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Abstract: This paper proposes a damage identification approach in bridge structures under 

moving vehicular loads without knowledge of the vehicle properties and the time-histories of 

moving interaction forces. The dynamic response reconstruction technique in wavelet domain is 

developed for a structure subject to moving vehicular loads. The transmissibility matrix between 

two sets of time-domain response vectors from the structure is formulated using the unit impulse 

response function in the wavelet domain with the moving loads at different locations. Measured 

acceleration responses of the structure in the damaged state are required for the identification, and 

the damage identification procedure is conducted without knowledge of the time-histories of the 

moving loads. A dynamic response sensitivity-based method is used for the structural damage 

identification, and local damage is modeled as a change in the elemental stiffness factors. The 

adaptive Tikhonov regularization technique is adopted to improve the identification results when 

noise effect is included in the measurements. Numerical studies on a three-dimensional box-section 

girder are conducted to illustrate the effectiveness and performance of the proposed approach, and 

the simulated damage can be effectively identified even with 10% noise in the measurements. The 

proposed method is also found capable to identify the damage zone with an approximate estimation 

of the damage extent when under the influence of initial model errors of the structure. Experimental 

studies on a Tee-section prestressed concrete beam subject to a moving vehicle are preformed to 

validate the proposed approach. Identification results from the experimental test data show that the 

damage locations can be identified with a reasonable estimate of the damage extent.  

 

Keywords:  damage identification; response reconstruction; transmissibility; unit impulse response 

function; wavelet; moving vehicular loads; bridge structure; dynamics; 
Email addresses: jun.li@uwa.edu.au; LI.Jun@connect.polyu.hk (Jun Li); 
             cesslaw@polyu.edu.hk (S.S. Law); hong.hao@uwa.edu.au (Hong Hao)



 2 

1. Introduction 

The interest to monitor a structure for detecting local damage at an early stage is prevailing 

throughout the civil, mechanical and aerospace engineering communities. Significant work has been 

done in the detection of local damage in structures using changes in structural dynamic properties, 

such as natural frequency, mode shape, mode shape curvature and flexibility, etc. An important 

issue in this research area is to detect the local damage using measured responses from the structure 

under moving vehicular loads which serve as excitations to the structure. Lee et al. [1] presented a 

method for damage estimation of a simple bridge structure using vibration data caused by the traffic 

loads. The operational modal properties are identified basing on which the damage assessment is 

conducted using the neural network technique. Farrar and James [2] identified the modal properties 

of a bridge structure by curve-fitting the cross-correlation functions between two response 

measurements using the traffic excitation as the vibration source. A comparison between the 

identified results with those from standard forced vibration methods show that a maximum 

discrepancy of 3.63% in the natural frequency exists. This phenomenon is also found in field 

measurements with vehicles moving on top of the bridge deck. Also heavy vehicle has been 

reported to reduce the system stiffness while light vehicle increases the stiffness [3]. When these 

identified modal parameters are used to detect local damage in the structure directly, errors would 

be introduced due to the ignoring of the bridge-vehicle system interaction. 

Traffic excitations usually occur together with other ambient excitation sources, such as earth 

micro-tremor, wind loading and temperature effect for bridge structures in real situations. The 

response due to the moving vehicular loads is generally far larger than that under ambient vibrations 

especially for short- and medium-span concrete bridge decks. Therefore damage identification 

could also be conducted in the time domain using measured dynamic responses directly instead of 

the modal information in the frequency domain. Majumder and Manohar [4] developed a 

time-domain approach to detect damages in a beam using vibration data under the passage of a 

moving oscillator. The study combines finite element modeling for the vehicle-bridge system with a 

time-domain formulation to detect changes in the structural parameters. The structural properties 

and motion of the moving vehicle are assumed to be known. Park et al. [5] proposed a method to 

identify the distribution of stiffness reductions in a damaged reinforced concrete slab bridge under 
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moving loads by using a modified bivariate Gaussian distribution function. The information of 

moving loads is assumed available in this study. A method for simultaneous identification of 

moving masses and structural local damage from measured responses has been presented [6]. The 

masses and damage extents are taken as the optimization variables. However, the mass model may 

not accurately represent the moving vehicle and the bridge-vehicle interaction effect. In practical 

applications, the properties of the moving vehicle and the road surface roughness are not easy to 

obtain and thus they are usually assumed as unknown. The interaction forces induced by the moving 

vehicle should be treated as unknown moving load time-histories. 

It is desirable to conduct the system identification based only on the system output (vibration 

responses of the bridge) because the system input (traffic excitations) is difficult to measure. With 

the aid of high computation capacity of digital computers, it is possible to analyze the 

bridge-vehicle interaction problem with more sophisticated bridge and vehicle models [7]. Zhu and 

Law [8] proposed a method for simultaneous identification of the time-histories of interaction 

forces and structural damage iteratively using a two-step identification procedure. Later, the 

structural condition assessment problem is studied in a three-span box-section concrete bridge deck 

subject to a three-dimensional moving vehicle by identifying the time-histories of the interaction 

forces and system parameters simultaneously in an iterative manner [9]. The effect of 

bridge-vehicle system interaction and road surface roughness profile are implicitly taken into 

account by identifying the moving interaction forces using measurements from the bridge structure. 

It is found that a sufficient number of sensors may be required to make sure that the identification 

equation for simultaneous identification of the interaction forces and system parameters is 

over-determined. It is also noted that the accuracy of the identified moving loads may have a large 

influence on the identification accuracy of the structural damage.  

In the frequency domain analysis, Fast Fourier Transform (FFT) is a valuable tool for the 

analysis of vibration responses with the time domain signals transformed into frequency spectrum. 

However, leakage, end effects and aliasing occur in the FFT process. Filtering, windowing and 

ensemble-averaging techniques are often employed to alleviate these deficiencies with some 

success. Nevertheless, these errors in the FFT process still exist which may lead to a reduced 

accuracy in the subsequent analysis. More importantly, the basis functions associated with each 

frequency component in the Fourier-transformed domain span the entire measured time interval, 
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hence making different signals indistinguishable as long as their spectral density is the same. 

Another disadvantage of Fourier analysis is that the frequency information can only be extracted 

from the complete duration of a signal record. When there is a local oscillation representing a 

particular feature at some point in the time history of a signal, it will contribute to the calculated 

Fourier spectrum but its information on the time axis will be lost [10]. Such disadvantage can be 

overcome in the wavelet analysis which is an alternative significant tool in signal analysis.  

The generalized transmissibility matrix for a multi-degrees-of-freedom (MDOFs) system in 

frequency domain has been proposed by Ribeiro et al. [11]. The transmissibility matrix between two 

sets of response vectors could be used for the structural response reconstruction [12]. This response 

reconstruction is explored in the wavelet domain [13] to avoid the above-mentioned errors in the 

FFT process. Studies show that the wavelet approach is more accurate than the frequency approach 

and it is not subject to both the sampling duration and sampling rate. It should be noticed that the 

excitations involved in the above works are general forces at some specific locations. It has also 

been reported [14] that the deconvolution using the wavelet domain method for system 

identification show advantages over that using the frequency or time domain method since the 

wavelet domain method does not exhibit the rank-deficiency or ill conditioning in the computation 

of pseudo-inverse of a matrix, and this is a key attribute of the wavelet analysis methods.  

The above literature review shows that existing methods need to identify the vehicle-bridge 

interaction loads from measured responses of the structure and the accuracy of damage 

identification results depends on the accuracy of the identified moving loads. This paper proposes a 

damage identification approach where knowledge of the moving vehicular loads is not required in 

the damage detection process. The dynamic response reconstruction technique in wavelet domain 

[13] is developed for a structure subject to moving vehicular loads. The transmissibility matrix 

between two sets of time-domain response vectors of the structure is formulated using the unit 

impulse response function in the wavelet domain with the moving loads at different locations. 

Measured acceleration responses from the structure in the damaged state are used for the damage 

detection. A dynamic response sensitivity-based method is used for the structural damage 

identification, and local damage is modeled as a change in the elemental stiffness factors. The 

adaptive Tikhonov regularization technique is adopted to improve the identification results, 

particularly, when noise effect is included in the measurements. Numerical studies on a 
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three-dimensional box-section girder are conducted to illustrate the effectiveness and performance 

of the proposed approach, and the simulated damage can be effectively identified even with 10% 

noise in the measurements. The proposed method is also found to identify the damage zone with an 

approximate estimation of the damage extent when under the influence of initial model errors of the 

structure. Finally, experimental studies on a Tee-section prestressed concrete beam subject to a 

moving vehicle are preformed to verify the validity of the proposed approach.   

 

2. Response reconstruction in a structure subject to moving vehicular loads 

2.1 Dynamic response of a structure under moving vehicular loads 

The governing equation of motion of a damped structural system with N  degrees-of-freedom 

(DOFs) subject to moving vehicular loads can be written as, 

            )()()()( int tPtRtxKtxCtxM l                        (1) 

where M , C  and K  are the NN   mass, damping and stiffness matrices of the structure 

respectively; x , x  and x  are respectively the acceleration, velocity and displacement response 

vectors of the structure;   tPint  is the bridge-vehicle interaction force vector acting on the bridge 

structure.      tPtRl int  is the equivalent nodal load vector applied on the structure at location l  

at time constant t  with the mapping vector  tRl . The vector  tRl  is time-varying and it can be 

represented by the shape function for computing the equivalent nodal loads [15]. Rayleigh damping 

     KaMaC 21   is assumed, where 1a  and 2a  are the Rayleigh damping coefficients. It is 

noted the other damping model may be assumed for the proposed method. The dynamic responses 

of the structure can be obtained from Equation (1) using the Newmark- method [16]. 

 

2.2 Unit impulse response function in wavelet domain 

 The unit impulse response (UIR) (or the Markov parameters) is the response function of the 

system under the input of a unit pulse at a specific location, and it is an intrinsic function of the 

structural system. Traditionally, FFT is used to extract the impulse response data by an inverse FFT 

of the frequency response curves obtained from measured input and output [17]. It has been 

reported [18] that the impulse response data is extracted via the wavelet transform from known 
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measured responses and input excitation information to avoid errors in the Fourier transformation 

process of both the input and output signals. Recently, the wavelet-based unit impulse response 

function with the force vector applied at a specific DOF has been derived analytically from the 

general system equation of motion and it will be introduced briefly below [19]. It will be extended 

in next Section for a structure subject to moving loads. 

The equation of motion of a N DOFs damped structural system under the unit impulse 

excitation can be written as 

          tDtxKtxCtxM  )()()(                        (2) 

where D  is the mapping vector with zero entries except with unity at the DOF corresponding to 

the force excitation location, and  t  is the Dirac delta function. The impulse response function 

can be represented by a system in free vibration state with some specific initial conditions as  

           
   







 DMhh

thKthCthM
10,00

0




                         (3) 

where h , h  and h  are the unit impulse displacement, velocity and acceleration vectors, 

respectively. Assuming that the system is in static equilibrium initially, the unit impulse response 

function can be computed from the equation of motion using the Newmark- method. 

When the structural system is under general excitation  tf  with zero initial conditions, the 

acceleration response  txs
  from sensor location s  at time instant t  is 

       dfthtx
t

ss  0
                            (4) 

in which,  ths
  is the unit impulse response function at sensor location s . Equation (4) represents 

the input-output relationship of the dynamic structural system under the input force  tf  at a 

specific location.  

 

2.3 Unit impulse response function in wavelet domain subject to moving loads 

 It should be noticed that the mapping vector   tRl  in Equation (1) is time-varying when the 

structure is subject to moving vehicular loads. The impulse response function with the moving loads 

at different locations is derived in the following paragraphs to formulate the input-output 



 7 

relationship for the structure when subject to the interaction forces   tPint . 

 The equation of motion of the damped structural system under the unit impulse interaction 

force at location l  at a specific time instant t  is, 

             ttRtxKtxCtxM l  )()()(                   (5) 

where,  tRl  denotes the shape function mapping the interaction force at location l  at time 

instant t  to the associated DOFs of the structure. Similar to the solution of Equation (2), the 

impulse response function with the moving loads at location l  can be obtained using the 

Newmark- method by solving the following equation of motion with some specific initial 

conditions, 

           

     






 tRMhh

thKthCthM

lll

lll

10,00

0




                        (6) 

where, lh , lh  and lh  are the unit impulse displacement, velocity and acceleration vectors with 

the moving loads at location l , respectively.  

When the structural system is subject to the moving load  tPint  with zero initial conditions, 

the acceleration response  txs
  from sensor location s  at time instant t  can be obtained as, 

      


dPthtx
t

lss int
0

,                               (7) 

in which,  th ls ,
  is the unit impulse response function with the moving loads at location l  for 

sensor location s . It is noted that  th ls ,
  can be obtained from Equation (6) with the moving 

loads placed at different locations one time step at a time. It should be noted that the formulation of 

Equation (7) is different from that of Equation (4) since the impulse response function with the 

moving loads at different locations will be used in Equation (7) rather than the same impulse 

response function with the input force at a specific location for Equation (4). The vectors 

 


th ls,
  and  intP  can be expanded in terms of the discrete wavelet transform (DWT) as [10], 

    


j k

jDWT

ks

DWT

sls khhth j 


2
2,0,,

                      (8) 

    


j k

jDWT

k

DWT kPPP j  2
20int                       (9) 
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where  kj  2  is the wavelet basis function, DWT

ks jh
2,

 and DWT

kjP
2

 are the wavelet transform 

coefficients for the impulse response function and moving force vectors respectively. Substituting 

Equations (8) and (9) into the convolution integral in Equation (7), and using the orthogonal 

conditions of the wavelet basis functions [20] as follows, 

  02
0

  dk
t

j                              (10) 

   


 


otherwise0

 and  when2/1
22

0

ksjr
dsk

j
t

rj               (11) 

the following formula can then be derived as 

  DWTDWT

ss Pthtx int)(                               (12) 

in which, )(thDWT

s
  and DWTPint  are the discrete wavelet transforms of  


th ls,

  and  intP , 

respectively and they are given as, 

 TDWT

k

DWTDWTDWT
jPPPP



210int   

]2/)()()([)(
2,1,0,

jDWT

ks

DWT

s

DWT

s

DWT

s thththth j 
   

 For the entire time history data, for example,       Tnssss txtxtxx 
21 , the system 

input-output relationship for the structure subject to moving loads can be expressed as, 

  
)1(int)()1( 


ru

DWT

run

DWT

sns Phx                            (13) 

in which, 

 
 

 





















n

DWT

s

DWT

s

DWT

s

DWT

s

th

th

th

h








 2

1

  

where n , r  and u  are the number of sampled data in the response, the number of moving loads 

and the number of wavelet coefficients in the discrete wavelet transform, respectively. 

 

2.4 Response reconstruction in a structure subject to moving loads 

The measured responses from the structure subject to moving loads are divided into two sets, 

noted as the First-set response vector  tx1
  and the Second-set response vector  tx2

  respectively. 
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They are represented in the wavelet domain from Equation (13) as follows, 

 

 













)1(int)(2)1(2

)1(int)(1)1(1

ru

DWT

ruqn

DWT

qn

ru

DWT

rumn

DWT

mn

Phtx

Phtx




                       (14) 

in which, m  and q  are the number of measurements in the First-set response vector and the 

Second-set response vector, respectively. 

When the number of measurements in the First-set response vector is at least equal or larger 

than the number of moving loads on the structure, the pseudo-inverse  DWTh1  exists [21] and the 

following equation can be obtained from the first row of Equation (14)  

   txhP DWTDWT

11int
 

                            (15) 

Substituting Equation (15) into the second row of Equation (14), we have 

   txTtx r 1122
                                (16) 

where,  

  DWTDWT hhT 1212
                             (17) 

The Second-set response vector  tx r2
  can be reconstructed from the First-set response vector 

 tx1
  of the structure from Equation (16). Moreover, Equation (17) defines the transmissibility 

matrix in wavelet domain between two sets of time-domain response vectors from the structure, and 

the presented response reconstruction technique for a bridge structure subject to moving loads can 

be applied for the structural damage identification in next section. 

 

3. Structural damage identification 

 In some existing condition assessment approaches where an initial analytical finite element 

model of the structure is needed, the parametric model updating method for damage identification is 

popular because it keeps the structural connectivity and the physical meaning of the updated 

stiffness matrix is clear. The initial structural finite element model is updated to match the predicted 

and measured vibration properties or vibration responses as closely as possible. In this study, a 

sensitivity-based finite element model updating method is used for structural damage identification. 

The damage is assumed only related to a stiffness reduction such as a change in the elastic modulus 
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of a specific element. The mass matrix is assumed to be unchanged before and after the damage. 

The elemental stiffness factors in the initial intact structural finite element model are iteratively 

updated to minimize the difference vector  x  between the reconstructed acceleration responses 

 tx r2
  and the measured acceleration responses  tx m2

  from the damaged structure.  

 

3.1. Damage model  

 A linear damage model is adopted in this study, i.e., the initially linear-elastic structure is 

assumed to remain linear-elastic after the occurrence of small local damage. The system stiffness 

matrix dK  of the damaged structure can be expressed as,  





n

i

ii

n

i

iid KKK
11

)1(                          (18) 

where, iK , i  are the i th elemental stiffness matrix in the intact state and the i th elemental 

stiffness factor in the damage state, respectively. Therefore, i  represents the extent of stiffness 

reduction of the i th element with 0.10.0  i . 

 

3.2 Damage detection algorithm 

 The objective function of the damage detection algorithm is defined as the difference between 

two sets of response vectors 

   
222 txtxf rmobj

                               (19) 

where,  tx m2
  is the measured Second-set response vector from the damaged structure subject to 

moving loads.  tx r2
  is the reconstructed Second-set response vector from Equation (16) with the 

measured First-set response vector  tx1
  in the damaged state. When two or more responses are 

included in Equation (19), they will be assembled in a vector of time response data of one sensor 

following by those from another sensor. The wavelet transform coefficients of the measured and 

reconstruction responses can also be included in Equation (19) as the objective function. However, 

Equation (19) gives a clear physical meaning with matching of the measured and reconstruction 
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responses as closely as possible in the optimized results. The transmissibility matrix 12T  in 

Equation (16) is obtained by using the impulse response function matrix from Equation (13). The 

vector   of structural elemental stiffness factors is then iteratively updated by minimizing the 

objective function in Equation (19) such that the reconstructed response vector  tx r2
  can match 

the measured response vector  tx m2
  well.  

 The dynamic response sensitivity-based model updating method [22] without considering the 

second- and higher-order effects is adopted here with  

        rm xxxS 22
                          (20) 

where,   is the perturbation of the vector of structural elemental stiffness factors,  S  is the 

sensitivity matrix of the response  tx r2
  with respect to the structural elemental stiffness factors. 

The objective function in Equation (19) is an implicit function with respect to structural elemental 

stiffness factors. It has been verified that the numerical sensitivity matrix can also be used for model 

updating effectively [23], and thus the sensitivity matrix  S  is obtained using numerical finite 

difference method [24]. It is noted that the number of equations nq  should be larger than the 

number of unknown elemental stiffness parameters to make sure that the identification in Equation 

(20) is over-determined. The iterative updating method requires the sensitivity matrix  S  to be 

calculated in every iteration. The sensitivity matrix is a rectangular matrix of order Uq , where 

q  and U  are the number of target responses in Equation (19) and system parameters to be 

identified, respectively  

   
 


















 Uj

r
U

P

tx
SSSS

,,2,1

2
21 ,,,




                        (21) 

 UjS j ,,2,1   is the sensitivity of the target responses to a certain change in parameter jP . 

Elements of the sensitivity matrix can be calculated numerically using, for example, the forward 

finite difference approach [23] 

   

j

jrjjr

j
P

PxPPx
S






22


                        (22) 
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where  jr Px2
  is the reconstructed second-set response at the current state of the parameter jP ,  

while  jjr PPx 2
  is the reconstructed response when the parameter jP  is increased by an 

increment jP . 

 

3.3 Adaptive Tikhonov regularization 

The adaptive Tikhonov regularization method [25] has been proposed to improve the model 

updating results by categorizing all the structural elements into two groups of possible damaged 

elements and intact elements from results obtained in the previous iteration. The perturbation of 

elemental stiffness reduction factors of the possible damaged elements in each iteration is limited to 

a small range and the reduction factors of other elements are restrained close to zeros as 
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where the subscript j  denotes j th element of the vector and  j

k  denotes the parameter 

change in the j th element. 0
1











 j

k

i

i  indicates that the accumulated change in the j th 

element is a decrease in the stiffness of the element.  

It has been shown that the adaptive Tikhonov regularization has obvious advantages over the 

traditional Tikhonov regularization with less false positives and false negatives especially when 

relatively high noise level exists in the measurements. On the other hand, the adaptive Tikhonov 

regularization can give results without divergence but with a slower convergence speed. The 

adaptive Tikhonov regularization technique is used in this study to obtain the solution vector   

from Equation (20). More details and implementation of the adaptive Tikhonov regularization are 

referred to [25].  

 

3.4 Iterative damage detection procedure 

Acceleration measurements from the damaged structure under the passage of the moving loads 
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will be used to identify structural elemental stiffness factors 
i  iteratively. Initially it is assumed 

that each elemental stiffness factor of the analytical structural finite element model is equal to unity. 

It should be noted that the travelling path and velocity of the moving loads, i.e. the locations, are 

assumed to be known in the process. An updated finite element model is assumed to be available as 

a reference model for the following iterative procedure of damage identification. 

Step 1: Measure the dynamic acceleration responses at the First-set   tx m1
  and Second-set 

  tx m2
  measurement locations from the damaged structure subject to the moving loads. 

Step 2: Compute the unit impulse response function matrices DWTh1
  and DWTh2

  in Equation (14) 

for the First-set and Second-set measurement DOFs respectively from the analytical finite 

element model of the structure. Calculate matrix 12T  in Equation (17) and the reconstructed 

Second-set response vector   tx r2
  is obtained from Equation (16). 

Step 3: The vector of response difference  x  is computed between the Second-set measured 

response vector   tx m2
  in Step 1 and the reconstructed Second-set response vector 

  tx r2
  in Step 2. The sensitivity matrix  S  of the response  tx r2

  with respect to 

structural elemental stiffness factors is obtained using the numerical finite difference 

method. 

Step 4: Obtain the perturbation vector of structural elemental stiffness factors    from Equation 

(20) with the adaptive Tikhonov regularization technique described in Section 3.3. 

Step 5: The vector of structural elemental stiffness factors is iteratively updated with 

  ii 1  for the next iteration. Repeat Steps 2 to 4 until the following convergence 

criterion is satisfied.  

Tolerance
i

ii




2

21




                        (24) 

 where i  denotes the i th iteration. The tolerance value is taken as 1.0×10
-4

 in this study. 

 In the above-mentioned iterative scheme for damage identification, it should be noticed that: (a) 

the properties of the moving vehicle and the time-histories of the moving loads on the bridge 
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structure are not required to be identified; (b) the locations of the moving loads are assumed to be 

known. 

 

4. Numerical studies 

Numerical studies on a simply-supported box-section girder bridge structure are conducted to 

illustrate the accuracy and effectiveness of the proposed structural damage identification approach. 

The total length of the box-section bridge deck is 30m. The plan view and cross-section of the 

bridge deck model are shown in Figures 1(a) and 1(b), respectively. The Young’s modulus and mass 

density are respectively MPa4106.2   and 3/2500 mkg .  

The finite element model of the bridge deck consists of 66 nodes and 60 flat shell elements [26] 

with six DOFs at each node. The numberings of nodes and elements of the finite element model are 

shown in Figure 1. The structural system has 396 DOFs in total. The bridge deck is 

simply-supported at nodes 5, 6, 65 and 66 at two ends of the deck, and the translational restraints at 

the supports are represented by a large stiffness of 3×10
9
 kN/m. The first ten intact structural 

natural frequencies are from 4.44 to 21.61 Hz. Rayleigh damping is assumed in this study and the 

damping ratios for the first two modes are taken as 012.0 .  

In engineering applications, moving loads induced by the passage of a vehicle is often 

considered as excitations to the bridge structures. The moving load has been represented very often 

as a multi-sine wave moving force in many studies [8, 27] for an easier and simpler structural 

analysis of the bridge-vehicle system. The first numerical study has the box-section girder bridge 

subject to a single multi-sine wave moving force. The second example has the girder structure under 

the passage of a two-axle three-dimensional vehicle which represents the more realistic moving 

vehicle model. The road surface roughness effect will also be included in the bridge-vehicle system 

analysis. 

 

4.1 Example 1: The bridge deck subject to a single moving force 

 Damage is introduced in the box-section bridge deck as a reduction of elastic modulus in 

several elements. In this study, 10% damage is simulated in both the 28
th
 and 29

th
 elements at 

mid-span of the deck as shown in Figure 1. The moving force is represented as,  
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    NtttP )30sin(05.010sin1.01160000                   (25) 

Damage identification is performed with the moving force crossing the bridge along the 

centerline of the deck as shown in Figure 1(a). The force vector acting at an arbitrary location on a 

shell element of the bridge deck is transformed into nodal loads using the Hermite interpolation 

function [28]. Six sensors are assumed distributed on top of the deck to measure the acceleration 

responses from the damaged structure. The measurements are divided into two sets of responses and 

they are shown in Table 1. The number of measurements in the First-set response vector is two and 

it is greater than the number of moving force. The sensors locations are such selected to have larger 

response which usually associated with a larger signal to noise ratio. The velocity of the moving 

force is 20 m/s and the sampling rate is 100Hz. The acceleration response data of the damaged 

structure calculated from Equation (1) serves as the simulated “measured” responses, and the first 3 

seconds of response are used except otherwise stated. 

 

4.1.1 Forward response reconstruction in wavelet domain 

The accuracy of response reconstruction in the structure subject to moving loads will be 

examined. The simulated local damages are introduced in the structure and the responses are 

obtained at the First-set and Second-set sensor locations in the damaged state. The reconstructed 

Second-set response vector is obtained from Equation (16) and is compared with the analytical 

Second-set response which is considered as the true response. In this study, Daubechies 

8-coefficient wavelet is chosen as the basis functions in the DWT due to its orthogonality properties 

and fairly smooth interpolation nature [18]. It should be noticed that no noise is added to the 

simulated “measured” data in this study. Results of forward response reconstruction are shown in 

Figure 2. Figures 2(a), 2(c), 2(e) and 2(g) show the true and reconstructed responses at those sensor 

locations in the Second-set response vector, respectively. It can be found that these two responses 

are overlapping indicating that the response reconstruction process is very accurate. 

The relative error between the true and reconstructed responses in the time domain is defined 

as,  

   

 
(%)100

2

2 



tx

txtx
RE

true

urtrue




                      (26) 
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in which,  txtrue
  and  txur

  are the true and reconstructed response vectors in the time domain, 

respectively. 

The difference vectors     txtx urtrue
   between the true and reconstructed responses of the 

sensors in the Second-set response vector are shown in Figures 2(b), 2(d), 2(f) and 2(h). The 

relative errors for these four sensors are 5.9710
-12

, 8.4710
-12

, 7.4710
-12

 and 3.4810
-12

, 

respectively indicating that the proposed method for dynamic response reconstruction in the 

structure under the passage of the moving force is very accurate. It may also be noted that different 

sensor placement configurations in the First-set and Second-set response vectors may give different 

accuracies in the response reconstruction process. 

 

4.1.2 Results of damage identification 

The iterative procedure described in Section 3.4 is followed to obtain an updated set of 

elemental stiffness factors. To simulate the effect of measurement noise, a normally distributed 

random noise with zero mean and unit standard deviation is added to the calculated dynamic 

response as, 

)( caloisepcaln xstdNExx                            (27) 

where nx  and calx  are the simulated measurements with noise effect and the original calculated 

response, respectively; pE  is the noise level; oiseN  is a standard normal distribution vector with 

zero mean and unit standard deviation and )( calxstd   denotes the standard deviation of the original 

calculated response. 10% noise effect is included in the acceleration measurements for this study. 

Acceleration measurements with and without noise effect are used for damage identification, 

respectively. Table 2 gives the associated information on convergence of the iterative procedure. 

The required iterations and error of convergence calculated from Equation (24) are listed. It should 

be noticed that approximately 1.5 hours are required for one iteration with a Intel Core 2 Quad 2.4G 

PC with 8G memory due to the large structural finite element model for the computation of 

responses and sensitivity matrix of the structure by the finite difference method. 

The damage identification results are shown in Figure 3. For the noise-free case, the locations 

of the simulated damage can be identified accurately. The identified extents of local damage in 28
th
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and 29
th

 elements without noise effect are 9.997% and 9.999% respectively. They are very close to 

the true values indicating that the proposed approach for damage identification in the structure 

under moving loads is effective and can give very close damage values. For the case with 10% 

noise, the dynamic response data within the first 0.5 second and 1.5 to 2 seconds are used for the 

identification since the responses in these periods are much larger and could be less sensitive to the 

noise effect. Figure 3 shows that the damage can be identified effectively with 10% noise effect 

with 8.32% and 11.23% stiffness reductions in 28
th

 and 29
th
 elements respectively, and there is only 

a few very small false positives and false negatives in the other undamaged elements. 

 

4.2 Example 2: The bridge deck subject to a two-axle three-dimensional moving vehicle 

4.2.1 Dynamic analysis of the bridge-vehicle system 

 The vehicle is modelled according to the H20-44 truck in AASHTO [29] which is a two-axle 

three-dimensional vehicle model with seven DOFs as shown in Figure 4. The specific parameters of 

the vehicle are referred in [30], with a mass of 17 000kg. The dynamic responses of the bridge 

structure are obtained by solving the coupled bridge-vehicle system equation of motion [31].  

The two-axle three-dimensional vehicle crosses the bridge along the travelling path as shown in 

Figure 1(a). Seven sensors are assumed distributed on the deck in this case to measure the 

acceleration responses from the damaged bridge deck. The measurements are divided into two sets 

of responses and they are shown in Table 3. The number of measurements in the First-set response 

vector is equal to five and it is greater than the number of interaction forces induced by the moving 

vehicle which is four. The velocity of the moving force is 20 m/s and the sampling rate is 100Hz. 

Class C road surface roughness [32], corresponding to the average road pavement condition, is 

included in the bridge-vehicle system analysis. The calculated acceleration response of the damaged 

structure serves as the simulated “measured” response and data within the first 3 seconds are used 

except otherwise stated. 

 

4.2.2 Forward response reconstruction in wavelet domain 

 The damage scenario in the girder structure is the same as for the last example, that is, 10% 

damage in both the 28
th
 and 29

th
 elements in the web of the bridge structure in the form of a 

reduction in the elastic modulus of these elements. The simulated local damages are introduced in 
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the structure and responses are obtained at the First-set and Second-set sensor locations. The 

reconstructed Second-set response vector is obtained from Equation (16) and is compared with the 

“measured” true Second-set response. It should be noticed that no noise is added to the 

measurements. The comparisons of forward response reconstruction results are shown in Figure 5. 

Figures 5(a) and 5(c) show the true and reconstructed responses at the sensor locations in the 

Second-set response vector. The difference vectors     txtx urtrue
   between the true and 

reconstructed responses of these two sensors are shown in Figures 5(b) and 5(d). The relative errors 

are 1.7410
-11

 and 1.3910
-11

, respectively. These results indicated that the proposed response 

reconstruction method in the structure subject to moving vehicular loads is very accurate.  

 

4.2.3 Results of damage identification 

Damage identification is performed with the two-axle three-dimensional vehicle crossing the 

bridge along the travelling path as shown in Figure 1(a). 10% noise effect is included in the 

acceleration measurements. The iterative procedure described in Section 3.4 is followed to conduct 

the damage identification. 

Acceleration measurements with and without noise effect are used for the damage identification. 

Table 4 gives the associated information on convergence of the iterative procedure. The 

computation of matrix 12T  in this case becomes intensive since four interaction forces from the 

moving vehicle are applied on the bridge structure. It should be noticed that approximately 6 hours 

are required for one iteration with a Intel Core 2 Quad 2.4G PC with 8G memory in the 

bridge-vehicle system analysis and in the computation of the sensitivity matrix for the structure 

subject to moving loads. 

Figure 6 shows the damage identification results. For the noise-free case, the damage locations 

and extents are identified accurately with 9.9996% and 9.9987% stiffness reductions in 28
th

 and 29
th

 

element respectively. It indicates that the proposed approach for damage identification in the 

structure under moving vehicular loads is correct. For the case with 10% noise, response data in the 

first 0.8s and 1.5 to 2.2s are used for the identification since the responses in these periods are much 

larger and could be less sensitive to the noise effect. The damages can be identified effectively with 

10.41% and 11.84% stiffness reduction in 28
th
 and 29

th
 elements respectively when 10% noise 
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effect is included in the measurements with very small false positives and false negatives similar to 

the observations in Figure 3. In addition, it should be noticed that the sensor selections in the 

First-set and Second-set response vectors would influence the damage identification results 

especially for the case with noisy measurements. However, the issue on optimal placement of 

sensor in the First-set and Second-set response vectors is not examined in this study.  

 

4.3 Influence of initial model errors on the identification results 

 The influence of initial model errors in the finite element model on the effectiveness and 

performance of the proposed approach is investigated in this Section. The initial model errors in the 

stiffness of elements and in the support stiffness are considered in this study. Other model error 

sources, such as uncertainties in the mesh and element type in the finite element analysis, mass 

matrix and temperature effect, etc. are not included.  

Example 2 in Section 4.2 is adopted for this study. Three scenarios are defined in Table 5. 

20 % stiffness reductions are introduced in both the 28
th
 and 29

th
 elements of the deck. The elastic 

modulus of material in the finite elements is assumed to exhibit a normal random distribution [33] 

with a mean of MPa4106.2   and a 5% coefficient of variation in Scenario 1. The support stiffness 

has been over-estimated initially by 10% in Scenario 2. Scenario 3 includes both types of initial 

model errors in the last two Scenarios. 

The identification results of these three scenarios are shown in Figures 7(a), 7(b) and 7(c), 

respectively. In Scenario 1, the simulated damage in 28
th

 and 29
th
 elements and model errors in the 

stiffness of other undamaged elements are identified accurately for the noise-free case. For the case 

with 10% noise effect, the identified damages in 28
th
 and 29

th
 elements are 19.49% and 19.52%, 

respectively. The model errors in stiffness may not be identified accurately in all elements and there 

are several large false positives and false negatives in the identification results.  

 In Scenario 2, the identification results in 28
th
 and 29

th
 elements are 14.48% and 12.41%, and 

21.90 and 11.26% for the case without and with 10% measurement noise, respectively. The adaptive 

Tikhonov regularization technique improves the identification results with no false negatives but 

with several false positives observed. The identified extents in 28
th
 and 29

th
 elements of Scenario 3 

are 19.81% and 21.87%, and 16.62% and 16.99% for the case without noise and with 10% noise, 
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respectively. Several false positives and false negatives exist in the identification results. It may be 

concluded that the damage detection approach can identify the area with local damages when there 

is 5% random error in the initial finite element of the structure, and the damage extended can be 

approximately estimated. 

 

5. Experimental Verification 

  Experimental studies on a Tee-section prestressed concrete beam are performed to validate the 

proposed damage identification approach with experimental test data. The plan view, cross section 

and dimensions of the beam are shown in Figure 8. The beam slab has a length of 5 m and a width 

of 0.65m. The total height of the beam is 0.415m. The initial Young's modulus and density are 

2.6×10
4 

MPa and 2707.7 kg/m
3
, respectively. Three prestressing tendons each of 99.8 mm

2
 area are 

included in the beam web with a total prestress force of 140 KN. The tensile strength of the tendons 

is 1949N/mm
2
. The cable profile is parabolic and locations of the prestress tendons at the beam 

ends and mid-span are shown in Figure 8. The cable duct is grouted after prestressing.  

 A vehicle is designed and fabricated as shown in Figure 9(a). The spacing of the front and rear 

axes is 0.8m and the lateral spacing of two wheels is 0.4m. The total weight of the vehicle is 9.8 KN. 

Seven accelerometers are placed at the top of the beam to measure the acceleration under the 

moving vehicle loads, and six optical triggers are evenly distributed along the left side of the beam 

to measure the velocity of the moving vehicle, as shown Figure 9(b). The experimental set-up is 

shown schematically in Figure 10. An electric motor pulls the vehicle to move along the center line 

of the beam. A leading beam is included for initial acceleration of the vehicle while the vehicle 

decelerates on a tailing beam. The bridge is at rest initially, and the vehicle moves at approximately 

a constant speed of 0.4 m/s. The sampling rate is 1000 Hz.  

 Figure 11 shows the flow chart of the experimental damage identification. The damage is 

introduced by applying the two-point static load of 180 kN on the beam to introduce cracking 

damage into the structure, as shown in Figure 12. The observed cracks are mainly in the web 

elements in the middle of the span as shown in Figure 13. Measured data from the beam without 

prestress effect, with prestress effect and the beam with both prestress effect and damages are 

analyzed to obtain the modal information, and the identified natural frequencies and damping ratios 
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are shown in Table 6. Comparing the identified frequencies from the states without and with 

prestress effect, it can be found that structural stiffness is increased due to the prestress effect with 

an increase in the natural frequencies. The identified frequencies from the damaged state are smaller 

than those from the initial state. This clearly indicates that damages have been introduced in the 

structure.  

The beam with prestress is considered as the initial state and measured data from this state are 

used for the initial model updating to adjust the initial finite element model. The model updating is 

conducted based on a two-stage procedure. In the first-stage of initial model updating, the Young's 

modulus of slab and web of beam and the support stiffnesses are selected as parameters to be 

updated. The dimensions and mass density are measured in situ and they are not included as the 

updating parameters. The identified damping ratios of the beam are included in the initial finite 

element model. Identified modal information, e.g. natural frequencies and mode shapes, are used to 

perform the first-stage initial updating. Based on the updated results obtained above, the 

second-stage model updating is conducted based on the proposed approach. The equivalent elastic 

modulus of all the elements under the prestressing effect is selected in the second-stage of updating 

for damage identification. Sensor placement configuration in Table 7 is used, and the objective 

function of this round of model updating is to have the reconstructed responses in the Second-set 

match the measured ones as closely as possible. The iteration number is 3 and the regularization 

parameter of the final iteration is 3.5×10-3. 

 Figure 14 shows the finite element model of the beam built with flat shell elements [26]. The 

model consisted of 90 elements and 114 nodes with 6 DOFs at a node. The model has 684 DOFs in 

total. Wheel tracks, moving direction of the vehicle, and the numbering of web elements are also 

shown in Figure 14. It is observed and understood that the damages are mainly and most likely 

occur in the web elements of the beam, and therefore only the web elements are included in the 

damage identification. Elements 1, 2, 17 and 18 are however not included as they are just next to 

the supports. Table 7 shows the sensor placement configuration for the experimental study. Five 

sensors are included in the First-set as there are four interaction forces from the moving vehicle. 

There are two sensors in the Second-set. Figure 15 shows the identified damages in the web 

elements from the first 2 seconds of measured responses with a resampled rate of 250Hz . It can be 

observed that the identified damages are mainly in the center span and the extents in the middle of 
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the span with a maximum damage extent close to 12%.  

It is noted that there is no analytical model relating the crack damage in a prestressed concrete 

beam with its flexural stiffness, it is not possible to compare the identified damage extent with the 

true damage induced by static loads. However, Table 8 shows the observed crack locations and 

heights in the beam. There are 24 major cracks in total and they are mainly located in the six web 

elements from No.8 to No.13. The overall length of the crack zone is 3.6 m. It is noted that the 

identified damage distribution in Figure 15 has a good agreement with the experimental crack 

pattern observed in Table 8 and Figure 13. The identified damages are mainly distributed in web 

elements from No.8 to No.13. 

 

6. Conclusions 

Existing methods for damage detection of bridges under moving vehicle loads assume that the 

properties of the vehicle are known or they require the simultaneous identification the interaction 

forces and structural damage. A structural damage identification approach is proposed for bridge 

structures under moving vehicular loads based on the dynamic response reconstruction without the 

need to identify the time-histories of the moving loads and the properties of moving vehicle and 

with improvements in the computation efficiency and accuracy. The relationship between two sets 

of time-domain response vectors from the structure is formulated using the unit impulse response 

function in the wavelet domain with the moving loads at different locations. A dynamic response 

sensitivity-based method is used for the structural damage identification. The adaptive Tikhonov 

regularization technique is adopted to improve the identification results, particularly, when noise 

effect is included in the measurements. Numerical studies on a three-dimensional box-section 

bridge deck subject to a single moving force and a two-axle three-dimensional vehicle are 

separately studied to validate the proposed approach. The influence of initial model errors on the 

damage identification results is investigated to illustrate the effectiveness and performance of the 

proposed approach and the simulated damage can be identified even with 10% noise in the 

measurements but with some false positives and false negatives. Experimental studies on a 

Tee-section prestressed concrete beam are conducted to validate the proposed approach with 

experimental test data. Two-point static loads are applied to introduce cracking damage in the beam. 
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Measure acceleration response data from the initial and damage states are used to conduct initial 

model updating and damage identification, respectively. The identified damages are mainly in the 

middle of the span and there is a close agreement with the observed crack pattern in the test. The 

proposed approach could be a useful tool for the condition assessment of real bridge structures. 
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Table 1 - Sensor placement configuration of Example 1 

Sensor Placement Configuration Sensor locations 

First-set Node 14(z), 51(z) 

Second-set Node 8(z), 21(z), 45(z), 56(z) 

Note: “Node 14(z)” denotes that the sensor is placed along the z -direction at Node 14. 

 

 

 

Table 2 - Information on convergence of Example 1 

 No noise 10% noise 

Required iterations 5 18 

Error of convergence 5.3910
-5

 9.5610
-5

 

 

 

 

 

Table 3 - Sensor placement configuration of Example 2 

Sensor Placement Configuration Sensor locations 

First-set Node 8(z), 20(z), 21(z), 45(z), 56(z) 

Second-set Node 14(z), 51(z) 

 

 

 

 

Table 4 - Information on convergence of Example 2 

 No noise 10% noise 

Required iterations 6 22 

Error of convergence 2.0110
-5

 9.8510
-5
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Table 5- Damage scenarios with initial model errors 

Scenario Damage Model errors Noise effect 

1  

20% stiffness reductions  

in both 28
th
 and 29

th
 elements 

5% random stiffness changes  

in all elements 

10% 

2 10% increase in the  

support stiffness  

10% 

3 Include both types of model errors 10% 

 

 

 

 

Table 6 - Identified frequencies and damping ratios in different states 

Structural 

State 

Without prestress With prestress (initial state) Cracked (Damaged state) 

Mode  Frequency 

(Hz) 

Damping 

ratio 

Frequency 

(Hz) 

Damping 

ratio 

Frequency 

(Hz) 

Damping 

ratio 

1 31.998 0.016 33.386 0.016 31.817 0.011 

2 82.757 0.0014 97.411 0.028 90.719 0.029 

 

 

 

Table 7 - Sensor placement configuration of experimental study 

Sensor Placement Configuration Sensor locations 

First-set S1, S3, S5, S4, S6 

Second-set S2, S7 
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Table 8 - Observed crack locations and heights 

Distance from 

left support of 

beam (mm) 

700 1000 1100 1160 1440 1620 1800 1950 2125 2260 2340 2540 

Web Element 

No. 
4 5 5 5 6 7 8 8 9 9 9 10 

Crack Height 

(mm) 
226 156 191 300 270 305 280 248 273 286 243 244 

Distance from 

left support of 

beam (mm) 

2680 2800 2900 3030 3130 3220 3330 3510 3680 3850 4000 4100 

Web Element 

No. 
10 11 11 12 12 12 13 13 14 14 14 15 

Crack Height 

(mm) 
261 251 120 260 118 274 220 220 192 158 140 126 
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Figure 1 - Finite element model of the box-section girder structure 
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(d) Error in the response reconstruction at the second sensor
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(e) Responses at the third sensor in Second-set

 

 

0 0.5 1 1.5 2 2.5 3
-1

-0.5

0

0.5

1
x 10

-11

Time (s)

A
cc

el
er

at
io

n
 (

m
/s

2
)

(f) Error in the response reconstruction at the third sensor
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Figure 2 - True and reconstructed responses in the Second-set response vector of Example 1 
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Figure 3 - Damage identification results of Example 1 
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Figure 4 - A two-axle three-dimensional vehicle with seven DOFs 
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Figure 5 - True and reconstructed responses in the Second-set response vector of Example 2 
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Figure 6 - Damage identification results of Example 2 
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Figure 7- Damage identification results with initial model errors 

 

 



 37 

 

 

 

 

Figure 8 - The prestressed concrete beam (Unit: mm) 
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(a) Vehicle 

 

(b) Optical triggers and accelerometers 

Figure 9 - The vehicle model, optical triggers and acceleration sensors 
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Figure 10 - Schematic experimental setup 
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Figure 11 - Flow chart of the experimental damage identification 

 

1. Beam without prestress 

2. Beam with prestress - 

Measure accelerations 

under moving vehicle  

3. Apply static load to introduce 

the damage in the beam 

4. Beam with damage - 

Measure accelerations 

under moving vehicle  

5. Initial model updating - 

Obtain the system parameters in 

the undamaged state 

6. Damage detection based on the 

updated model - 

Obtain the system parameters in 

the damaged state 

7. Compare two sets of parameters 

and obtain the damage estimation 
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Figure 12 – Application of static load to the beam 

 

 



 42 

 

 

 

  

Figure 13 - Observed crack pattern in web elements of the beam  
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Figure 14 - Finite element model of the beam and web element numbers 
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Figure 15 - Damage identification results in the web elements of the beam 


