x

Lk−1
f h (x)

)
f (x) , if k > 0,

(6)

where k is a non-negative integer. Define

Ti =

pi⋂
j=1

∞⋃

k=1

Ti,j,k (7)
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Ti,j,k = {x ∈ Rn : Hi,j,k º 0} , i = 1, · · · ,m, j = 1, · · · , pi, (8)

Hi,j,k =
[
hj

i , Lfi
hj

i , · · · , Lk−1
fi

hj
i

]>
, i = 1, · · · ,m, j = 1, · · · , pi. (9)

and
Ki,j = {x ∈ Rn : fi (x) = fj (x)} , i = 1, · · · , m. (10)

We have the following theorem.

Theorem 3.1 Suppose that fi, i = 1, · · · ,m, satisfy (4). Then, the system (2) ad-
mits a unique solution on [0,∞) for any initial state x0 if and only if

m⋃
i=1

Ti = Rn, Ti

⋂
Tj ⊂ Ki,j, for all i 6= j. (11)

Proof. We note that

x ∈ {
x ∈ Rn : h1

i (x) ≥ 0, h2
i (x) ≥ 0, · · · , hpi

i (x) ≥ 0
}

if and only if
x ∈ Ti.

(⇒) Since the system (2) admits a unique solution on [0,∞) for any initial
state x0, the smooth continuation is possible only in one of the m modes of (5)
for each x0 ∈ Rn by Lemma 3.1. For example, suppose the smooth continuation
is only possible in the first mode. Then we can easily check that if x0 ∈ T1, then⋃m

i=1 Ti = Rn. On the other hand, suppose x0 ∈ Ti

⋂
Tj, that is to say the smooth

continuation is possible in Ti and Tj, then, by the uniqueness of solutions of (2), the
vector fields fi and fj must be the same. Thus, Ti

⋂
Tj ⊂ Ki,j, for all i 6= j.

(⇐) Suppose
⋃m

i=1 Ti = Rn. For each x0 ∈ Rn, suppose that x0 ∈ Ti. Then, the
smooth continuation is possible in the i-th mode of (5). We note that Ti

⋂
Tj ⊂ Ki,j,

that is to say if the smooth continuation is satisfied in two modes, then the two modes
must be the same. Thus, the system (2) exists a unique solution on [0,∞) for any
initial state x0 by Lemma 3.1.

The conditions of Theorem 3.1 are diffcult to be verified for ensuring the existence
and uniqueness of the solution of the system (2), because the definition of Ti is
expressed in terms of the infinite number of intersections of Ti,j,k.

Suppose that the system (2) is with a single criterion, i.e., p1 = p2 = · · · = pm =
1. Define

Hi =
[
hi, Lfi

hi, · · · , Ln−1
fi

hi

]>
, i = 1, · · · ,m. (12)

Definition 3.1. For any i, i = 1, · · · , m, we say that the Jacobian matrix
Ji (x) of (12) satisfies the ratio condition uniformly if there exists an ε > 0 such that
the leading principal minors ∆i

1, · · · , ∆i
n of Ji (x) satisfy

∣∣∆i
1

∣∣ ≥ ε,
|∆i

2|
|∆i

1|
≥ ε, · · · ,

|∆i
n|∣∣∆i

n−1

∣∣ ≥ ε. (13)

We have the following theorem.
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Theorem 3.2 Consider the system (2) with only a single criterion and assume that
Assumption A is satisfied. Suppose that for each i = 1, · · · ,m, the Jacobian matrix
Ji (x) of (12) satisfies the ratio condition (13) uniformly and the following condition
is satisfied

{x : fi (x) = 0} = {x : Hi (x) = 0} = {x0} , i = 1, · · · ,m, (14)

Then, there exists a unique solution on [0,∞) for any initial state x0 if and only if

m⋃
i=1

Si = Rn , (15)

where
Si = {x ∈ Rn : Hi º 0} , i = 1, · · · ,m.

Proof. If for each i = 1, · · · ,m, the Jacobian matrix Ji (x) of (12) satisfies the ratio
condition uniformly, it is clear that Hi : Rn → Rn is a one-to-one map, i = 1, · · · ,m,
(Theorem 1 [14]). To prove this theorem, we only need to show that

Si =
∞⋃

k=1

Ti,1,k

by virtue of Theorem 3.1. Indeed, since

Si ⊂
∞⋃

k=1

Ti,1,k.

Thus, it remains to show that

Si ⊃
∞⋃

k=1

Ti,1,k.

However, this is assured by the condition (14) and Hi : Rn → Rn is a one-to-one
map.

To illustrate the applicability of Theorem 3.2, we consider the system

ẋ =

{
x, if y = ex − 1 + x ≥ 0,
−x, if y = ex − 1 + x ≤ 0.

(16)

Since d
dx

(ex − 1 + x) = 1 + ex, we can choose ε = 1 in (13). Then, both of the
sub-systems of (16) are observable (Theorem 1 [14]). We can easily verify that
the system (16) satisfies (14) and (15), and thus the system (16) admits a unique
solution on [0,∞) for any initial state x0.
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To illustrate it further, let us consider the following two dimensional case. The
dynamics is given by

{
ẋ1 = 1

2
x2

1 + ex2 + x2

ẋ2 = x2
1

if y = x1 ≥ 0,

{
ẋ1 = 2x2 + cos x2 + x1e

x1

ẋ2 = sin x1

if y = x1 ≤ 0.

(17)

Then,

H1 =

[
h1

Lf1h1

]
=

[
x1

1
2
x2

1 + ex2 + x2

]
,

H2 =

[
h2

Lf2h2

]
=

[ −x1

− (2x2 + cos x2 + x1e
x1)

]
,

The Jacobian matrix of H1 and H2 are

J1 =

[
1 0

x1 ex2 + 1

]
, J2 =

[
1 0

− (1 + x1) ex1 −2 + sin x2

]
.

∣∣∆1
1

∣∣ = 1,
|∆1

2|
|∆1

1|
= |ex2 + 1| ≥ 1,

∣∣∆2
1

∣∣ = 1,
|∆2

2|
|∆2

1|
= |2− sin x2| ≥ 1.

Thus, (17) satisfies Assumption A and (13). Note that

S1 = {x : x1 > 0} ∪ {x : x1 = 0 and ex2 + x2 > 0} ,

S2 = {x : x1 < 0} ∪ {x : x1 = 0 and 2x2 + cos x2 < 0} ,

and S1∪S2 = R2. Thus, (17) admits a unique solution on [0,∞) for any initial state
x0 ∈ R2.

In the remainder of this section, we consider a special system with a single
criterion given by

ẋ = Aix + bi, if hi (x) = pi,mi
(x) , i = 1, · · · ,m, (18)

where pi,mi
(x), i = 1, · · · , m, are polynomials of degree mi. For consistency, let

{
x : L0

Aix+bi
pi,mi

(x) = 0, L1
Aix+bi

pi,mi
(x) > 0

}
= {x : pi,mi

(x) > 0} .
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Define

Hi,di
=

di−1⋃
j=1

{
x : Lk

Aix+bi
pi,mi

(x) = 0, Lj
Aix+bi

pi,mi
(x) > 0, k = 0, 1, · · · , j − 1

}
,

(19)
where

di =

mi∑
j=0

(n + j − 1)!/j! (n− 1)!, (20)

We have the following theorem.

Theorem 3.3 The system (18) admits a unique solution on [0,∞) for any initial
state x0 if and only if

m⋃
i=1

Hi,di
= Rn, Hi,di

⋂
Hj,dj

⊂ Ki,j, for all i 6= j, (21)

where Ki,j is defined in (10) with fi (x) = pi,mi
(x) , fj (x) = pj,mj

(x) .

Before the proof of this theorem, we need the following lemma.

Lemma 3.2 Consider
ẋ = Ax + b, y = pm (x) ,

where A is an n × n matrix, b is an n-vector and pm (x) is a polynomial of degree
m. Then, there exists an output linear differential equation of order d, such that

y(d) (t) =
d−1∑
i=0

αiy
(i) (t) , t ≥ 0, (22)

where y(i) (t) = Li
Ax+bpm (x) , αi are real constants and the order d is such that

d ≤ dn,m =
m∑

i=0

(n + i− 1)!/i! (n− 1)!. (23)

Proof. Note that the set of polynomials of degree m defined on Rn can be considered
as a subspace which dimension is less than dn,m. Thus, y(0), y(1), · · · , y(dn,m) are
linear dependent. Hence, there exists some number d ≤ dn,m such that (22) is
satisfied.
Proof of Theorem 3.3. To prove Theorem 3.3, we only need to prove

Hi,di
=

∞⋃
j=1

{
x : Lk

Aix+bi
pi,mi

(x) = 0, Lj
Aix+bi

pi,mi
(x) > 0, k = 0, 1, · · · , j − 1

}

(24)
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in view of Theorem 3.1. Clearly,

Hi,di
⊂

∞⋃
j=1

{
x : Lk

Aix+bi
pi,mi

(x) = 0, Lj
Aix+bi

pi,mi
(x) > 0, k = 0, 1, · · · , j − 1

}
.

Thus, it remains to show that

Hi,di
⊃

∞⋃
j=1

{
x : Lk

Aix+bi
pi,mi

(x) = 0, Lj
Aix+bi

pi,mi
(x) > 0, k = 0, 1, · · · , j − 1

}
.

We prove it by contradiction. Suppose

x0 ∈
∞⋃

j=1

{
x : Lk

Aix+bi
pi,mi

(x) = 0, Lj
Aix+bi

pi,mi
(x) > 0, k = 0, 1, · · · , j − 1

}

but x0 /∈ Hi,di
, i.e., there exists a k > di such that

Lj
Aix+bi

pi,mi
(x) = 0, for j = 1, · · · k − 1, (25)

Lk
Aix+bi

pi,mi
(x) > 0. (26)

By Lemma 3.2, there exists a d ≤ di such that

yi,(d) (t) =
d−1∑
j=0

αjy
i,(j) (t) , t ≥ 0, (27)

where yi,(j) (t) = Lj
Aix+bi

pi,mi
(x) . We take the Lie differential at both sides of (27).

We have

yi,(s) (t) =
s−1∑

j=s−d

αjy
i,(j) (t) , t ≥ 0, s = d, d + 1, · · · , k. (28)

On this basis, we have Lk
Aix+bi

pi,mi
(x) = 0. This contradicts (26). We complete the

proof.¥
To verify if the system (18) admits a unique solution on [0,∞) for any initial

state x0, we only need to verify the condition (21) in view of Theorem 3.3. To verify
the condition (21), we only need to solve a sequence of polynomial equations and
strict polynomial inequalities.

Let us consider the following system:

[
ẋ1

ẋ2

]
=





[
1 1
0 1

] [
x1

x2

]
if y = x1x2 + x2

2 ≥ 0,

[
1 0
1 1

] [
x1

x2

]
if y = x1x2 + x2

2 ≤ 0.

(29)
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We have y
(1)
1 = LA1xy = x2 (2x1 + 3x2) , y

(2)
1 = L2

A1xy = 4x2 (x1 + 2x2) = 4y
(1)
1 − 4y,

H1 =
{
x ∈ R2 : y > 0

}⋃ {
x : y = 0 and y

(1)
1 > 0

}

=
{
x ∈ R2 : x2 > 0 and x1 + x2 > 0

} ⋃ {
x ∈ R2 : x2 < 0 and x1 + x2 < 0

}
⋃ {

x ∈ R2 : x2 = 0
}

.

We can compute

H2 =
{
x ∈ R2 : x2 < 0 and x1 + x2 > 0

} ⋃ {
x ∈ R2 : x2 > 0 and x1 + x2 < 0

}
⋃ {

x ∈ R2 : x2 6= 0 and x1 + x2 = 0
}⋃ {

(0, 0)>
}

.

Since [2,−2]> /∈ H1 ∪H2, we conclude that the solution of the system (29) does not

exist at [2,−2]> . We note that H1 ∩H2 =
{

(0, 0)>
}

. Thus, if the system (29) has

a solution from x0 ∈ R2, then this solution is unique.
Remark 3.1. We note that when mi = 1, the system (18) reduces to the case

considered in [13]. Thus, our results contain those obtained in [13].

4 Conclusion

In this paper, we have considered the existence and uniqueness of solutions of piece-
wise non-linear systems. We have developed some necessary and sufficient conditions
for the existence and uniqueness of solutions of this class of systems.
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