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Abstract 

Predictions of future cases of asbestos-related disease have been undertaken at a national level to inform 

government policy and planning for future health needs. In general, we can separate the methods used to 

predict future cases of mesothelioma into models that use a) direct or b) indirect estimates of asbestos 

exposure. Direct estimates are those that have been derived mostly for occupationally exposed cohorts, 

where airborne fibre levels were measured over time. Indirect estimates tend to be information about total 

or fibre-specific asbestos imports or use from a range of time points. Most predictions undertaken at the 

national level have predicted future cases for males only and assume that indirect estimates of asbestos 

consumption reflect occupational asbestos exposure. These models tend to fit the observed data 

reasonably well but have undergone several refinements in order to improve their fit. Fewer attempts have 

been made to predict cases of mesothelioma resulting from non-occupational asbestos exposure, and most 

have not subsequently revisited their prediction to ascertain its accuracy so the robustness of these 

methods is unclear. Because of the change in asbestos use in recent decades, more attention should be 

paid to understanding the risks and burden of future cases arising from non-occupational exposure. A 

range of current data exist that should be sufficient to incorporate into models to predict future cases of 

mesothelioma arising from non-occupational asbestos exposure. Models could be tested for their accuracy 

by comparing them against the most recent 10 years of observed cases or against cases in women, whose 

most common source of exposure is non-occupational. 

 

Predictions of the future burden of disease are undertaken for a variety of policy and 

planning reasons. Knowledge about the future number of cases of a particular disease 

can assist health planners to allocate resources for primary prevention, screening and 

diagnosis, treatment, and palliative care. Estimates of the future burden of disease can 

also be used to evaluate prevention programs. For example, the number of observed 

cases after the introduction of a prevention program could be evaluated against the 

number of expected cases, assuming that the disease trends before the program was 

introduced continued into the future. In the same vein, a prediction that estimated a 

heavy future burden of a particular disease could alert public health specialists to 

instigate a prevention program in order to avoid that prediction scenario (Bray and 

Moller 2006).  

The simplest type of cancer prediction extrapolates past trends of cancer incidence or 

mortality to some date in to the future, but more information is required in order to 

estimate more complex scenarios. Ideally, information about the effect of a risk factor 

on the cancer of interest would be known by sex and age group for the past, present and 

future. In addition, the prevalence of exposure to that risk factor in the population would 

also be known. This information would then be used to develop a statistical model that 

describes the relationship between the risk factor and the cancer rate. However, in 

reality, cancer is not associated with only one risk factor, and usually the prevalence of 

exposure in the population is unknown and risk factor data are not available at the level 
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required (e.g. by age group and sex and calendar time). The exception is lung cancer 

and smoking, where the effect of smoking on lung cancer is well known, as is the 

prevalence of exposure to smoking, often by age group, sex and calendar time. As such, 

predictions of lung cancer epidemics associated with smoking have been regularly 

estimated (Winkler et al. 2011; Yamaguchi et al. 1992; Pierce et al. 1991) and have 

been shown to be reliable. For example, among Finnish males the observed incidence of 

lung cancer was shown to fit well with earlier predictions of lung cancer incidence 

estimated from hypothetical changes to smoking habits (Bray and Moller 2006; Moller 

et al. 2002). 

Predictions of asbestos-related diseases 

At a national level, predictions of future cases of asbestos-related disease have been 

undertaken to attempt to predict which year the peak number of cases may occur, after 

which the disease may then decline (Peto et al. 1995; Segura et al. 2003), and to inform 

government policy and planning for future health needs. Among occupational cohorts, 

predictions of future cases have been estimated to highlight the burden of disease in that 

cohort (de Klerk et al. 1989). They have also been undertaken to predict the future 

number of compensation claims resulting from people with mesothelioma caused by 

exposure to Johns Manville asbestos products (Stallard et al. 2005).  

Historically, asbestos exposure occurred among workers who worked with the raw 

asbestos, mining and milling it or processing it in textile or asbestos cement factories 

(Landrigan 1991). Subsequently, other workers, such as carpenters and plumbers, 

insulators, shipbuilders and railway workers, were exposed from their use of the 

manufactured asbestos product. Latterly, workers who maintain buildings or remove 

asbestos from buildings have the highest asbestos exposure potential (Frost et al. 2008). 

Non-occupational exposure occurred among family members of asbestos workers, who 

brought their clothes home for laundering or among those who lived nearby to an 

asbestos factory or who worked in a building that contained asbestos (Robinson 2012).  

Increasingly we need to turn our attention to the risks associated with, and the future 

burden of, asbestos-related diseases resulting from exposure to non-occupational 

sources of asbestos. Australia was an avid producer and consumer of asbestos. It was 

mined in Western Australia and New South Wales, and Australia also imported raw 

asbestos fibre and manufactured asbestos products, and manufactured its own asbestos 

cement products and asbestos goods.  

More than 60 percent of production and 90 percent of consumption of raw asbestos 

was by the asbestos cement manufacturing industry (Hughes 1978). Asbestos cement 

products, specifically fibro sheeting, were used largely as a building material for 

industrial and commercial premises, and as cladding for the outside of residential 

housing or as water and drainage piping, roofing shingles, guttering, and fencing 

throughout Australia. Asbestos was also used as an insulation material (e.g. Mr Fluffy 

homes in Canberra). The post-World War II housing boom until the 1960s saw 25 

percent of all new homes built in Australia (52 percent in NSW) clad in asbestos 

cement, and up to 70 percent contained some form of asbestos (National Occupational 

Health and Safety Commission 2004). Because of this Australia has a large amount of 

in situ asbestos in variable condition, throughout the built environment. Less is known 

about the risk of disease associated with exposure to in situ asbestos, largely in the form 

of asbestos cement. However, cases of mesothelioma have developed among do-it 

yourself home renovators (Olsen et al. 2011), and there are numerous reports of cases 

resulting from low dose asbestos exposure (Bourdes et al. 2000; Magnani et al. 2001). 
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Similarly, there is no known asbestos exposure threshold below which risk of disease 

does not occur (Iwatsubo et al. 1998). What is known is that the number of people 

exposed to in situ asbestos in Australia is probably very large, but the amount they have 

been exposed to, in most circumstances, is likely to be very low. Predictions of the 

future burden of asbestos-related disease that may emerge from low dose asbestos 

exposure might provide some insight about how best to manage the remaining in situ 

asbestos in Australia. For example, the future disease burden can be modelled against a 

range of prevention scenarios to inform policymakers about which prevention strategies 

would have the greatest impact (e.g. result in the fewest cases of mesothelioma). A 

particular comparison could be the future burden of mesotheliomas resulting from low 

dose asbestos exposure if in situ asbestos were removed as a priority from all 

government, commercial and domestic residences in Australia; or from only 

government and commercial premises; or if removal was not prioritised but in situ 

asbestos was contained. Furthermore, understanding the size of the possible future 

burden of asbestos-related disease can inform future health planning, budget allocation 

for screening and diagnosis, treatment, and palliative care.  

In the subsequent sections, a definition of asbestos and asbestos-related diseases is 

presented, and a discussion of the multi-stage model of carcinogenesis that has been 

used as the basis for many of the prediction methods. A discussion of different methods 

used to predict future cases of asbestos-related diseases follows. 

Asbestos 

Asbestos is the commercial name of a number of naturally occurring minerals that have 

crystallised to form long thin fibres and fibre bundles. There are two family types of 

asbestos: amphibole and serpentine. There are at least five varieties of amphiboles: 

crocidolite (blue asbestos), amosite (brown asbestos), actinolite, tremolite, and 

anthophyllite. Crocidolite fibres generally have the finest diameter. Amosite fibres are 

slightly thicker, and the less commercially used varieties of actinolite, tremolite, and 

anthophyllite are coarser (Roggli and Coin 1992). Chrysotile (white asbestos) is from 

the serpentine group of minerals and has been the most common commercially used 

form of asbestos.  

Asbestos-related diseases 

The inhalation of asbestos fibres is associated with both benign and malignant diseases. 

Asbestosis (diffuse interstitial pulmonary fibrosis) is a fibrosis of the lungs, and patients 

with well-established asbestosis present with symptoms of shortness of breath and a dry 

cough. It is a progressive but not necessarily fatal disease (Doll and Peto 1985). 

Asbestosis generally develops after heavier exposure, although the minimum amount of 

asbestos exposure needed to cause asbestosis is unclear. Other benign conditions 

associated with asbestos exposure include discrete plaques and pleural calcification, 

diffuse pleural thickening and thickening of the interlobar fissure (Reid et al. 2005).  

Cancers associated with asbestos exposure include malignant mesothelioma, which 

presents as a diffuse involvement of a mesothelial surface, most commonly in the pleura 

and less frequently in the peritoneum, pericardium and testes. It is universally fatal, with 

a median survival period of between nine and twelve months (Musk et al. 2011). All 

four major histological types of lung cancer (adenomatous, squamous, undifferentiated 

large-cell, and small-cell carcinoma) are related to asbestos exposure. Other cancers 
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caused by asbestos include cancers of the larynx, and there is inconsistent evidence for 

cancers of the colon and rectum, stomach and pharynx (Straif et al. 2009). Ovarian 

cancer has been associated with asbestos exposure (Straif et al. 2009), although there is 

some doubt that this may be peritoneal mesotheliomas misdiagnosed (Reid et al. 2011). 

Malignant mesothelioma has a long latency period (the period of time that has passed 

since first asbestos exposure to the onset of the disease or death), rarely developing 

within 15 years since first exposure (Antman and Aisner 1987), yet increasing with time 

since first exposure for up to 45 years for pleural, and longer for peritoneal, 

mesothelioma (Reid et al. 2014). Mesothelioma mortality rates have been found to be 

proportional to the 3
rd

 or 4
th

 power of time since first exposed to asbestos (Peto et al. 

1982).  

Multi-stage model of carcinogenesis  

Multi-stage models of carcinogenesis attempt to describe the biological processes 

involved in cancer development in mathematical and conceptual terms. The simplest 

model was proposed by Armitage and Doll in 1954 to explain the observation that age-

specific cancer incidence curves increased linearly with age (Armitage and Doll 2004). 

Plotting the logarithm of incidence against the logarithm of age resulted in a straight 

line with a slope between four and five (Breslow and Day 1987). For many cancers this 

model represented the background age specific rate, and k (power of time since first 

exposure) was equal to five or six (Breslow and Day 1987). The basic premise of the 

Armitage/Doll model was the assumption that cancer develops from a single normal cell 

that has undergone a series of transitions. The occurrence of the last transformation 

leads to cancer in that cell. The number of cells at risk at the start is assumed to be large, 

but the probability of the critical number of transformations occurring in any individual 

cell is considered to be small (Breslow and Day 1987). If this model were true, most 

cancers would develop after the cell has undergone five or six transformations towards 

malignancy (Kaldor and Day 1996).  

For mesothelioma, mortality rises rapidly with increasing time since first exposure 

and is independent of age (Peto et al. 1982). These observations are best explained by a 

dose-response model (the mesothelioma mortality rate model), where the increase in 

subsequent mesothelioma risk is proportional to the cumulative dose inhaled, to a power 

of time since first exposure lying between three and four, and to a latency period of ten 

years before mortality begins to increases (Peto et al. 1982). Later work has further 

refined this model and includes parameters that allow for the clearance of fibres from 

the lungs (Berry 1999). The mesothelioma rate model is expressed as:  

Mesothelioma rate = ce
-λt

(t – w)
k
  

where ce is cumulative exposure, t is time since first exposure, w is the lag period, k 

is the power of time since first exposure, and λ is the rate of clearance of asbestos fibres 

from the lung. 

Literature search procedure 

To identify the literature predicting future cases of asbestos-related disease, the 

following search terms were searched singly and together: asbestos, prediction, 

projection, forecasting, mesothelioma, mesothelioma mortality, asbestosis, exposure, 
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environmental exposure, age-period-cohort models, risk models, mesothelioma 

mortality rate. The search was conducted through online databases including the Public 

Library of Medicine, Web of Science, and the Curtin University library catalogue. 

Bibliographies of papers were also examined. The search was not time delimited, but 

this review focuses more heavily on more recent prediction methods, most of which 

derive from the earliest methods used. Prediction methods used for occupational cohorts 

that have individual estimates of asbestos exposure were not the focus of this review, 

but the total exclusion of that method would have made explanation of other methods 

used difficult. Therefore one paper outlining a prediction method which formed the 

basis for many subsequent predictions has been included (Berry 1991). 

Many of the prediction methods outlined below attempt to use the mesothelioma 

mortality rate model in their methods. The extent to which they can do this depends 

largely on the availability and quality of data about asbestos exposure. In general, we 

can separate the methods used to predict future cases of mesothelioma into models that 

use direct or indirect estimates of asbestos exposure (Stallard et al. 2005). Direct 

estimates of asbestos exposure are those that have been derived mostly for 

occupationally exposed cohorts where airborne fibre levels were measured over time, 

e.g. the Wittenoom workers where each worker had an exposure based on their job and 

the length of time in that job (Armstrong et al. 1988). Indirect estimates of asbestos 

exposure tend to be information about total or fibre-specific asbestos imports, or use 

from a range of time points. In the epidemiology literature, prediction methods that 

incorporate information about direct and indirect asbestos exposure are called 

predictions, while those that do not incorporate any information about asbestos 

exposure are referred to as projections. 

Models based on direct estimates of asbestos exposure  

Prediction methods that use direct estimates of asbestos exposure have been used to 

predict future cases of malignant mesothelioma among cohorts with known estimates of 

quantitative asbestos exposure, mostly occupational exposure. For example, among 

Wittenoom crocidolite miners and millers (de Klerk et al. 1989) (Berry 1991; Berry 

1999; Berry et al. 2012), or among the women who lived at Wittenoom who were non-

occupationally exposed to asbestos (Reid et al. 2009), albeit at quite high levels. 

Similarly, this model was used to predict cases of mesothelioma among Italian railway 

workers with known estimates of asbestos exposure (Gasparrini et al. 2008). 

The method involves calculating the mortality rate for the cohort to establish the 

excess deaths from all causes of death, lung cancer and mesothelioma in the cohort 

compared with the unexposed population. Then maximum likelihood estimates for the 

mesothelioma rate parameters ce, k and λ are derived from the cohort data, although 

because of correlation between k and λ, λ is often fixed at 6.7 percent and 15 percent per 

annum, and only k estimated (Reid et al. 2009). All of this information provides the 

probability of dying in a year, averaged over each age. This is then applied to the 

number of surviving workers in a particular year to estimate the number who survive to 

the end of the next year, using a lifetable-type approach. For example, applying the 

probability of dying in a year to workers who are still alive at the end of 2015 estimates 

the number of workers who will be alive at the end of 2016. Subtracting the number of 

survivors in 2016 from those in 2015 gives the number of deaths for 2016. The number 

of mesothelioma deaths each year can be calculated by multiplying the mesothelioma 

death rate with the number of surviving workers in each year (Berry 1991).  
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 Several studies have compared their earlier predictions against observed data and 

have found a good fit. For example, Berry et al. used five different mesothelioma 

models, based on different lag times (0, 5 and 10 years) and rates of elimination of 

asbestos fibres (6.7 percent and 15 percent per annum). They predicted between 250 and 

680 cases of mesothelioma among former Wittenoom workers between 1987 and 2020 

(Berry 1991). Subsequent revisiting of this prediction showed that the model that 

incorporated an elimination rate of 15 percent and a lag period of five years had a good 

fit with the observed data (Berry et al. 2004).  

Prediction methods that incorporate individual level data on asbestos exposure 

should be seen as the ‘gold standard’ for prediction methods. They are more accurate 

than other methods because they are based on exact information about demographic 

characteristics, period of exposure, and cumulative exposure (Gasparrini et al. 2008). 

But because of the high level of data required they are only capable of being used to 

predict future disease in a small range of situations, e.g. among workers in specific 

occupations or industries. Most mesothelioma predictions have been undertaken where 

direct measures of asbestos are not available, e.g. at the national or regional level where 

direct exposure estimation would be impossible. 

Models based on indirect measures of asbestos exposure  

Age-cohort models and age-period-cohort models 

Age-cohort (AC) models and age-period-cohort (APC) models have been the method 

used most often to predict future cases of mesothelioma where direct measures of 

asbestos exposure are unknown. Most commonly they have been used to predict future 

cases among whole populations, e.g. for Britain (Peto et al. 1995) or for the Netherlands 

(Segura et al. 2003). They have also been used to estimate future disease compensation 

claims among former Johns Manville asbestos cement workers and those exposed to 

Johns Manville asbestos products (Stallard et al. 2005).  

AC/APC models analyse the effects of age at diagnosis or death, birth cohort, and 

period of diagnosis or death on the past mesothelioma rates (Marinaccio et al. 2005). 

The information on mesothelioma cases usually comes from a mesothelioma or cancer 

registry or from a mortality registry. The mesothelioma rates (cases of 

mesothelioma/population at risk) are organised into age at diagnosis or death groups 

(usually 5 year age groups e.g. 20–24, 25–29, … 75–79), period of diagnosis or death 

groups (again, usually 5 year period groups e.g. 1970–74, 1975–79, … 2010–14), and 

10 year birth cohort groups. Then, in general, a log linear Poisson regression model is 

fitted to the age-specific mesothelioma rates to estimate the effects of age and birth 

cohort and period of death on the mesothelioma rates, and to estimate the relative risk of 

mesothelioma for each birth cohort. To predict future cases of mesothelioma, the 

relative risk for the latest period (e.g. 2010–14) is applied for single or grouped years of 

age to the projected age-specific population.  

The earliest predictions of mesothelioma cases at a national or country level were 

undertaken using models in which mesothelioma risk was related independently to age 

at death or diagnosis with mesothelioma and date of birth. These models predicted 

proportional hazards across the different birth cohorts. Asbestos exposure was assumed 

to be proportional to asbestos imports and was accounted for indirectly by measuring 

time in birth cohorts (M. Clements et al. 2007). Several predictions for national 

countries were undertaken using this method and for some of these, subsequent studies 

revisited the earlier prediction and examined the fit of the prediction against the number 
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of cases that actually occurred. For Great Britain, between 2700 and 3300 male 

mesothelioma deaths were predicted to peak in the year 2020 (Peto et al. 1995). 

Subsequent work showed that this model fit the data reasonably well until 1991, but 

showed a departure from the fit with later cohorts, predicting more cases of 

mesothelioma than actually occurred among those later birth cohorts. Similarly, 

predictions of mesotheliomas in Europe (Peto et al. 1999) and the Netherlands (Peto et 

al. 1999), when subsequently revisited, overestimated the number of cases (Pelucchi et 

al. 2004; Segura et al. 2003). This was largely because the mesothelioma rate did not 

increase as fast with increasing age in the younger cohorts as it did in the older cohorts. 

More recent birth cohorts would only have been exposed to asbestos early in their 

working life so it is unclear whether the risk of mesothelioma would continue to 

increase with age up to 80 years or whether it will flatten out at younger ages for these 

cohorts (Clements et al. 2007). These methods did not take into account any period 

effects on the mesothelioma rate. For example, they couldn’t account for the lower 

asbestos exposure experienced by the younger cohorts, after asbestos bans and exposure 

standards were introduced in the 1970s (Gasparrini et al. 2008). The AC method 

assumed that the rate increased at the same rate by age for all cohorts and so was 

unreliable (Hodgson et al. 2005).  

In light of these limitations subsequent work undertook predictions at a national level 

using APC models that included a priori assumptions about period effects (Gasparrini 

et al. 2008). For example, based on the large reduction in the use of asbestos in the 

Netherlands from 1984, Segura et al. (2003) assumed that the risk of mesothelioma 

among those born between 1958-62 was 50 percent less than that of those born between 

1953–57. Similarly, birth cohorts born after 1962 were assumed to have zero risk of 

mesothelioma. To this same model a period effect was incorporated, to account for the 

introduction of the International Classification of Diseases – Volume 10 (ICD-10), 

which greatly improved the recording of mesothelioma on death certificates. Compared 

with the earlier prediction of approximately 1000 deaths in the peak year of 2020 (Peto 

et al. 1999), this enhanced model predicted a peak year of 2017 and 501 deaths (Segura 

et al. 2003). However, the accuracy of this later method for predicting future 

mesotheliomas has not been assessed against observed data. 

Other work has incorporated Bayesian statistical methods into APC models to make 

inferences from past knowledge to improve the fit of these models to identify the 

relative contribution of age, period and cohort on the risk of mesothelioma (Girardi et 

al. 2014; Pitarque et al. 2008). However, subsequent work comparing the observed 

cases against predictions found that the Bayesian enhanced APC model used by 

Pitarque et al. (2008) underestimated observed mesotheliomas by 41 percent or 261 

deaths (López-Abente et al. 2013).  

The APC model has also been used to project future cases of mesothelioma using a 

method that does not require knowledge about asbestos exposure (Martínez Miranda et 

al. 2015). The statistical model is estimated with Poisson regression without an offset, 

so is somewhat simpler to model than the more sophisticated APC models that use the 

log-linear method. The authors suggest that their method can be used to benchmark 

more sophisticated prediction models. Compared with other predictions for Great 

Britain, this method projected a peak in 2018 of 2095 (95% CI 1978–2210) cases. This 

compares favourably with Peto’s 2700 peak cases in 2020 (Peto et al. 1995), Hodgson’s 

1846 cases peaking in 2013 (Hodgson et al. 2005) and Tan’s 2040 deaths peaking in 

2016 (Tan et al. 2010). The latter two prediction methods (see below) involved 

complicated constructions of exposure. 
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Other factors that may have influenced mesothelioma rates but that were generally 

not accounted for in APC models include improvements in the diagnosis and reporting 

of mesothelioma over time, where earlier cases may have been missed. A further 

limitation of these methods is that the analyses were based on the age-cohort 

distribution of the general population, whereas the mesothelioma cases will mostly 

come from specific occupational populations (Gasparrini et al. 2008) such as carpenters 

and asbestos textile workers. Also, many of these models predicted future cases among 

men only, because asbestos consumption records are an indicator of the use of asbestos 

exposure that men would incur in certain jobs, whereas women are more likely to obtain 

their asbestos exposure from sources other than work, e.g. from the general environment 

or take-home asbestos. These models tend to predict cases from high exposure scenarios 

only and do not take into account risks from lower exposure. In addition, clearance of 

asbestos fibres from the lung was increasingly found to be important for the risk of 

mesothelioma, and this had not been accounted for (Berry 1999).  

Other models  

Hodgson et al. (2005) attempted to improve the accuracy of mesothelioma predictions 

in Great Britain and used a model that related current mesothelioma mortality to past 

asbestos exposure, and also accounted for the clearance of asbestos fibres from the 

lungs and for the completeness of mesothelioma diagnosis over time. Similar to the 

earlier models, indirect asbestos exposure was dependent on calendar year, but unlike 

earlier AC models, it varied with age. This overcame the limitation of earlier models 

that assumed that the mesothelioma rate increased by age for all cohorts (Hodgson et al. 

2005). When compared against observed cases of mesothelioma, the enhanced model fit 

the data better than the earlier, simpler models and predicted fewer mesotheliomas, 

around 1950-2450 deaths, peaking between 2011 and 2015 (Hodgson et al. 2005). 

Confidence intervals for the model parameters and predictions could not be estimated in 

this enhanced model, so there remained a level of uncertainty in the predicted numbers 

(Clements et al. 2007; Hodgson et al. 2005; Tan et al. 2010). Further refinement to the 

model integrated a Bayesian statistical analysis that allowed for data on asbestos 

imports and levels of asbestos use, and a background rate of mesothelioma, to be 

included in the model and the calculation of credible and prediction intervals, thus 

providing a measure of uncertainty. Compared with observed cases between 1968 and 

2006, this refined method fit the observed data well and predicted fewer mesotheliomas 

than the earlier methods, peaking at 2038 male deaths (prediction interval 1929–2156) 

in 2016 (Tan et al. 2010). To date the predicted cases from this method have not been 

compared against observed data.  

A similar model to that proposed by Hodgson was used to predict future cases of 

mesothelioma in New South Wales (Clements et al. 2007). This method differed to the 

former through the use of natural splines as the parameters for change in asbestos 

exposure by time and age, and assumed that birth cohorts born after 1970 had negligible 

risk for mesothelioma.  

Other authors have used risk function models that are very similar to the models used 

to predict mortality in the occupational cohort studies discussed above, but with indirect 

measures of asbestos exposure. Banai et al. (2000) predicted future cases of 

mesothelioma for the population of French men, who generally had much lower 

exposure than those other cohorts. This model incorporated a risk of death at a given 

age as well as a risk function for the mesothelioma mortality rate, and data from past 

French asbestos imports was used to model overall past asbestos exposure. Their results 

were very comparable to earlier work that had used the age-cohort method to predict 
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future mesothelioma cases (Ilg et al. 1998). Using a risk function model based on that 

used by Banai et al (2000), but adapted for Japanese circumstances, Myojin et al (2012) 

predicted future cases of mesothelioma in Japan, and only for those who worked in 

construction and manufacturing rather than the whole population of men. It is unclear 

how this method fits against observed cases.  

Predictions of other asbestos-related diseases 

Future cases of asbestosis and lung cancer have been predicted far less frequently than 

malignant mesothelioma, although the method used to predict these other asbestos-

related diseases was similar to those outlined above for mesothelioma. For lung cancer 

there is an added complication that while most mesotheliomas are accepted as being 

caused by asbestos exposure, the proportion of asbestos-related lung cancers is less 

clear, and not clinically distinguishable from those due to other causes – therefore it 

must be estimated (Darnton et al. 2006). One such estimation provided a ratio of the 

number of asbestos-related lung cancers per mesothelioma death, where mesothelioma 

death was used as a proxy for asbestos exposure and based on data from 55 asbestos 

exposed cohort studies. The ratios varied by fibre type, and ranged from 0.7 (95% CI 

0.5–1.0) for crocidolite, 6.1 (3.6–10.5) for chrysotile, 4.0 (2.8–5.9) for amosite, and 1.9 

(1.4–2.6) for mixed fibres (McCormack et al. 2012).  

Following on from this work, three prediction methods were used to estimate future 

lung cancers related to asbestos exposure in the Netherlands (Van der Bij et al. 2016). 

The first method estimated lung cancers from predicted mesotheliomas using the ratio, 

based on exposure to mixed fibre types, of 1.5 asbestos-related lung cancers per 

mesothelioma death, as suggested by McCormack et al (2012). The second method 

applied, from an earlier study, the fraction of lung cancer cases attributable to asbestos 

exposure (PAR population attributable risk) to the predicted number of lung cancers 

derived for the period 2011–30 and the projected male demographic distribution 

between 2011 and 2030. This predicted number of lung cancers was derived from lung 

cancers observed between 2008–10. The third method used exposure information and 

asbestos-related lung cancer risk as a function of that exposure to estimate the future 

lung asbestos-related lung cancers in a lifetable analysis. The three methods varied 

widely in their future predictions, from a high of 17,500 for method one, to 12,150 for 

method two, and 6800 for method three. They were unwilling to state which method 

they thought was the most accurate, instead commenting that the robustness of any 

method relies heavily on the quality of the information put into it and that the most 

comprehensive method is not necessarily better than a simple one (Van der Bij et al. 

2016). 

Work from the United States predicted future deaths from asbestosis among US 

residents, using past deaths from asbestosis and asbestos consumption
1
 per capita as an 

indirect estimate of asbestos exposure (dos Santos Antao et al. 2009). They found that 

the model that best fit deaths from asbestosis between 1968 and 2004 used asbestos 

consumption per capita 48 years prior (1920–56), and used this model to predict future 

deaths from asbestosis (dos Santos Antao et al. 2009). However, predicted cases have 

not been revisited to compare against observed cases to determine the accuracy of their 

model. 

Future cases of lung cancer have been estimated among cohorts of workers exposed 

to asbestos (Berry 1991; de Klerk et al. 1989; Gasparrini et al. 2008), using methods 

                                                 
1 Asbestos production, plus imports, minus exports, minus changes to government and industry stocks 
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similar to those reported above that used direct estimates of asbestos exposure, but 

where a rate for lung cancer mortality was derived instead of a rate for mesothelioma. 

None of these predictions have been revisited to compare against observed data.  

Predictions of mesothelioma from non-occupational exposure 

Most of the prediction methods discussed above considered mostly men, and 

occupational and high-dose exposure only. Increasingly, cases of mesothelioma have 

been occurring among people with low-dose non-occupational asbestos exposure, but to 

date little attention has been paid to the future burden of mesothelioma from low-dose 

exposure. There are still considerable gaps in our understanding of the risks associated 

with non-occupational asbestos exposure, and the prevalence of that exposure within the 

population. 

In terms of knowledge, we are uncertain about the dose-response relationship for 

asbestos-related disease in persons with low dose exposure, particularly the risks 

associated with domestic or residential exposure. Where information on low dose 

exposure risk exists, it tends to be from cohorts of people that would have had 

considerably higher asbestos exposure than that emanating from the built environment. 

For example, the women from the blue asbestos mining and milling town of Wittenoom 

were not exposed to asbestos occupationally, but their environment was highly 

contaminated from mine tailings being distributed around the town (Reid et al. 2008a; 

2008b).  

At the same time we are uncertain about the amount of asbestos product that remains 

in the built environment and the condition of that asbestos product, although we do have 

estimates of the amount of asbestos used and removed over time in Australia (Finity 

2016). However, we are uncertain as to its location and uncertain about the amount 

(level) of exposure that comes from that source of asbestos – although earlier work from 

the UK and US reported very low levels of asbestos inside buildings that contained 

asbestos in varying conditions (Burdett et al. 1988; Crump and Farrar 1989). We are 

also uncertain about who or how many in the population have been exposed to asbestos 

from this source.  

Three studies have been identified that predicted future burden of mesothelioma 

among those exposed non-occupationally. Azuma et al. (2009) used a model based on 

the mesothelioma mortality rate model and indirect measures of asbestos exposure to 

predict future cases resulting from environmental exposure in Japan. This study defined 

environmental exposure in its narrowest sense, being only that exposure that was not 

occupational, domestic or from indoor asbestos exposure (e.g. being exposed to 

asbestos in a room where sprayed asbestos was used). Their model included a parameter 

for the annual average concentration of asbestos in years, and another for continuous 

asbestos exposure. The annual average concentration of airborne asbestos in years was 

estimated from a range of sources in the literature, including trend data for commercial 

areas beginning in 1981, and exposure measurements from 1968 and 1970. In addition, 

national field surveys assessing levels of airborne asbestos concentrations were 

conducted in 1985 and 2005. Estimates were supported from data on the consumption 

of sprayed asbestos as well as trends in the number of ferruginous bodies detected in the 

lungs of the general population. Their model fitted well against observed cases of 

mesothelioma resulting from exclusive environmental asbestos exposure. However, the 

robustness of this method is unclear, sensitivity analyses comparing a range of exposure 

scenarios were not conducted, and the predicted cases have not been examined against 

observed data.  
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Furlan and Mortarino (2012) predicted future cases of mesothelioma among residents 

of the Local Health Area (LHA) of Casale, which contains the city of Casale 

Monferrato, where Italy’s largest asbestos cement factory was located. Other work had 

shown an increased risk of mesothelioma among residents of the LHA (Magnani et al. 

1995). Their method was based on one used for epidemic diseases and predicted a total 

number of deaths and a date for the end of the ‘epidemic’. Information on the number of 

individuals who incurred the same exposure (e.g. the number of people who lived in the 

LHA at the same time) was needed, rather than individual level asbestos exposure. They 

predicted future cases in three areas: (1) among residents of the city of Casale 

Monferrato; (2) in residents of Casale Monferrato and bordering towns; and (3) in the 

Casale Local Health Area. Their model predicted fewer cases with increasing distance 

from the asbestos cement factory. Confidence intervals were built for each area, and 

uncertainty about the number of future cases and the end period of the ‘epidemic’ in the 

larger area (LHA) was greatest. One strength of this method was that it could predict 

future disease among all residents of these areas and not only those who worked for the 

factory. However, the data requirements were large for this method, and the modelling 

included several assumptions that had large impacts on the outcomes and uncertainty of 

the results.  

For Australia, Finity (2016) predicted the future burden of mesothelioma by wave of 

asbestos exposure. Waves 1 and 2 were defined as cases where exposure was from 

asbestos mining, manufacture and heavy industrial use and asbestos product use, 

particularly in the building industry. Also included in Waves 1 and 2 were those cases 

where exposure was from living near an asbestos cement factory or from asbestos 

brought home on workers’ clothes. Wave 3 cases were defined as those where exposure 

was from asbestos in the built environment, e.g. from disturbing or renovating a home 

that contained asbestos, background cases, and occupational exposure post-2003 (the 

year Australia banned all types of asbestos). Finity (2016) used a mesothelioma risk 

model that predicted the future burden for each exposure wave. To account for asbestos 

exposure over time, an asbestos volume index was derived based on 100 percent weight 

for the amount of national asbestos consumption plus a 30 percent weight for the 

amount of asbestos removed nationally, and reflecting the changing use of asbestos 

types over time and safe handling procedures. The exposure index was based on the 

volume of asbestos consumed rather than the number of people exposed. Also included 

in the model were parameters for age at first exposure and duration of exposure. 

Exposure duration of 2 years was allocated to Wave 3, assuming a shorter exposure 

period for a home renovation. The Australian mortality rate and projected population to 

2100 were taken from Australian life tables. The model was back-fitted against 

observed cases from 1988-2014 for each wave separately and together, and showed a 

good fit for all exposure waves. Similarly, the projected peak of cases across all 

exposure sources combined closely matched two other predictions that used an APC 

model with natural cubic splines (Clements et al. 2007; Soeberg et al. 2016). However, 

Finity (2016) allocated a duration of exposure of 2 years for Wave 3 cases, which may 

be appropriate for those who obtained their exposure from DIY home renovation, but is 

likely to underestimate the duration of exposure among those who lived in a house 

containing ACM for many years. 

These three studies highlight the wide range of data used to undertake a prediction of 

future cases of non-occupationally exposed mesothelioma. To date none of these 

methods have been assessed against future observed cases, so how accurate they are at 

predicting future cases is uncertain.  
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Discussion 

As discussed above, most predictions of asbestos-related disease have been undertaken 

on men and largely based on high-dose occupational exposure. However, as the pattern 

of use of asbestos has changed in recent decades, so have the risks of exposure in 

relation to who is exposed and to how much. Therefore we need to improve our 

understanding about the risks associated with, and the future burden of, diseases 

resulting from exposure to non-occupational sources of asbestos. Specifically, we need 

to determine if the models used to predict occupational cases of mesothelioma can be 

used to accurately predict non-occupational cases, and if existing information about 

current non-occupational exposure is sufficient to include in those models.  

As the risk of mesothelioma is proportional to the dose of exposure, information 

about total asbestos exposure (indirect exposure), rather than individual level exposure 

information, should be sufficient to include in a prediction model of future cases of non-

occupational exposure. Indeed, Clements et al. (2007b) argue that where exposure data 

is poor, indirect methods are now state of the art for population level predictions. 

Estimates of national asbestos consumption have been used to provide information 

about the period and duration to which workers might have been exposed to asbestos in 

their occupation. However, this is less informative about the period and duration of 

exposure for people exposed subsequently to in situ asbestos, and should be tested in a 

range of prediction scenarios to assess its reliability for inclusion in non-occupational 

exposure prediction models. Alternatively a national survey could be conducted to 

estimate the proportion of the population that have been or currently are exposed to 

asbestos from their built environment – but seeking information about self-reported 

exposure is difficult, unreliable and costly. Also it is not clear by how much the estimate 

of predicted cases would change if detailed exposure information were available, or 

whether the hypothesized increase in precision justifies the cost of collecting new non-

occupational asbestos exposure data.  

 Other data do exist that may be used to inform future predictions. The Australian 

Mesothelioma Registry (AMR) may be a source of information to derive mesothelioma 

rates based on domestic/residential exposure. They have collected occupational and 

environmental asbestos exposure on new cases in Australia since 1980 (Leigh and 

Driscoll 2003). However, collecting exposure information on cases diagnosed since 

2010 has been very problematic for the AMR, and they are currently achieving this on 

only 17 percent of new cases, although these cases have been examined and classed as 

representative of all newly diagnosed mesothelioma cases (Finity 2016). Moreover, 

because of the long latency of these diseases, exposure among past cases may not reflect 

what is occurring today. Because of the reduction in the level of exposure over time, it 

may not be useful as a base to project forward to predict future cases, although they do 

inform historical exposures.  

Current data on the potential exposure levels from DIY home renovations, the 

prevalence of exposure to DIY home renovation, and the risk of mesothelioma from 

DIY exposure, could be used to inform prediction models estimating the future burden 

from DIY home renovations. Asbestos fibres released during a range of DIY home 

renovation tasks that involve the removal or disturbance of asbestos cement sheeting 

have been recently quantified. In situations where there was minimal breakage of 

cement sheets and where power tools were not used, the exposure was low. However, 

tasks that involved breaking sheets or using power tools resulted in personal exposures 

above 0.02f/ml (Benke 2016). Information about the current prevalence of exposure to 

asbestos from DIY exposure comes from a study conducted in 2008 in New South 
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Wales, where 44 percent of participants reported renovating their home; 53 percent of 

those reported being a DIY home renovator and 61 percent of those self-reported having 

had asbestos exposure (Park et al. 2013). The risk of mesothelioma from DIY exposure 

was examined using data from the Western Australian Mesothelioma Register. To the 

end of 2008, 87 cases of mesothelioma (55 in men) were reported where DIY home 

renovation was the main source of exposure. Over time, the proportion of cases with 

this source of exposure had been increasing; from 2005–2008, 8.4 percent of male and 

36 percent of female cases reported DIY exposure (Olsen et al. 2011).  

This review identified that many of the prediction methods assessed the fit of the 

model by back-fitting their model against past observed cases. Most of the studies 

reviewed here have not revisited their model at a date in the future to assess how it 

performed against new cases. A new way of assessing the fit of a prediction model 

would be to create it as usual from past incident mesothelioma cases or deaths, but 

exclude the most recent 10 years of incident cases or deaths. Then the accuracy of the 

model could be tested to see how well it fitted the most recent 10 years of data. A 

limitation with this method is that the most recent ten years of incident cases would, in 

most situations, contain the greatest number of cases, due to the long latency period of 

these diseases. But predicting disease at a national level may permit sufficient cases for 

this method to be tested. Furthermore, several models could be derived, each based on 

different existing data about current and past asbestos exposure. Each model could then 

be tested against the most recent 10 years of incident cases and compared, to inform on 

the impact of the exposure data on the estimate. From this comparison we will learn 

whether more asbestos exposure data needs to be collected, given the inherent 

difficulties and cost associated with collecting such data, or whether the existing data is 

sufficient for incorporating into future predictions.  

Another gap identified in this review was that many of the predictions excluded 

women from their estimates, in general because of their small number of cases. 

However, women are more likely to have obtained their asbestos exposure non-

occupationally, so estimating the future burden of disease based on past rates in women 

may inform future burden for the whole non-occupationally exposed population. In the 

same vein, prediction models could be tested for their accuracy by comparing their 

predicted cases against observed cases in women. 

Conclusion 

Future cases of asbestos-related disease have been predicted for a range of populations 

across many countries. The most robust methods incorporate direct measures of 

asbestos exposure, but this information is available only for defined occupational cohort 

studies, e.g. the Wittenoom crocidolite asbestos miners and millers. Other methods that 

use indirect measures of asbestos exposure, e.g. methods that assume asbestos exposure 

is proportional to asbestos imports or use, have predicted future cases of mesothelioma 

among workers with reasonable accuracy. Fewer studies have predicted cases of 

mesothelioma among populations with non-occupational asbestos exposure, and the 

robustness of these methods is less clear. Sufficient data about asbestos exposure may 

exist at a national level to permit an accurate prediction of future burden, but models 

using different estimates of exposure should be tested to examine the impact on the 

estimates of asbestos-related disease that may emerge from non-occupational asbestos 

exposure in the Australian population. 
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Table 1. Summary of methods used to predict future cases of asbestos-related disease included in the review 

Study Disease 

predicted 

Population 

studied 

Prediction 

period 

Prediction method Asbestos exposure Model sensitivity tested w 

observed data (past 

mesothelioma/other cases)  

Model revisited to 

check accuracy of 

prediction 

Occupational cohorts 

Berry 1991 Mesothelioma, 

lung cancer and 

asbestosis 

Wittenoom 

workers 

1987–2020 Mesothelioma risk 

model 

Direct – cumulative 

exposure and time since 

first exposure 

Yes Yes – model that 

included 15% 

clearance of asbestos 

fibres from the lung 

was repeatedly a 

good fit 

National predictions – occupational exposure 

Peto 1995 Mesothelioma 

mortality 

Males in Great 

Britain 

1990–2040 Age-cohort model Indirect - asbestos 

consumption 

Yes Yes - model fit the 

data up to 1991, but 

did not fit younger 

cohorts 

Peto 1999 Mesothelioma 

mortality 

Males, Western 

Europe 

1995–2029 Age-cohort model none Yes Yes – was found to 

overestimate cases 

Banaei et al. 2000 Mesothelioma 

mortality 

French males 1997–2050 Risk function model 

that incorporated risk 

of death from 

mesothelioma as a 

function of past 

exposure 

Indirect – asbestos 

imports 

Yes No – but this method 

predicted similar 

numbers to an earlier 

APC model 

Segura et al. 2002 Mesothelioma 

mortality 

Males/females in 

the Netherlands 

2000–28 Age-cohort and age-

period-cohort models 

Indirect – asbestos 

consumption 

Yes No - This method 

predicted 44% fewer 

cases than earlier 

methods 

Marinaccio et al. 

2005 

Mesothelioma 

mortality 

Males in Italy 2012–24 Age-period-cohort 

model & asbestos 

consumption model 

Indirect -asbestos 

consumption 

Yes No 

Hodgson et al. 

2005 

Mesothelioma 

mortality 

Males in Great 

Britain 

2002–50 Poisson regression 

model 

Indirect; asbestos 

consumption 

Yes Yes, however this 

model has been 

subsequently 

enhanced 



 

Study Disease 

predicted 

Population 

studied 

Prediction 

period 

Prediction method Asbestos exposure Model sensitivity tested w 

observed data (past 

mesothelioma/other cases)  

Model revisited to 

check accuracy of 

prediction 

Clements et al. 

2007 

Mesothelioma 

incidence 

Males in New 

South Wales, 

Australia 

2004–60 Age-cohort model 

and age/calendar year 

model similar to 

Hodgson et al.  

Indirect; asbestos 

consumption 

Yes No 

Pitarque et al. 

2008 

Mesothelioma 

mortality 

Spanish males 2002–17 Bayesian age-period-

cohort model  

Indirect; asbestos 

consumption 

Yes Later work showed a 

41% underestimate of 

cases from this 

method 

Tan et al. 2010 Mesothelioma 

mortality 

Males in Great 

Britain 

2007–50 Bayesian enhanced 

poisson regression 

model 

Indirect; age-specific 

exposure and overall 

population exposure 

Yes No  

Myojin et al. 2012 Mesothelioma 

mortality 

Japanese men with 

an occupational 

history of asbestos 

exposure 

2003–50 Risk function model 

that incorporated risk 

of death from 

mesothelioma as a 

function of past 

exposure 

Indirect; asbestos 

imports 

Yes No 

Lopez-Abente et 

al. 2013 

Pleural cancer 

(mesothelioma) 

deaths 

Spanish males and 

females 

2011–20 Age-period-cohort 

model 

Indirect; asbestos 

consumption 

Yes No 

Girardi et al. 2014 Mesothelioma 

incidence 

Males/females 

Veneto, Italy 

2011–26 Bayesian age-period-

cohort model 

Indirect; asbestos 

consumption 

Yes No 

Miranda et al. 

2015 

Mesothelioma 

mortality 

Males in Great 

Britain 

1990–40 Age-period-cohort 

model without offset 

None Yes No 

Soeberg et al. 

2016 

Mesothelioma 

incidence 

Males/females in 

Australia 

2012–30 Age-period-cohort 

model with natural 

cubic splines 

None; instead predicted 

incidence rates from 

historical trends 

Yes No 

Environmental exposure 

Azuma et al. 2009 Mesothelioma 

mortality 

Males/females in 

Japan 

2005–70 Mesothelioma risk 

model 

Indirect; historical 

asbestos exposure and 

mesothelioma rate 

attributed to 

environmental exposure 

Yes; model underestimated 

past cases 

No 



  

 

Study Disease 

predicted 

Population 

studied 

Prediction 

period 

Prediction method Asbestos exposure Model sensitivity tested w 

observed data (past 

mesothelioma/other cases)  

Model revisited to 

check accuracy of 

prediction 

Furlan et al. 2011 Mesothelioma 

mortality 

Population of the 

Casale Monferrato 

Local Health 

Area, Italy 

2008–40 Cellular Automata 

model (more 

commonly used in 

epidemic diseases) 

Indirect – based on 

number of people living 

in the LHA area at the 

same time 

Yes No 

Finity 2015 

(covers 

occupational and 

environmental 

exposure 

predictions) 

Mesothelioma 

incidence 

Australian 

population 

2015–2100 Mesothelioma 

risk model 

Indirect – asbestos 

volume index (equal to 

100% of asbestos 

consumed each year + 

30% of the asbestos 

removed each year 

Yes; back fit asbestos 

exposure allocation to cases 

from 1988 – by Wave of 

exposure  

No 

Other asbestos-related disease predictions 

dos Santos Antao 

et al. 2009 

Asbestosis 

mortality 

Males/females in 

United States of 

America 

2005–27 Generalised additive 

model 

Indirect; asbestos 

consumption 

Yes No 

Van der Bij et al 

.2016 

Lung cancer Males/females in 

the Netherlands 

2011–30 3 different models: 

1. Age-period-cohort 

model based on 

mesothelioma cases 

 

2. Past cases of lung 

cancer extrapolated 

forward 

3. Life table analysis 

1. Past mesothelioma 

cases used as a proxy 

for exposure 

2. Population 

Attributable Risk of 

asbestos exposure taken 

from earlier study 

3. JEM used to estimate 

current exposure 

Compared with an earlier 

Dutch study (Segura et al) 

method 1 estimated 20% 

higher number of cases 

No 

 


