This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

ISSN: 2155-9880

Journal of Clinical & Experimental Cardiology

The International Open Access Journal of Clinical & Experimental Cardiology

Special Issue Title: Coronary Heart Disease

Handling Editor

José G. Díez Texas Heart Institute, USA

Available online at: OMICS Publishing Group (www.omicsonline.org)

This article was originally published in a journal by OMICS Publishing Group, and the attached copy is provided by OMICS Publishing Group for the author's benefit and for the benefit of the author's institution, for commercial/research/educational use including without limitation use in instruction at your institution, sending it to specific colleagues that you know, and providing a copy to your institution's administrator.

All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution's website or repository, are requested to cite properly.

Digital Object Identifier: http://dx.doi.org/10.4172/2155-9880.S6-e001

Editorial

Cardiac Imaging Modalities in the Diagnosis of Coronary Artery Disease Zhonghua Sun*

Discipline of Medical Imaging, Department of Imaging and Applied Physics, Curtin University, Australia

Abstract

Coronary artery disease is the leading cause of death in advanced countries. Early detection and diagnosis of coronary artery disease plays an important role in the identification of disease severity and prediction of disease outcome, consequently improving patient management. Diagnosis and management of coronary artery disease is increasingly dependent on less-invasive imaging modalities, including coronary CT angiography, cardiac magnetic resonance imaging, cardiac radionuclide imaging such as SPECT and PET modalities. Rapid developments of these imaging modalities have significantly improved the diagnostic performance of each imaging technique with high diagnostic accuracy achieved in both diagnostic and prognostic value in coronary artery disease. This editorial provides an overview of the diagnostic applications of a variety of less-invasive imaging modalities in the diagnosis of coronary artery disease. This special issue of "Arteriosclerotic Vascular Disease: Part II" in the journal of Clinical and Experimental Cardiology will give particular attention to contributions focusing on the clinical applications of these imaging modalities in the arteriosclerotic vascular disease, in particular, coronary artery disease.

Keywords: Coronary artery disease; Arteriosclerotic vascular disease; Diagnostic value; Imaging modalities

Coronary artery disease (CAD) is the leading cause of death in advanced countries and its prevalence is increasing among developing countries [1,2]. Various less-invasive imaging modalities are increasingly used in the diagnosis of CAD including coronary CT angiography, cardiac magnetic resonance imaging (MRI), and cardiac single photon emission computed tomography (SPECT), positron emission tomography (PET) and integrated SPECT/CT and PET/CT [3]. To improve early diagnosis and patient management, it is essential to have an overview of the diagnostic value of different imaging modalities in CAD. This editorial provides an overview of the diagnostic performance of these imaging modalities in CAD, with a focus on the advantages, limitations and future directions of the use of each imaging modality in the diagnosis of CAD.

Coronary CT angiography represents the most rapidly developed imaging modality in cardiac imaging with evolution from single slice CT to multislice CT, from early generation of 4- and 16-slice CT to 64- and 320-slice CT scanners, demonstrating excellent visualization of coronary anatomy and assessment of coronary artery disease [4-6]. In summary, diagnostic sensitivity of coronary CT angiography has been significantly improved with 64- or more slice CT scanners when compared to the early generations of 4- and 16-slice scanners, while, the negative predictive value remains consistently high (>90%), regardless of the type of CT scanners [7-11]. This indicates the main role of coronary CT angiography is to rule out significant CAD, thus reducing the need for invasive coronary angiography. The prime indication of coronary CT angiography is to diagnose patients with a low and intermediate probability of CAD as a simple non-invasive testing, while patients with a high probability of CAD will benefit from invasive coronary angiography [12].

In addition to the diagnostic value, coronary CT angiography allows for characterization of plaque components (calcified versus non-calcified plaques and shows potential prognostic value of disease extent and cardiac events [13,14]. Studies based on single center and multicenter clinical trials have shown that coronary CT angiography provides incremental prognostic value over clinical risk analysis in predicting major adverse cardiac events with absence of CAD leading to event free survival period, while presence of plaques associated with increased risk of cardiac events [15-19]. Radiation dose associated with coronary CT angiography is the main concern of this technique in cardiac imaging, and this has increased substantially over the last decade with the development of multislice CT scanners and widespread use of cardiac CT in routine clinical practice. This has raised a serious concern and it is a hot topic of debate in the literature. Various dose-saving strategies have been proposed and recommended in the past few years to lower radiation exposure to patients undergoing coronary CT angiography with tremendous progress having been achieved. Effective dose reduction has been accomplished by employing techniques with a radiation dose of less than 10 mSv to as low as 1 mSv in some studies [11,20,21], although much effort is still required to ensure that coronary CT angiography is safely performed in imaging patients with suspected coronary artery disease.

MRI provides excellent soft tissue contrast, with inherent 3D capabilities, and acquisition of images in any anatomical plane. Furthermore, MRI does not expose the patient to ionizing radiation, thus, the usefulness of MRI has been investigated widely. However, the diagnostic accuracy of cardiac MRI in CAD varies widely according to the literature, with sensitivity ranging from 38% to 83%, and specificity ranging from 57% to 95% due to variable scanning protocols used in the studies [22]. Recent technical developments in MRI, especially with the emergence of 3.0 T MR imaging system have been shown to be a promising technique for performing cardiac MRI, with significant improvement of diagnostic value for detection of CAD [23,24]. Despite these advantages, cardiac MRI is still limited in the visualization of distal coronary segments due to inferior spatial resolution, thus, it is

*Corresponding author: Zhonghua Sun, Associate Professor, Discipline of Medical Imaging, Department of Imaging and Applied Physics, Curtin University, GPO Box, U1987, Perth, Western Australia, 6845, Australia, Tel: +61-8-9266 7509; Fax: +61-8-9266 2377; E-mail: z.sun@curtin.edu.au

Received September 10, 2013; Accepted September 11, 2013; Published September 12, 2013

Citation: Sun Z (2013) Cardiac Imaging Modalities in the Diagnosis of Coronary Artery Disease. J Clin Exp Cardiolog S6: e001. doi:10.4172/2155-9880.S6-e001

Copyright: © 2013 Sun Z. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

not as widely used as coronary CT angiography in the diagnosis of CAD.

Noninvasive evaluation for obstructive CAD is performed by gatekeeper tests that offer physiologic information of coronary stenosis (physiologic imaging) or the degree of stenosis (anatomic imaging). Coronary CT angiography serves as an excellent anatomic gatekeeper as it has a very high negative predictive value, while stress perfusion cardiac MRI is a regarded as a physiologic gatekeeper. Stress perfusion cardiac MRI has been proved to be a robust and accurate diagnostic test for CAD when invasive coronary angiography is used as the reference standard [25-28]. Several systematic reviews and meta-analyses have shown that the sensitivity and specificity of stress perfusion MRI ranged from 89% to 91% and 76% to 81%, using invasive coronary angiography as the reference standard [26-28]. Desai and Jha recently conducted a meta-analysis of 12 studies regarding the cardiac stress perfusion MRI in the diagnosis of flow-limiting obstructive CAD using fractional flow reserve measured at invasive coronary angiography as the reference standard [29]. Their analysis shows that cardiac stress perfusion MRI has a sensitivity of 89.1% and 87.7% and a specificity of 84.9% and 88.6% on a patient-based and on a coronary territory-based analysis, respectively. Thus, cardiac stress perfusion MRI is an accurate test for the detection of limiting stenosis.

Myocardial perfusion imaging (MPI) with stress gated SPECT has been widely used in the diagnosis of CAD and is a well-documented non-invasive method for risk stratification with high diagnostic accuracy when compared to coronary CT angiography [30,31]. The presence of ischemia could be used to classify the patients as having CAD and candidates for receiving aggressive medical therapy and management. Coronary CT angiography has limited accuracy for identifying the physiologic significance of perfusion defects in patients with intermediate or high pre-test likelihood of CAD when compared to MPI SPECT [32]. Thus, MPI SPECT offers additional function information in the evaluation of coronary stenosis.MPI SPECT car be used as the gatekeeper to invasive coronary angiography. Bateman et al. showed that referral to invasive coronary angiography was 3.5%, 9%, and 60%, respectively, corresponding to normal to mild, moderately abnormal and severely abnormal perfusion scans [33]. A negative SPECT imaging has been confirmed to serve as an excellent prognostic indicator with an annual cardiac event rate of <1% for the general population, while an increasing cardiac events are associated with increasing severity of both fixed and reversible perfusion defects, regardless of the presence of non-obstructive coronary disease [34-36].

Cardiac PET imaging is another well-established tool for the evaluation of ischemia, blood flow quantification, myocardial viability and perfusion [37,38]. Cardiac PET utilizing ¹⁸F-FDG is considered the most sensitive modality for detecting hibernating viable myocardium and predicting left ventricular functional recovery post-coronary revascularization. PET has higher spatial and temporal resolution than SPECT due to more robust methods of attenuation correction, thus, PET allows quantification of resting and hyperemic regional myocardial perfusion. When PET was integrated into clinical patient management, a significant reduction in cardiac events was observed in patients with ¹⁸F-FDG PET-assisted management, according to randomized controlled trials [39,40]. PET images provide incremental prognostic information to the clinical and angiographic findings with regard to event-free survival. An increased extent and severity of perfusion defects with stress PET were reported to be associated with increased frequency of adverse cardiac events, thus, this indicates PET can be used to predict cardiac mortality [41,42].

Page 2 of 4

Cardiac PET is not yet as widely available as SPECT imaging. Furthermore, experience in image interpretation and operation may vary widely. Cardiac PET will continue to play a key role in the investigation of myocardial viability and perfusion contributing more to available data.

Integrated SPECT/PET-multislice CT has huge potential for cardiac imaging. The incremental value of hybrid imaging lies in accurate spatial co-localization of myocardial perfusion defects and anatomic coronary arteries. This combined technology allows detection and quantification of the burden of calcified and non-calcified plaques, quantification of vascular activity and endothelial health, identification of flow-limiting coronary stenosis, and potentially identification of high-risk plaques in the coronary artery tree [43]. Combined SPECT/CT and PET/CT systems are today well established in clinical routine imaging with promising results report p1-48], although more multicentre trials are needed to validate use diagnostic value of the hybrid imaging modalities. Combined PET/MRI represents another new integrated protocol, however, it is only limited to a few clinical centers for preclinical cardiac imaging with a focus on animal experiments [49,50].

In summary, this editorial briefly reviews the diagnostic applications of these less-invasive imaging modalities including coronary CT angiography, cardiac MRI, cardiac SPECT and cardiac PET in coronary artery disease. Advantages and limitations of each imaging modality in the detection of coronary artery disease are also highlighted. Researchers are encouraged to contribute both original and review papers to this special issue with the aim of delivering both educational and teaching message to clinicians with research interests in cardiac imaging.

References

- Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M, Dai S, et al. (2010) Executive summary: heart disease and stroke statistics--2010 update: a report from the American Heart Association. Circulation 121: 948-954.
- Gaziano TA, Bitton A, Anand S, Abrahams-Gessel S, Murphy A (2010) Growing epidemic of coronary heart disease in low- and middle-income countries. Curr Probl Cardiol 35: 72-115.
- Sun ZH, Cao Y, Li HF (2011) Multislice computed tomography angiography in the diagnosis of coronary artery disease. J Geriatr Cardiol 8: 104-113.
- Sun Z, Jiang W (2006) Diagnostic value of multislice computed tomography angiography in coronary artery disease: a meta-analysis. Eur J Radiol 60: 279-286.
- Nieman K, Oudkerk M, Rensing BJ, van Ooijen P, Munne A, et al. (2001) Coronary angiography with multi-slice computed tomography. Lancet 357: 599-603.
- Achenbach S (2006) Computed tomography coronary angiography. J Am Coll Cardiol 48: 1919-1928.
- Pugliese F, Mollet NR, Runza G, van Mieghem C, Meijboom WB, et al. (2006) Diagnostic accuracy of non-invasive 64-slice CT coronary angiography in patients with stable angina pectoris. Eur Radiol 16: 575-582.
- Sun Z, Lin C, Davidson R, Dong C, Liao Y (2008) Diagnostic value of 64-slice CT angiography in coronary artery disease: a systematic review. Eur J Radiol 67: 78-84.
- Vanhoenacker PK, Heijenbrok-Kal MH, Van Heste R, Decramer I, Van Hoe LR, et al. (2007) Diagnostic performance of multidetector CT angiography for assessment of coronary artery disease: meta-analysis. Radiology 244: 419-428.
- Abdulla J, Abildstrom Z, Gotzsche O, Christensen E, Kober L, et al. (2007) 64-multislice detector computed tomography coronary angiography as potential alternative to conventional coronary angiography: a systematic review and meta-analysis. Eur Heart J 28: 3042-3050.

- 11. Sun Z, Choo GH, Ng KH (2012) Coronary CT angiography: current status and continuing challenges. Br J Radiol 85: 495-510.
- Sun Z, Aziz YF, Ng KH (2012) Coronary CT angiography: how should physicians use it wisely and when do physicians request it appropriately? Eur J Radiol 81: e684-687.
- Sun Z, Dimpudus FJ, Nugroho J, Adipranoto JD (2010) CT virtual intravascular endoscopy assessment of coronary artery plaques: a preliminary study. Eur J Radiol 75: e112-119.
- 14. Sun Z (2012) Cardiac CT imaging in coronary artery disease: Current status and future directions. Quant Imaging Med Surg 2: 98-105.
- Liu YC, Sun Z, Tsay PK, Chan T, Hsieh IC, et al. (2013) Significance of coronary calcification for prediction of coronary artery disease and cardiac events based on 64-slice coronary computed tomography angiography. Biomed Res Int 2013: 472347.
- 16. Min JK, Feignoux J, Treutenaere J, Laperche T, Sablayrolles J (2010) The prognostic value of multidetector coronary CT angiography for the prediction of major adverse cardiovascular events: a multicenter observational cohort study. Int J Cardiovasc Imaging 26: 721-728.
- 17. Schlett CL, Banerji D, Siegel E, Bamberg F, Lehman SJ, et al. (2011) Prognostic value of CT angiography for major adverse cardiac events in patients with acute chest pain from the emergency department: 2-year outcomes of the ROMICAT trial. JACC Cardiovasc Imaging 4: 481-491.
- Hou ZH, Lu B, Gao Y, Jiang SL, Wang Y, et al. (2012) Prognostic value of coronary CT angiography and calcium score for major adverse cardiac events in outpatients. JACC Cardiovasc Imaging 5: 990-999.
- Hadamitzky M, Achenback S, Al-Mallah M, Berman D, Budoff M, et al. (2013) Optimized Prognostic Score for Coronary Computed Tomographic Angiography: Results From the CONFIRM Registry (COronary CT Angiography Evaluation For Clinical Outcomes: An InteRnational Multicenter Registry). J Am Coll Cardiol 62: 468-476.
- Sun Z (2010) Multislice CT angiography in coronary artery disease: Technical developments, radiation dose and diagnostic value. World J Cardiol 2: 333-343.
- 21. Sun Z, Ng KH (2011) Coronary computed tomography angiography in coronary artery disease. World J Cardiol 3: 303-310.
- 22. Danias PG, Roussakis A, Ioannidis JP (2004) Diagnostic performance of coronary magnetic resonance angiography as compared against conventional X-ray angiography: a meta-analysis. J Am Coll Cardiol 44: 1867-1876.
- Sommer T, Hackenbroch M, Hofer U, Schmiedel A, Willinek WA, et al. (2005) Coronary MR angiography at 3.0 T versus that at 1.5 T: initial results in patients suspected of having coronary artery disease. Radiology 234: 718-725.
- 24. Yang Q, Li K, Liu X, Bi X, Liu Z, et al. (2009) Contrast-enhanced whole-heart coronary magnetic resonance angiography at 3.0-T: a comparative study with X-ray angiography in a single center. J Am Coll Cardiol 54: 69-76.
- 25. Greenwood JP, Maredia N, Younger JF, Brown JM, Nixon J, et al. (2012) Cardiovascular magnetic resonance and single-photon emission computed tomography for diagnosis of coronary heart disease (CE-MARC): a prospective trial. Lancet 379: 453-460.
- Nandalur KR, Dwamena BA, Choudhri AF, Nandalur MR, Carlos RC (2007) Diagnostic performance of stress cardiac magnetic resonance imaging in the detection of coronary artery disease: a meta-analysis. J Am Coll Cardiol 50: 1343-1353.
- 27. Jaarsma C, Leiner T, Bekkers SC, Crijns HJ, Wildberger JE, et al. (2012) Diagnosticperformance of noninvasive myocardial perfusionimaging using single-photon emissioncomputed tomography, cardiac magnetic resonance, and positron emission tomography imagingfor the detection of obstructive coronary arterydisease: a meta-analysis. J Am Coll Cardiol 59: 1719–1728.
- 28. de Jong MC, Genders TS, van Geuns RJ, Moelker A, Hunink MG (2012) Diagnostic performance of stress myocardial perfusion imaging for coronary artery disease: a systematic review and meta-analysis. Eur Radiol 22: 1881-1895.
- Desai RR, Jha S (2013) Diagnostic performance of cardiac stress perfusion MRI in the detection of coronary artery disease using fractional flow reserve as the reference standard: a meta-analysis. AJR Am J Roentgenol 201: W245-252.
- 30. Fallahi B, Beiki D, Gholamrezanezhad A, Mahmoudian B, Ansari Gilani K, et al.

(2008) Single Tc99m Sestamibi injection, double acquisition gated SPECT after stress and during low-dose dobutamine infusion: a new suggested protocol for evaluation of myocardial perfusion. Int J Cardiovasc Imaging 24: 825-835.

- 31. Elhendy A, van Domburg RT, Sozzi FB, Poldermans D, Bax JJ, et al. (2001) Impact of hypertension on the accuracy of exercise stress myocardial perfusion imaging for the diagnosis of coronary artery disease. Heart 85: 655-661.
- 32. Min JK, Kang N, Shaw LJ, Devereux RB, Robinson M, et al. (2008) Costs and clinical outcomes after coronary multidetector CT angiography in patients without known coronary artery disease: comparison to myocardial perfusion SPECT. Radiology 249: 62-70.
- Bateman TM, O'Keefe JH Jr, Dong VM, Barnhart C, Ligon RW (1995) Coronary angiographic rates after stress single-photon emission computed tomographic scintigraphy. J Nucl Cardiol 2: 217-223.
- Hachamovitch R, Hayes SW, Friedman JD, Cohen I, Berman DS (2005) A prognostic score for prediction of cardiac mortality risk after adenosine stress myocardial perfusion scintigraphy. J Am Coll Cardiol 45: 722-729.
- 35. Borges-Neto S, Shaw LK, Tuttle RH, Alexander JH, Smith WT 4th, et al. (2005) Incremental prognostic power of single-photon emission computed tomographic myocardial perfusion imaging in patients with known or suspected coronary artery disease. Am J Cardiol 95: 182-188.
- Leslie WD, Tully SA, Yogendran MS, Ward LM, Nour KA, et al. (2005) Prognostic value of automatedquantification of 99mTc-sestamibi myocardial perfusion imaging. J Nucl Med 46: 204-211.
- 37. Berman DS, Hachamovitch R, Shaw LJ, Friedman JD, Hayes SW, et al. (2006) Roles of nuclear cardiology, cardiac computed tomography, and cardiac magnetic resonance: assessment of patients with suspected coronary artery disease. J Nucl Med 47: 74-82.
- Machac J (2005) Cardiac positron emission tomography imaging. Semin Nucl Med 35: 17-36.
- Beanlands RS, Nichol G, Huszti E, Humen D, Racine N, et al. (2007) F-18-fluorodeoxyglucose positron emission tomography imaging-assisted management of patients with severe left ventricular dysfunction and suspected coronary disease: a randomized controlled trial (PARR-2). J Am CollCardiol 50: 2002-2012.
- 40. Abraham A, Nichol G, Williams KA, Guo A, deKemp RA, et al. (2010) 18F-FDG PET imaging of myocardial viability in an experienced center with access to 18F-FDG and integration with clinical management teams: the Ottawa-FIVE substudy of the PARR 2 trial. J Nucl Med 51: 567-574.
- 41. Yoshinaga K, Chow BJ, Williams K, Chen L, deKemp RA, et al. (2006) What is the prognostic value of myocardial perfusion imaging using rubidium-82 positron emission tomography? J Am Coll Cardiol 48: 1029-1039.
- 42. Dorbala S, Hachamovitch R, Curillova Z, Thomas D, Vangala D, et al. (2009) Incremental prognostic value of gated Rb-82 positron emission tomography myocardial perfusion imaging over clinical variables and rest LVEF. JACC Cardiovasc Imaging 2: 846-854.
- 43. Di Carli MF, Murthy VL (2011) Cardiac PET/CT for the evaluation of known or suspected coronary artery disease. Radiographics 31: 1239-1254.
- 44. Namdar M, Hany TF, Koepfli P, Siegrist PT, Burger C, et al. (2005) Integrated PET/CT for the assessment of coronary artery disease: a feasibility study. J Nucl Med 46: 930-935.
- 45. Rispler S, Keidar Z, Ghersin E, Roguin A, Soli A, et al. (2007) Integrated singlephoton emissioncomputed tomography and computed tomography coronary angiography forthe assessment of hemodynamically significant coronary artery lesions. J Am CollCardiol 49: 1059–1067.
- 46. Groves AM, Speechly-Dick ME, Kayani I, Pugliese F, Endozo R, et al. (2009) First experience of combined cardiac PET/64-detector CT angiography with invasive angiographic validation. Eur J Nucl Med Mol Imaging 36: 2027-2033.
- 47. Sato A, Nozato T, Hikita H, Miyazaki S, Takahashi Y, et al. (2010) Incremental value of combining 64-slice computed tomography angiography with stress nuclear myocardial perfusion imaging to improve noninvasive detection of coronary artery disease. J Nucl Cardiol 17: 19-26.
- 48. Al Moudi M, Sun Z, Lenzo N (2011) Diagnostic value of SPECT, PET and PET/ CT in the diagnosis of coronary artery disease: A systematic review. Biomed Imaging Interv J 7: e9.

Citation: Sun Z (2013) Cardiac Imaging Modalities in the Diagnosis of Coronary Artery Disease. J Clin Exp Cardiolog S6: e001. doi:10.4172/2155-9880.S6-e001

Page 4 of 4

- 49. Catana C, Procissi D, Wu Y, Judenhofer MS, Qi J, et al. (2008) Simultaneous in vivo positron emission tomography and magnetic resonance imaging. Proc Natl Acad Sci U S A 105: 3705-3710.
- 50. Büscher K, Judenhofer MS, Kuhlmann MT, Hermann S, Wehrl HF, et al. (2010) Isochronous assessment of cardiac metabolism and function in mice using hybrid PET/MRI. J Nucl Med 51: 1277-1284.

Submit your next manuscript and get advantages of OMICS Group submissions

Unique features:

- User friendly/feasible website-translation of your paper to 50 world's leading languages
- Audio Version of published paper .
 - Digital articles to share and explore

Special features:

- 250 Open Access Journals .
- 20,000 editorial team •
- 21 days rapid review process .
- Quality and quick editorial, review and publication processing •
- Indexing at PubMed (partial), Scopus, EBSCO, Index Copernicus and Google Scholar etc • Sharing Option: Social Networking Enabled
- Authors, Reviewers and Editors rewarded with online Scientific Credits
- . Better discount for your subsequent articles
- Submit your manuscript at: www.editorialmanager.com/clinicalgroup

Citation: Sun Z (2013) Cardiac Imaging Modalities in the Diagnosis of Coronary Artery Disease. J Clin Exp Cardiolog S6: e001. doi:10.4172/2155-9880.S6-e001

This article was originally published in a special issue, Coronary Heart Disease handled by Editor(s). Dr. José G. Díez, Texas Heart Institute, USA