
©2009 IEEE. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component
of this work in other works must be obtained from the IEEE.

The Significance of Participant Experience when Evaluating Software Inspection
Techniques

David A. McMeekin, Brian R. von Konsky, Michael Robey, David J.A. Cooper
Digital Ecosystems and Business Intelligence Institute

Curtin University of Technology
Suite 3 - Enterprise Unit 4, De’ Laeter Way

Technology Park, Bentley WA 6102, Australia
{D.McMeekin, B.vonKonsky, M.Robey, David.Cooper}@curtin.edu.au

Abstract

Software inspections have been used to improve soft-
ware quality for 30 years. The Checklist Based Reading
strategy has traditionally been the most prevalent reading
strategy. Increased Object Oriented usage has raised ques-
tions regarding this technique’s efficacy, given issues such
as delocalisation. This study compared two OO inspection
techniques: Use-Case Reading and Usage-Based Reading,
with Checklist Based Reading. Students and industry pro-
fessionals were recruited to participate in the study. The
effectiveness of each reading strategy was analysed, and
the effect experience had on inspection efficacy. The results
showed no significant difference between inspection tech-
niques, whether used by student or professional developers
but a significant difference was identified between student
and professional developers in applying the different tech-
niques. Qualitative results highlighted the differences in
ability between industry and students with respect to what
each group considered important when inspecting and writ-
ing code. These results highlight the differences between
student and industry professionals when applying inspec-
tions. Therefore, when selecting participants for empirical
software engineering studies, participant experience level
must be accounted for within the reporting of results.

1. Introduction

For the past 30 years, software inspections have been
shown to reduce defects and improve software quality. The
development of what became known as Checklist Based
Reading (CBR) or ‘Fagan Inspections’ occurred during the
time when the procedural programming paradigm was dom-
inant. However, this has changed over the past 15 years as
the Object Oriented (OO) paradigm’s usage has increased.

Dunsmore et al. [7, 8, 9, 10] highlighted current issues in
inspection efficacy, believed to be caused by the changing
paradigm.

Past research that developed inspection techniques
specifically for OO code reported inconclusive results re-
garding which technique had the greatest efficacy in detect-
ing defects and defects due to delocalisation in OO code
[9, 10]. The work reported here applied the OO inspec-
tion technique, Usage-Based Reading (UBR), developed by
Thelin et al. [31] as a refinement to the Use-Case Reading
(UCR) technique. This study’s two research goals were:

1. to compare the UBR, UCR and CBR techniques in a
code inspection using both:

(a) students, and
(b) industry professionals, as participants

2. to measure differences in defect detection between in-
dustry professionals and students when using the de-
scribed inspection techniques

These goals were met using three metrics for each in-
spection technique in each participant grouping:

1. the total number of defects detected
2. the number of defects due to delocalisation detected,

and
3. the number of false positives generated

The contribution of this paper is an analysis of the effec-
tiveness of the reading strategies, and the effect that experi-
ence has on strategy efficacy.

2 Background

A software inspection is the process of reading software
artefacts to detect defects. A defect is defined as ‘a devia-
tion from the specification that would go on to cause failure

2009 Australian Software Engineering Conference

1530-0803/09 $25.00 © 2009 IEEE

DOI 10.1109/ASWEC.2009.13

200

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on February 5, 2010 at 02:58 from IEEE Xplore. Restrictions apply.

(some undesired behaviour of either a trivial or catastrophic
nature) if left uncorrected’ [6]. Inspections are considered
one of the most effective software engineering practices to
ensure quality [18]. Since their formalisation, inspections
have been shown to reduce defect numbers in both design
and code, reduce testing time, and improve production cost
effectiveness [11, 12, 32, 18, 17].

The OO programming paradigm introduced many fea-
tures not commonly available in procedural programming,
such as function and operator overloading, inheritance, dy-
namic (late) binding and polymorphism. It was expected
that these features would improve software quality with
better data abstraction and information hiding, more read-
ily allowing for concurrency and adaptability to changes in
the real world. These added features increased program
complexity, causing other problems within these systems
[2, 19, 35, 36].

2.1 Delocalisation

A major challenge faced by OO code inspectors is de-
localisation. First described by Soloway et al. [28], delo-
calisation is where related code is spread throughout many
different locations.

OO programs cannot simply be read from top to bottom.
An OO program written in a delocalised manner becomes
difficult to understand as inspecting a single class may rely
on several other classes for it to be fully understood. Code
relied upon by the class under inspection may be contained
in another class. If the class containing this code is not
within the scope of the inspection, inspectors make assump-
tions about it. These assumptions may be correct or incor-
rect. Accurate assumptions are difficult to make when in-
specting code in delocalised components. This problem is
not unique to OO programs. Programs written in a proce-
dural technique also face similar issues with function calls.
However, it appears that the OO paradigm greatly increased
the delocalisation problem [10].

2.2 Reading Techniques

A reading technique is a step by step procedure imple-
mented by an inspector or inspection team to detect defects
within a software system. Implementing a reading tech-
nique allows methodical examination of the artefact under
inspection and provides avenues for correction and feed-
back, hence improving final product quality [25].

2.2.1 Checklist Based Reading (CBR)

CBR is considered the standard inspection technique used
by software developers[18] and was first described by Fagan
[11]. The inspector reads a pre-determined amount of code.

During this reading phase, checklist questions guide the in-
spector in identifying common coding errors. A ‘yes’ an-
swer indicates no defect while a ‘no’ answer indicates there
may be a defect. Checklist questions should be developed
from the accumulation of historical defect data [13, 16]. As
CBR is considered standard, it should be used as a baseline
within empirical studies comparing inspection techniques
[31].

2.2.2 Use Case Reading

The UCR technique was designed for inspecting OO sys-
tems, taking into account dynamic interaction with collab-
orating objects. The goal is to ensure that every object re-
sponds in a correct manner given their role in executing the
scenario. That is, the correct methods are called and state
changes are consistent and correct [10].

Inspectors create multiple scenarios using each system
use case. Each scenario is then traced through a sequence
diagram, examining the method calls and changes in the
object state to see how the class under inspection imple-
ments them. When encountering the class under inspection
within the sequence diagram, the inspector changes arte-
facts and inspects the code to verify the expected behaviour.
At the completion of the inspection, the object’s state should
match the expected state listed in the scenario. If the states
do not match, it suggests there is a defect within the code. In
this manner, the object usage context is also inspected. The
assumption is that incorrect, missing or error-prone method
calls will be discovered using this technique. This imple-
mentation means that certain methods within a class will not
be inspected from the scenarios created. The uninspected
methods must be inspected by using other techniques [10].

2.2.3 Usage-Based Reading

UBR is an inspection technique from within the Scenario-
Based Reading family SBR [1]. UBR is similar to UCR
(described earlier) but was derived from the Statistical Us-
age Inspection (SUI) technique. The SUI technique focuses
on product reliability certification by testing it according to
the system’s expected usage [20]. UBR attempts to guide
the inspectors in finding defects considered to have the most
negative impact upon the program’s usability [31].

In UBR, use cases are prioritised according to the way in
which the system will be used. Using the requirements doc-
ument as the reference point, the use case with the highest
priority is selected and traced by manual execution through
the design document. Tracing the execution ensures that the
use case goals are achieved and if not this is noted. This in-
spection is repeated until each use case has been inspected.

201

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on February 5, 2010 at 02:58 from IEEE Xplore. Restrictions apply.

2.2.4 Prior Studies

Dunsmore et al. [9, 10] conducted an OO code inspection,
comparing CBR with the two techniques, UCR and Ab-
stract Driven Reading, developed for OO code. Dunsmore
et al. reported a significant difference at the 10% level in
the number of detected defects between the different tech-
niques.

Thelin et al. [31] conducted an inspection on OO re-
quirements and design documents comparing the CBR tech-
nique with the UBR inspection technique. They reported a
significant difference between the techniques in the number
of defects detected at the 5% level in detected defects.

2.3 Participants: Students or Industry

Software engineering empirical research aims to im-
prove software quality through developing and improving
design and development processes and methodologies, in-
spection and maintenance techniques as well as tool sup-
port needed for these processes [27]. This means research
results should be transferable from academia into industry
and generalizable to the wider software engineering com-
munity.

Table 1 displays a summary of software engineering
research that discussed differences in results when using
student and industry participants within the studies. The
summary indicates results generated from within empirical
studies should be interpreted in the context of participants
involved within the study.

Table 2 lists empirical research that highlights results and
recommendations from the literature relating to the use of
student and/or novice programmers.

Tables 1 and 2 demonstrate using both student and pro-
fessionals as participants within software engineering em-
pirical research has advantages and disadvantages. A ma-
jor advantage is the homogenous nature of the participants
in that an experience baseline can be set for students, each
having successfully completed a certain section of their de-
gree program. Using industry professionals within a study
is advantageous as results can be generalised to the wider
developer community. The anomaly introduced by profes-
sionals is the extent and variation of their experience within
the area being studied.

Examining the studies and results listed in Tables 1 and 2
this study uses both students and industry professionals. Re-
sults from this study can therefore be used to: examine stu-
dents’ application of inspection techniques, examine indus-
try professionals’ application of inspection techniques and
permit results to be compared student to student, profes-
sional to professional and student to professional.

The studies of Dunsmore et al. [10] and Thelin et al. [31]
have been well cited within the literature and because of

Author Summary of comments
Weinberg
[34]

Using trainees for studies gives results
about trainees

Curtis [4] Generalizations about professionals
should be careful when novices are
used

Curtis [5] Results about novices should produce
better teaching methods and tools

Potts [23] Research occurs, results derived and
then industry should be involved in the
application of the results

Glass [14] Software engineering research has been
done independent of industry

Votta [33] Highlights that recommendations from
[5] haven’t been implemented

Sjøberg [26] Studies should reflect industrial setting
Sjøberg [27] The lack of reality in studies can cause

technology transfer from academia to
industry to be very slow

Table 1. Listing of articles discussing participants within
empirical research.

this, our study has focussed specifically on those two stud-
ies. Table 3 shows a comparison between the different as-
pects of Dunsmore et al. [9], Thelin et al. [31] and this
study.

3 Methodology

This empirical study compared the UBR, UCR and CBR
inspection techniques and the impact of inspector experi-
ence level on their efficacy. It investigated the differences
reported in Dunsmore et al.and Thelin et al.’s prior research
[9, 10, 31]. The prior research was linked by controlling two
independent variables found in the previous studies:

1. the reading technique implemented by each participant
2. the participants’ experience level.

3.1 Artefacts

For this study, the artefacts from Dunsmore et al. [9, 10]
were chosen. This enabled a comparison of inspection re-
sults returned from the participants’ code inspections us-
ing different inspection techniques. The code contained
14 seeded defects. A composite checklist combining the
salient features used by Dunsmore et al. [9, 10] and Thelin
et al. [31] was also developed. The use cases were priori-
tised for use with the UBR inspection technique.

202

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on February 5, 2010 at 02:58 from IEEE Xplore. Restrictions apply.

Author Objectives Participants Conclusions
Porter et al. [22] Tested different inspection methods Stud. Scenario method returned best results

Porter & Votta [21] Replicated previous experiment Industry Students and industry results similar
Höst et al. [15] Factors affecting lead time Stud./Ind Same under certain conditions
Carver et al. [3] Why use students in research Stud. Useful to test hypotheses with
Runeson [24] Using PSP to measure improvement Stud./Ind Same but more studies needed
This study OO code inspection Stud./Ind Significantly different results

Table 2. Listing of articles discussing results of using students within empirical research.

Thelin et al. [31] Dunsmore et al. [10] This study
Inspected arte-
facts

Design documents Source code Source code from [10]

Participants 4thyear Masters with industry
experience

3rdyear Honours 3rd and 4thyear students, in-
dustry professionals

Inspection tech-
niques

Prioritised Use Cases (UBR),
Checklist (CBR)

Non–prioritised Use Cases
(UCR), Checklist (CBR),
Abstract Driven (ADR)

Prioritised Use Cases (UBR),
Checklist (CBR),
Non–prioritised Use Cases
(UCR)

Defects Categorised in importance Uncategorised Uncategorised
Checklists Created for their study Created for their study Combined the two studies

checklists

Table 3. Breakdown of the Studies.

The artefacts presented to participants included a natural
language specification, a class specification, a class diagram
of the entire system, the Java code to be inspected, a defect
reporting form and a feedback form. Access to four other
classes within the system was provided as well as access to
the Java API documentation. The code to be inspected con-
tained approximately 200 lines of code which falls within
the recommended number for a 120-minute inspection pe-
riod [11, 13, 29]. Participants were given an instruction
sheet that described the inspection method they were to use.
Those performing the checklist inspection were presented
with a checklist while those performing the use case and
usage based inspections were presented with use case sce-
narios, a sequence diagram and a scenario sheet. The use
cases were prioritised for the usage based inspection.

3.2 Participants

Participants for this study were from two differing
groups: 1) students and, 2) industry professionals. The stu-
dent participants volunteered for the study and took part in
their own time. It was not part of formal course work. Stu-
dent participants were enrolled within one of three degrees:
Bachelor of Science (Computer Science), Bachelor of Sci-
ence (Information Technology) and Bachelor of Engineer-
ing (Software Engineering). Student participants were re-

quired to be in the third or fourth year of their degree and
have successfully passed two introductory Java courses and
two Software Engineering courses. By using this criteria as
a baseline for student participants, an assumption was made
that students had a similar base knowledge.

Practising IT professionals from local industry also took
part in this study. Table 4 shows the number of industry par-
ticipants with their corresponding years of experience using
each of the technologies listed. Participants experience var-
ied based on companies for which they had worked. As an
example, participants had worked with companies currently
building mission critical Java systems, enterprise Java sys-
tems, and C++ mobile phone applications.

Participants within both groupings had no prior knowl-
edge of the system artefacts to be inspected.

3.3 Procedure

The code inspection was an individual task and partici-
pants were asked not to interact with others during the in-
spection. Student participants were also asked not to dis-
cuss the inspection with other students after the study as this
could effect results if those spoken to chose to participate at
a later stage. Participants noted their start and finish times
as well as the time they discovered a defect and a brief de-
scription of the defect. Providing a fix for the defect was not

203

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on February 5, 2010 at 02:58 from IEEE Xplore. Restrictions apply.

<1yr 1-2yrs 2-4yrs >4yrs
In indus-
try

4 5 1 17

Working
with Java

0 5 4 18

Working
with UML

4 5 10 8

Working
with OO

0 3 5 19

Table 4. Number of industry participants’ experience lev-
els in years with the different technologies (all industry par-
ticipants’ had experience with the 4 different technologies).

required as the inspectors’ task is simply to identify them.
Participants were told that the code compiled and executed.
Because inspections are a static task, participants were not
permitted to compile and run the code themselves. To com-
mence, participants read the natural language specification
and class descriptions of the system and its functionality.

Participants completing the CBR inspection answered
each question on the checklist and participants completing
the UCR and UBR inspections used the provided use cases
to guide them as they read through the sequence diagrams.
A reference in the sequence diagram to the code being in-
spected required the participant to examine that code sec-
tion for correctness. The UBR inspection participants were
informed of the use case prioritisation and asked to take that
into consideration as they inspected the code.

3.4 Data Collection and Analysis

Defect data was collected by participants entering a de-
tected defect into a defect recording sheet. They recorded
a defect number, the class and line number where it was
located and a brief description of the defect. Each partici-
pant completed a demographic questionnaire prior to start-
ing and a second questionnaire upon finishing the inspec-
tion.

The statistical data was analysed using the R software
package.

3.5 Threats to Validity

Several internal threats were identified in this study, sim-
ilar to those listed in [9]. The first one was a potential selec-
tion effect resulting from experience levels and participant
diversification not being evenly distributed. With the stu-
dent participants, information that would have clarified this
was not directly available to the researchers. Instead, stu-
dent participants were asked if they met the minimum re-

quirements. Industry professionals were also asked if they
met the minimum requirements.

The demographic breakdown of the students, and the in-
spection method used may have also affected the reported
results. To minimise this threat, the inspection technique al-
location was randomised by assigning the technique to the
participant as they entered the room. The first person was
given CBR, the second UCR, the third UBR and then they
cycle started again.

Participant motivation to discover the defects may have
been increased with the knowledge that defects existed
within the system.

A learning curve involved with using the techniques may
have been involved. In [9, 10] participants were familiar
with the system under inspection and they had participated
in training sessions. In both [9, 10] and [31] the study was
run as part of an academic unit contributing to their overall
university qualification. The student participants were also
trained using the inspection technique and were enrolled in
units related to inspections, verification and validation. This
was not the case with this study, as students may have re-
ceived a single lecture that discussed inspection, so it was
expected that the overall mean from this study would be
lower than those reported in [9, 10] and [31].

The first external threat to validity was that the code
used may not have reflected industry software. The code
inspected was part of a larger system thus increasing sys-
tem complexity and somewhat reducing this effect. The
second threat was that seeded defects differed from those
that would be seen in industry software. In mitigating this
threat, defects were seeded based on literature surveys, an
industrial survey and prior studies [9, 10].

4 Results

4.1 Students

There were 36 student participants: 12 completed the
UBR inspection, 14 completed the CBR inspection, and 10
completed the UCR inspection. Figure 1 depicts the aver-
age number of times each seeded defect was discovered by
inspectors using the different techniques. Table 5 presents
an overall summary of the results.

Table 5 shows students using CBR and UBR techniques
returned similar results with very little difference between
the total number of defects detected by students using those
two techniques. Comparing UBR and UCR, UBR appears
to have performed better than UCR in detecting defects and
defects due to delocalisation. Both techniques returned the
same average result for the number of false positives gen-
erated. Students using CBR, generated more false positives
compared to both UBR and UCR.

204

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on February 5, 2010 at 02:58 from IEEE Xplore. Restrictions apply.

Inspection Technique
UBR CBR UCR

N 12 14 10

Total defects
(14)

Mean 3.4 3.2 1.7
Std. Deviation 2.7 2.5 1.7

Std. Error Mean 0.8 0.7 0.5
Minimum 0 0 0
Maximum 9 10 5

Delocalised
Defects (8)

Mean 2.2 1.5 1.0
Std. Deviation 1.9 1.4 1.1

Std. Error Mean 0.5 0.4 0.3
Minimum 0 0 0
Maximum 3 5 5

False
Positives

Mean 0.8 2.0 0.8
Std. Deviation 1.7 1.9 1.9

Std. Error Mean 0.5 0.5 0.6
Minimum 0 0 0
Maximum 6 6 6

Table 5. Student participants results summary.

Figure 2 shows the median detection values were close
together, and an outlier within the CBR data. A close ex-
amination of participant 21’s (the outlier) defect reporting
form indicated that this participant took 78 minutes for the
inspection, 24 minutes longer than any other student using
this technique. The participant reported no false positives
and no other data was found to indicate any anomaly with
the participant’s results, hence their results remained within
the data set.

Figure 1. Students: Average number of times each defect
was discovered.

The collated data was then analysed using a Kruskal-
Wallis test to determine if there was a significant difference
between the three inspection techniques: for all defects, for
delocalised defects, and for false positive generation.

The Kruskal-Wallis test for each metric showed the
Asymptotic Significance to be 0.2. This indicates no sta-
tistically significant difference between the UBR, CBR and
UCR inspection techniques for the three metrics. The three
inspection techniques therefore did not outperform nor un-
der perform in enabling or hindering total defect discovery
using student participants.

Figure 2. Students: Boxplot of number of defects discov-
ered by each technique.

4.2 Industry

There were 26 industry professionals: 8 completed the
UBR inspection, 8 completed the CBR inspection, and 10
completed the UCR inspection. Figure 3 depicts the average
number of times each defect was detected using the differ-
ent inspection techniques and Figure 4 shows the different
distributions of results for the various techniques. Table 6
contains the results’ descriptive statistics for the overall de-
fects, the defects due to delocalisation and the number of
false positives generated by participants using the different
techniques.

The three techniques returned similar means to each
other for all defects, and defects due to delocaisation. The
UCR technique however returned zero false positives, but
both UBR and CBR returned very low false positive means.
Figure 4 shows the three techniques’ median detection rates
lay close together. It also shows a possible outlier. Ex-
amining the outlier’s reporting form indicated no reason to
justify removing their data from the sample and so the data
was included.

A Kruskal-Wallis test was used to determine if there
was a statistically significant difference between the three
inspection techniques, first for all defects, then for delo-
cal defects and finally for false positive generation. The

205

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on February 5, 2010 at 02:58 from IEEE Xplore. Restrictions apply.

Inspection Technique
UBR CBR UCR

Total defects
(14)

N 8 8 10
Mean 5.2 5.6 4.4

Std. Deviation 3.6 1.9 1.9
Std. Error Mean 0.7 0.5 0.8

Minimum 0 2 1
Maximum 10 8 7

Delocalised
Defects (8)

Mean 2.9 2.6 2.4
Std. Deviation 2.3 1.1 1.4

Std. Error Mean 0.8 0.4 0.4
Minimum 0 1 1
Maximum 6 4 5

False
Positives

Mean 1.1 0.5 0.0
Std. Deviation 1.9 1.9 1.7

Std. Error Mean 2.8 0.5 0.0
Minimum 0 0 0
Maximum 8 2 0

Table 6. Industry participants results summary.

Figure 3. Industry: Average number of times each defect
was discovered.

Figure 4. Industry: Boxplot of number of defects discov-
ered by each technique.

test results (Asymptotic Significance = 0.4, 0.7 and 0.1 re-
spectively) indicated no statistically significant difference
between the inspection techniques. The application of the
three inspection techniques, by industry participants for de-
fect detection did not outperform nor under-perform each
other in either hindering or aiding defect discovery.

4.3 Students vs Industry

This section compares the overall results returned by the
student grouping with the results returned by the industry
professionals.

Table 7 breaks down the data from the two groupings.
It shows that industry professionals returned better results
than students for all three inspection techniques with respect
to: detecting defects, detecting defects due to delocalisation
and false positive generation.

Technique
Students UBR CBR UCR
All defects 3.4 3.2 1.7
Delocal 2.2 1.5 1.0
False positives 0.8 2.0 0.8
Industry UBR CBR UCR
All defects 5.2 5.6 4.4
Delocal 2.9 2.6 2.4
False positives 1.1 0.5 0.0

Table 7. Mean of defects results summary: Student vs
Industry.

A statistical analysis was conducted using the Mann-
Whitney test comparing student and industry professional

206

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on February 5, 2010 at 02:58 from IEEE Xplore. Restrictions apply.

results for defect detection, detection of defects due to de-
locaisation and the number of false positives generated.
The test results (Asymptotic Significance = 0.001, 0.02
and 0.01 respectively) indicated that professional develop-
ers performed significantly better than student participants
all three tested areas.

4.4 Qualitative Data

After completing the inspection task, both participant
groupings gave feedback about the task. Over 60% of pro-
fessionals noted that both the code and diagrams contained
no documentation. Professionals noted this as an important
defect. From the student participants, only 17% made any
reference to the lack of documentation and none noted it as
a defect.

Eight industry participants noted that IDE usage would
have simplified the inspection, yet no student made refer-
ence to IDE usage. Industry participants referred to the
need for access to testing data to aid the inspection. It was
not that the testing data would replace the inspection, but
with the data it would assist with focusing their effort. No
student mentioned the need for access to testing data.

Industry participants found CBR restrictive and focussed
them on program structure rather than business logic. This,
despite the fact that the quantitative data within this study
showed industry inspectors using CBR, on average, de-
tected more defects than other inspectors. Industry partici-
pants also identified that UCR and UBR allowed for defects
to be missed as certain code was not included within the use
case scenarios.

Students found CBR easy to follow and gave a great
structure for how to go about inspecting code.

5 Discussion

Within both the student and industry groups the results
showed no statistically significant difference between the
three inspection techniques in defect detection, detection
of defects due to delocalisation and false positive genera-
tion. The UBR’s high mean number of defects compared to
UCR, although not statistically significant, supports Dun-
smore et al. [9] conclusions that further refinement of UCR
is needed. UBR is a refined version of the UCR technique
and performed somewhat better than the original technique.

The overall results were consistent with those found by
Dunsmore et al. [9, 10], with no statistically significant dif-
ference between the techniques compared at the 5% level.
These results differ from those reported by Thelin et al. [31]
and in [30] and [37] which replicated the original study by
Thelin et al. [31]. They reported that the UBR method per-
formed significantly higher than the CBR technique. It must

be noted that those studies were performed on design doc-
uments and not code and this may account for the signifi-
cantly different results.

Another point to note: students using CBR generated a
slightly higher false positive count than students using the
other techniques, on average. Although it wasn’t signifi-
cantly higher, in an industry setting this could become ex-
pensive if developers are deployed to fix these defects only
to discover they aren’t actually defects.

Examining comments participants demonstrated other
differences between students and industry participants not
reflected by the quantitative analysis. This data demon-
strates that differences between students and industry pro-
fessionals cannot be quantitatively analysed in isolation.
Quantitative results should be examined in conjunction with
the qualitative data to be completely understood.

Industry participants appeared to have an intuitive under-
standing that business logic was more important than sim-
ply finding structural defects. Also, industry participants
appeared to intuitively prioritise what they believed to be
important within the code whereas students did not.

In and of itself the results from both the quantitative and
qualitative data, are not surprising. These results strongly
indicate though the continued and increased need for in-
dustry participation within software engineering empirical
research.

6 Conclusion

Regarding the first research goal stated in this study:
there was no statistical difference between the tested in-
spection techniques, UBR, UCR and CBR, in the areas of
defect detection, defects due to delocalisation detection and
the number of false positives generated within each partici-
pant group. Looking at this result alone could lead to an in-
correct conclusion that inspection technique has no impact
upon the number of defects discovered. The qualitative data
demonstrates that the quantitative data should be interpreted
in light of the qualitative data.

Regarding the second research goal state in this study:
an inspectors experience level has a significant impact upon
their ability to detect: defects, defects due to delocalisa-
tion and the number of false positives they generate. This
should be accounted for when examining quantitative data
as the qualitative data may reflect differences that would go
unnoticed without this data collected and analysed.

Sjøberg et al. [27] state there is need for the software
engineering community to set benchmarks for empirical re-
search. This study provides further evidence to support this
statement. Benchmarks will improve ways to compare re-
sults between studies and provide a way for meta-analysis to
occur upon the empirical study data that is reported. These
benchmarks need to include how, when, and where student

207

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on February 5, 2010 at 02:58 from IEEE Xplore. Restrictions apply.

and industry professionals should be used within studies
and how studies can generalise results according to artefacts
used and participants involved. Establishing these bench-
mark types may enable a greater transfer of technology from
academia into industry.

References

[1] V. Basili. Evolving and packaging reading technologies.
Journal of Systems Software, 38(1):3–12, 1997.

[2] G. Booch. Object-oriented development. IEEE Transactions
on Software Engineering, 12(2):211–221, 1986.

[3] J. Carver, L. Jaccheri, and F. S. Morasca, S.; Shull. Issues
in using students in empirical studies in software engineer-
ing education. In Proceedings: Ninth International Software
Metrics Symposium 2003., pages 239–249. IEEE, 2003.

[4] B. Curtis. Measurement and experimentation in software
engineering. In Proceedings of the IEEE, pages 1144–1157.
IEEE, 1980.

[5] B. Curtis. By the way, did anyone study any real pro-
grammers? In Papers presented at the first workshop on
empirical studies of programmers on Empirical studies of
programmers, pages 256–262, Norwood, NJ, USA, 1986.
Ablex Publishing Corp.

[6] A. Dunsmore. Investigating effective inspection of object-
oriented code. PhD thesis, University of Strathclyde, Glas-
gow, 2002.

[7] A. Dunsmore, M. Roper, and M. Wood. Object-oriented
inspection in the face of delocalisation. In ICSE ’00: Pro-
ceedings of the 22nd international conference on Software
engineering, pages 467–476, Limerick, Ireland, 2000.

[8] A. Dunsmore, M. Roper, and M. Wood. Systematic object-
oriented inspection - an empirical study. In ICSE ’01: Pro-
ceedings of the 23rd International Conference on Software
Engineering, pages 135–144, Toronto, Ontario, Canada,
2001.

[9] A. Dunsmore, M. Roper, and M. Wood. Further investiga-
tions into the development and evaluation of reading tech-
niques for object-oriented code inspection. In ICSE ’02:
Proceedings of the 24th International Conference on Soft-
ware Engineering, pages 135–144, Orlando, Florida, U.S.A,
2002.

[10] A. Dunsmore, M. Roper, and M. Wood. The develop-
ment and evaluation of three diverse techniques for object-
orientated code inspection. IEEE Transactions on Software
Engineering, 29(8):677–686, Aug. 2003.

[11] M. E. Fagan. Design and code inspections to reduce errors
in program development. IBM Systems Journal, 15(3):182–
211, Mar. 1976.

[12] M. E. Fagan. Advances in software inspections. IEEE Trans-
actions on Software Engineering, 12(7):744–751, July 1986.

[13] T. Gilb and D. Graham. Software Inspection. Addison–
Wesley, Wokingham, 1993.

[14] R. Glass. The software-research crisis. Software, 11(6):42–
47, Nov. 1994.

[15] M. Höst, B. Regnell, and C. Wohlin. Using students as
subjects–a comparative study of students and professionals
in lead-time impact assessment. Empirical Software Engi-
neering, 5(3):201–214, Nov. 2000.

[16] W. Humphrey. A Discipline for Software Engineering.
Addison–Wesley, Boston, 1995.

[17] W. S. Humphrey. Introduction to the team software process.
Addison–Wesley, Massachusetts, 2000.

[18] O. Laitenberger and J. DeBaud. An encompassing life cycle
centric survey of software inspection. Journal of Systems
and Software, 50(1):5–31, 2000.

[19] M. Lejter, S. Meyers, and S. P. Reiss. Support for maintain-
ing object-oriented programs. IEEE Transactions on Soft-
ware Engineering, 18(12):1045–1052, 1992.

[20] M. Olofsson and M. Wennberg. Statistical usage inspec-
tion. Master’s thesis, Department. of Communication Sys-
tems, Lund Institute of Technology and Ericsson Telecom
AB, 1996.

[21] A. Porter and L. Votta. Comparing detection methods for
software requirements inspections: A replication using pro-
fessional subjects. Empirical Softw. Engg., 3(4):355–379,
1998.

[22] A. Porter, L. Votta, and V. Basili. Comparing detection
methods for software requirements inspections: a replicated
experiment. IEEE Transactions on Software Engineering,
21(6):563–575, June 1995.

[23] C. Potts. Software-engineering research revisited. Software,
10(5):19–28, Sept. 1993.

[24] P. Runeson. Using students as experiment subjects an anal-
ysis on graduate and freshmen student data. In EASE’03
- Proceedings 7th International Conference on Empirical
Assessment and Evaluation in Software Engineering, pages
95–102. BCS Publishing, 2003.

[25] F. Shull, I. Rus, and V. Basili. Improving software inspec-
tions by using reading techniques. In ICSE ’01: Proceedings
of the 23rd International Conference on Software Engineer-
ing, pages 726–727, Toronto, Ontario, Canada, 2001.

[26] D. Sjøberg, B. Anda, E. Arisholm, T. Dybå, M. Jørgensen,
A. Karahasanovic, E. Koren, and M. Vokac. Conducting re-
alistic experiments in software engineering. In ISESE’02:
Proceedings of the 2002 International Symposium on Em-
pirical Software Engineering, pages 17–26. IEEE, 2002.

[27] D. Sjøberg, J. Hannay, O. Hansen, V. Kampenes, A. Kara-
hasavanovic, N. Liborg, and A. Rekdal. A survey of con-
trolled experiments in software engineering. IEEE Transac-
tions on Software Engineering, 31(9):733–753, Sept. 2005.

[28] E. Soloway, J. Pinto, S. Letovsky, D. Littman, and R. Lam-
pert. Designing documentation to compensate for delo-
calized plans. Communications of the ACM, 31(11):1259–
1267, Nov. 1988.

[29] I. Sommerville. Software Engineering. Addison–Wesley,
Harlow, sixth edition, 2001.

[30] T. Thelin, C. Andersson, P. Runeson, and N. Dzamashvili-
Fogelstrom. A replicated experiment of usage-based and
checklist-based reading. In METRICS ’04: Proceedings
of the Software Metrics, 10th International Symposium on
(METRICS’04), pages 246–256, Washington, DC, USA,
2004. IEEE Computer Society.

[31] T. Thelin, P. Runeson, and C. Wohlin. An experimen-
tal comparison of usage-based and checklist-based reading.
IEEE Transactions on Software Engineering, 29(8):687–
704, Aug. 2003.

208

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on February 5, 2010 at 02:58 from IEEE Xplore. Restrictions apply.

[32] G. Travassos, F. Shull, M. Fredericks, and V. R. Basili.
Detecting defects in object-oriented designs: using read-
ing techniques to increase software quality. In OOPSLA
’99: Proceedings of the 14th ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and ap-
plications, pages 47–56, Denver, Colorado, United States,
1999.

[33] L. Votta. By the way, has anyone studied any real program-
mers, yet? In Proceedings of the Ninth International Soft-
ware Process Workshop, pages 93–95. IEEE, 1994.

[34] G. M. Weinberg. The psychology of computer programming
silver anniversary edition. Dorset House Publishing, New
York, NY, USA, 1998.

[35] N. Wilde and R. Huitt. Maintenance support for object-
oriented programs. IEEE Transactions on Software Engi-
neering, 18(12):1038–1044, 1992.

[36] N. Wilde, P. Matthews, and R. Huitt. Maintaining object-
oriented software. IEEE Software, 10(1):75–80, Jan. 1993.

[37] D. Winkler, M. Halling, and S. Biffl. Investigating the ef-
fect of expert ranking of use cases for design inspection. In
EUROMICRO ’04: Proceedings of the 30th EUROMICRO
Conference (EUROMICRO’04), pages 362–371, Washing-
ton, DC, USA, 2004. IEEE Computer Society.

209

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on February 5, 2010 at 02:58 from IEEE Xplore. Restrictions apply.

