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ABSTRACT. We use concepts and techniques of network optimization theory
to gain a better understanding of force transmission in dense granular materi-
als. Specifically, we represent a deforming granular material over the different
stages of a quasi-static biaxial compression test as a series of representative
flow networks, and analyze force transmission through these networks. The
forces in such a material are transmitted through the contacts between the
constituent grains. As the sample deforms during the various stages of the
biaxial test, these grains rearrange: while many contacts are preserved in this
rearrangement process, some new contacts form and some old contacts break.
We consider the maximum flow problem and the minimum cost maximum flow
(MCMTF) problem for the flow networks constructed from this evolving network
of grain contacts. We identify the flow network bottleneck and establish the
sufficient and necessary conditions for a minimum cut of the maximum flow
problem to be unique. We also develop an algorithm to determine the MCMF
pathway, i.e. a set of edges that always transmit non-zero flow in every solu-
tion of the MCMF problem. The bottlenecks of the flow networks develop in
the locality of the persistent shear band, an intensively-studied phenomenon
that has long been regarded as the signature failure microstructure for dense
granular materials. The cooperative evolution of the most important struc-
tural building blocks for force transmission, i.e. the force chains and 3-cycles,
is examined with respect to the MCMF pathways. We find that the majority
of the particles in the major load-bearing columnar force chains and 3-cycles
consistently participate in the MCMF pathways.

1. Introduction. Flow networks are ubiquitous in everyday life. Typically, these
are characterized by some quantity being passed from one node to another in the net-
work: current through electrical networks, product components through assembly
lines, energy flow through food webs in an ecosystem, fluid or gas through pipelines,
information through communication networks, vehicles through roadways, etc. [9].
A recurring question of great practical interest is: how can we ensure optimal ef-
ficiency of flow in these networks subject to certain constraints? In this study,
we focus on force transmission through the contact network, i.e. the network of
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grain-grain contacts, of a deforming granular material (e.g. soil, rocks, powders,
grains, etc.). In the absence of grain breakage, deformation in granular materials
is governed by grain rearrangements. As constituent grains or particles rearrange
in response to applied stresses and strains, some old contacts break while some
new contacts form; in turn, this leads to an evolution of the contact network from
one configuration to another, as loading proceeds. We analyze these representative
complex contact networks across the consecutive equilibrium states of the load-
ing history to determine the extent to which force transmission is optimized in a
granular material under quasi-static loading conditions.

Before proceeding with the analysis, a brief background to this study may be
instructive and cast light on why we believe optimization theory has much to offer
research into the mechanics and physics of granular media. The mechanical response
of a granular material under applied stresses and strains has been the subject of
numerous studies throughout history (e.g. [5]). This mechanical response, arising
from the interactions of many individual units (i.e. the constituent grains), has not
only been a favored paradigm for a complex system, but is also of great significance
in many technological and industrial settings (e.g. extraction, processing, transport
and handling of minerals, road and off-road transport, geotechnical construction,
recycling of cans and papers, and processing of food grains, to name a few exam-
ples). Granular materials transmit force through a network of inter-grain contacts.
This contact network is dual in nature: one is strong, the other is weak [19, 21].
The strong network is embodied in “force chains”: these are self-organized column-
like structures which form in the direction of the maximum or most compressive
principal stress, each consisting of at least three particles carrying above the global
average load [21, 23]. The particles in the complementary weak network form min-
imal cycles that surround, and are conjoined with the force chains. The strong and
weak networks evolve in a highly cooperative manner [26]. Akin to those seen in
architectural structures, the strong columnar force chains carry the majority of the
applied load, while the surrounding weak network particles in the minimal cycles
provide truss-like lateral supports. In particular, the smallest member of the min-
imal cycles basis, the 3-cycles, are shown to provide dual support to force chains:
(i) by propping-up the force chain to restore its alignment, and (ii) by frustrating
relative rotation of particles at contacts. These two mechanisms, through which
3-cycles help resist and delay failure by buckling of force chains and, in turn, global
failure of the material — have been systematically studied in both simulations and
experiments [1, 23, 25, 26]. In particular, considerable evidence suggests that the
failure of granular materials via shear bands is due to the localized buckling of force
chains, as originally proposed by Oda and co-workers [4, 14, 15, 16, 17, 18, 20].

Though steady progress has been made in unravelling the co-evolution of these
self-organized columnar and truss-like structures, the process by which the ma-
terial “selects” which particles belong to the strong force chains versus those in
the weak network remains unclear [25]. In an effort to unravel the details of this
selection process, we have undertaken this study as among the first steps toward
understanding force transmission and energy flow from the perspective of combi-
natorial optimization. We wish to uncover what quantity is being optimized (if
any), as the material deforms or as its constituent particles rearrange, a process
that is reflected in the evolution of the material’s contact network. In particular,
are these rearrangements taking place so as to optimize force transmission in the
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direction of the major (most compressive) principal stress — the direction in which
the self-organized, load-bearing columns of force chains form?

Our strategy involves the construction of an appropriate flow network or directed
graph for each equilibrium state of the material, starting from the contact network.
Somewhat surprisingly, even though granular materials lend themselves naturally to
a network representation, the use of complex networks and related fields (e.g. com-
binatorial optimization) has only been recently explored in their characterization
and modeling (e.g. [23, 24, 26, 27]). Here we wish to continue this line of inves-
tigation and use network optimization techniques to establish whether the forces
propagate optimally through the contacts of the deforming medium. To the best of
our knowledge, this study is among the first attempts to use network optimization
principles and techniques to the study of granular materials, in particular, with re-
spect to force transmission [11, 22]. Our analysis proceeds in three steps. First, we
construct a flow network at each strain state of the material in static equilibrium:
we assign a source, a sink and intermediate nodes in the contact network and assign
costs to the edges based on the contact types. Second, we determine the maximum
flow that can be transmitted through this resulting flow network, from source to
sink, at minimum cost. Third, we relate quantitatively the MCMF solutions to
the defining features of force transmission in the deforming material, as expounded
above.

The paper is organized as follows. In Section 2, we introduce the basic concepts
of flow networks. In Sections 3 and 4, we present the maximum flow problem and
the MCMF problem, respectively. In Section 5, we explore the MCMF solutions to
examine force transmission in a discrete element simulation, previously shown to
exhibit the defining features of a dense granular material under quasi-static biaxial
compression. Attention here will be paid to the most important structural building
blocks of self-organization, i.e. the force chains and the 3-cycles. We conclude in
Section 6.

2. Flow networks. In graph theory, a directed graph (or digraph) consists of a
finite set or collection of elements called nodes (or vertices) together with a subset
of ordered pairs of the nodes called edges (or arcs). A flow network (or network) is
a digraph with two distinguished nodes, called a source and a sink, together with a
non-negative real-valued function defined on its edge set, called a capacity function
(see [2, 3, 10]).

Let (N, .A) be a finite connected digraph, where A is the set of nodes such that
s € N andt € N and A is the set of directed edges. Furthermore, let u;; denote the
capacity of the directed edge (i,5) € A. Then (N, A, u, s,t) is called a flow network
with source s, sink t and capacity function u.

An ordered set of values f £ {f;; : (i,7) € A} is a feasible flow vector on
(N, A, u, s,t) if it satisfies the following constraints:

0 < fij < ugy, (i,7) € A, (1)

and
Z fij_ Z fjizou iEN\{S,t}. (2)
J:(4,5)€A J:(Gi)EA
The capacity constraint (1) requires that each edge carries a non-negative amount

of flow which cannot exceed the capacity of the edge, and the conservation con-
straint (2) means that flows are preserved: at each node, except for the source and
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the sink, the amount that flows in also flows out. Let F denote the set of all feasible
flow vectors on (N, A, u,s,t). For each f € F, define

val(f) £ > fy— > fie
Ji(s,5)€A J:(j,s)EA

Then val(f) is the amount of flow that is transmitted through the network from
source to sink.
For any two subsets X; and X5 of N, let

(Xl,Xg)é{(Lj)EAZ iexl,jEXQ}.

Then (X}, Xp) is the set of edges from X} to Xp. For any X C N, let X & N\ X.
A cut (X, X) of (N, A,u,s,t) is a partition of A into two subsets with s € X and
t € X. The capacity of (X, X) is defined as

U(Xx,X) 2 Z Uiy - (3)

(4,5)€(X,X)

3. The maximum flow problem. For the flow network formulated above, one
can solve the maximum flow problem which we define as follows.

Problem 1. Find a feasible flow vector f* € F such that
1(f*) = 1(1).
val(f*) max va (f)

Problem 1 can be solved by the Ford-Fulkerson method [2]. Let

Foax 2 1(£).
max val(f)

Note that the solution to Problem 1 may not be unique. Let M denote the set of
solutions, namely,

ME{fecF:val(f) = Fuax }-

3.1. Minimum cut. A dual of the maximum flow problem is the minimum cut. In
a flow network, a cut (X, X) is called a minimum cut if its capacity defined by (3) is
minimal. The maximum flow minimum cut theorem shows that the maximal value
of a flow in a flow network is equal to the capacity of the minimum cut of the flow
network (e.g. [3]). Thus, the maximal value of a flow is limited by the capacity of
the minimum cut.

Let f € F and (X, X) be a cut of (N, A, u,s,t). According to [3], we have the
following results:

(I) val(f) < U(X,X), where equality holds if and only if
f“: uija (Z,])E(f,?),
Y00, (4,9) € (X, X).
(IT) If val(f) = U(X, X), then f € M and cut (X, X) is minimal.
(IT) If f € M and (X, X) is minimal, then val(f) = U(X, X).
Note that (I), (IT) and (III) are Theorem 7.3, Corollary 7.4 and Theorem 7.7 of [3],

respectively. Using these results, we can prove the following lemma.

Lemma 3.1. Let (X,X) be a cut of (N, A,u,s,t). If there evists f € M satis-
fying (4), then (X,X) is a minimum cut. Conversely, if cut (X,X) is minimal,
then (4) holds for all f € M.
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Proof. Suppose that f € M satisfies equation (4). Then, by (I),
U(X,X) = val(f).

It thus follows from (IT) that cut (X, X) is minimal.
Next, we will show that if (X, X) is a minimum cut, equation (4) holds for all
f € M. By (III), we know that for each f € M,

U(X,X) = val(f).

Suppose there exists an f € M such that (4) does not hold. It thus follows from (I)
that val(f) < U(X,X). This contradicts the above equality. Therefore, (4) holds
for all f e M. O

Note that the minimum cut of (N, A, u, s,t) may or may not be unique. What
are the sufficient and necessary conditions for the minimum cut to be unique? Next,
we will establish the sufficient and necessary conditions.

An (i-j) path P is a path that links node i and node j. Let P+ and P~ denote
the sets of forward edges and backward edges on P, respectively.

For f € F and a path P, define

A . . .
6(f,P) = min { (Z'é'r)lé%Jr{u” fij}s (i,?)lg;Df fz]} :
The path P is f-saturated if §(f,P) = 0 and f-unsaturated if 6(f,P) > 0. Note
that for an (s-t) path P, §(f, P) is the largest amount of flow by which the flow f
can be increased along P without violating constraints (1)-(2). Thus, f € M if and
only if there are no f-unsaturated (s-t) paths.

Given f € F, let S¢ be the set of all nodes reachable from s by f-unsaturated
paths. Furthermore, let 77 be the set of all nodes from which ¢ can be reached by
f-unsaturated paths. Clearly, s € Sy and ¢t € T;. We have the following result.

Theorem 3.2. For each f € M, (8;,8y) and (T¢,Tf) are minimum cuts of
(N, A u, s,t).

Proof. Clearly, (Sf,Sy) is a cut. Otherwise, there exists an f-unsaturated path
P from s to t. This implies that f is not a maximum flow, which contradicts the
condition f € M.

We now prove that (Sy,Sy) is a minimum cut. Suppose, to the contrary, that
(S¢,Sy) is not minimal. It thus follows from Lemma 3.1 that there exists i € Sy
and j € Sy such that

(i,7) € (S, S¥) with fij < ugj,
or

(j,i) € (8¢, Sy)  with  fj; > 0.
Since ¢ € Sy, there exists an f-unsaturated (s-i) path. Combining this with the
above inequalities, there exists an f-unsaturated (s-j) path. Thus, j € Sy, which

contradicts the initial assumption that j ¢ Sy. Therefore, (Sf,Sy) is minimal.
Similarly, we can show that cut (7 ¢, 77) is also minimal. O

According to Theorem 3.2, both (S;,Sy) and (T s, T;) are minimal. Moreover,
applying Lemma 3.1, we can show that for each minimum cut (X, X), Sy and T ;
are the lower and upper bounds on X', respectively.
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Theorem 3.3. Let f € M and let (X, X) be a minimum cut of (N, A, u,s,t).
Then Sy CX CTy.

Proof. Using proof by contradiction, we can show that Sy C X. Indeed, if Sy € X,
then there exists a k € Sy such that k ¢ X. Since k € Sy, there exists an f-
unsaturated path P from s to k. Note that s € X and k € X. There must be an
edge (4,j) on P such that

(i,5) € (X, X)  with  fij <uy,
or B
(4,5) € (X, &) with  fi; > 0.
Recall that f is a maximum flow. It thus follows from Lemma 3.1 that cut (X, X)

is not minimal. This leads to a contradiction, since (X, X) is minimal.

In a similar manner, we can prove X C T'f. Hence, Sy € X C 7'f, as required.
O

Combining Theorems 3.2 and 3.3, the minimum cut is unique if and only if there
exists a maximum flow f such that Sy = T5.

3.2. The flow network bottleneck. Perhaps the most intuitive application of
minimum cuts is in the study of fluid flow through a complex network of pipelines
through which some fluid flows. Pumping the fluid through the pipes cannot exceed
some maximum flow because of the bottleneck, i.e. a subset of pipes that transfer
the fluid at their maximum capacity. In a flow network, if the minimum cut (X, X)
is unique, this bottleneck will be the minimum cut, i.e. the set of edges that block
the flow. Thus, (X, X) was defined as the bottleneck of the flow network in [22].
However, a minimum cut of a general flow network may or may not be unique and
the bottleneck of the flow network may still exist, regardless of the uniqueness of
minimum cut. In this subsection, we will define the bottleneck for a general flow
network, including the one in [22] as a special case.
Let B be the intersection of all minimum cuts, namely,

B2 N (X, X).

(X,X) is a minimum cut

Then any sufficiently small change in the capacity of B, i.e.
U(B) = Z Uij7
(i,5)€B

will change the value of maximum flow. In other words, there exists an € > 0 such
that for any |e| < €, if the new capacity of B becomes U(B) + € and the capacities
on all edges of A\ B are unchanged, then the value of maximum flow of the flow
network with the new capacity will be val(f) + €. In this sense, we regard B as the
bottleneck of the flow network (N, A,u,s,t). Furthermore, we have the following
result.

Theorem 3.4. B = (Sf,Ty), where f is a mazimum flow of (N, A, u,s,t).

Proof. Note from Theorem 3.3 that Sy C Tf and Ty C Sjc Then it is easy to see
that
(S, Se) N (Ty, Ty) = (Sg N Tp, Sy O Ty) = (Sp, T)s

from which it follows that

B C (84,87) N (T5, Ty) = (S5, Ty)- (5)
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Now, let minimum cut (X, X) be arbitrary but fixed. Applying Theorem 3.3 once
again, Sy C X and Ty C X. Hence,
(S5, Tp) € (X, X).
Since (X, X') was chosen arbitrarily, we obtain
(S5, Ty) € B. (6
Combining (5) and (6) gives B = (Sy, Ty). This completes the proof. O

~

Suppose that the minimum cut is unique, i.e. Sy = T;. Then
B=(8,87) = (T3, Ty)-
This is the bottleneck of the flow network defined in [22].

4. The minimum cost maximum flow problem. In most real world networks,
there is often a cost associated with the flow. Thus one of the most fundamen-
tal problems in flow networks concerns finding the cheapest route of sending the
maximum flow through the network [6, 7]. In a deforming granular material, the
transmission of force at grain contacts invariably involves some energy dissipation
that may be envisaged to be an associated cost. Thus, a natural question to ask is:
where are the pathways through the contact network along which force transmission
is maximized while the associated energy dissipation is minimized?

For each feasible flow vector f € F, define the associated cost function as follows:

E(f) £ Z Cij fijs
(i,)eA
where ¢;; denotes the cost per unit of flow through edge (i, 7).
We are interested in the flow that can transmit the maximal value at the min-
imum cost. This leads to the following minimum cost maximum flow (MCMF)
problem.

Problem 2. Find a feasible flow vector f* € M such that
E(f*) = min E(f).
(f7) = min E(f)

Note that every solution of Problem 1 is feasible for Problem 2 and that Problem 2
involves finding a solution of Problem 1 of minimum cost. We can first obtain a
solution of Problem 1 using the Ford-Fulkerson method [2] and then use this solution
as an initial guess and apply the network simplex method [2] to solve Problem 2.
Alternatively, Problems 1 and 2 together can be solved using the algorithm proposed
by Edmonds and Karp [6]. For convenience of the reader, we present the algorithm
below. Note that Steps 2-7 are used to find an unsaturated path from s to t of
minimum cost.

Algorithm 4.1. Input the flow network (N, A, u, s, t) and cost function c.

1. Set f=0.
2. Setp, =0,. €N, ¢ = +oo, t €N and

_J0, L =35,
o= +oo, e N\ {s}
3. Set S = {s}.
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4. If S = (), go to Step 8. Otherwise, choose k € S such that o, = mino,.

5. For each i € {1+ € N : (k,t) € Aand f,;, < ug,}, if o7 > ;is—l— Cri, let
S=8Su{i},
Di = K, 0, =0k +cxi and e = min{ug; — fri, €k}
6. Foreachi € {1+ e N: (1,k) € Aand f,, > 0}, if 0; > 0 — i, let S = SU{i},
Di = —K, 0; =0, — ¢y and € = min{ fi, €4}

7. Set S =S\ {k} and go to Step 4.
8. If ¢ < 400, let P be the corresponding unsaturated path from s to ¢ at
minimum cost (P can be obtained from p,, ¢ € N). Set

fij+€t7 (i7j)€73+,
fij =4 fij — e, (i,5) €P™,

and then go to Step 2. Otherwise, STOP and f is an optimal solution of
Problem 2 and Fyax = val(f).

Note that, like Problem 1, the solution of Problem 2 may also not be unique.
Let C denote the set of solutions of Problem 2. Then,

E(f)<E(g), feC, geM. (7)

For each f € C, define
'Dfé{(i,j) eA: fij >0}.

Note that Dy is the set of edges that are used to transmit non-zero flow for flow
vector f. Note also that any edge from A\ Dj is removable. In other words,
removing edges from A\ Dy will not increase the minimum cost or decrease the
value of maximum flow. Since a solution to Problem 2 may not be unique, there is
no point to investigate Dy for one particular solution f. Let R be the set of edges
that always transmit non-zero flows for every solution of Problem 2, namely,

R = () Dy
fec

We call R the minimum cost mazimum flow pathway (or MCMF pathway). Clearly,
MCMF pathway is a subset of edges that are used to transmit non-zero flow for
a solution of Problem 2. It is easy to see that R C D if f € C and R = Dy if
Problem 2 has a unique solution. Furthermore, it follows from Lemma 3.1 that
(S4,87) U (T;, T;) € R. In particular, B C R. This means that the bottleneck of
the flow network always transmits non-zero flow for maximum flow at the minimum
cost.

For the remainder of this section, let f € C be an optimal solution of Problem 2
and let (s, x) € Dy be arbitrary but fixed. Note that (¢, k) ¢ R if and only if there
exists a g € M such that g, = 0 and E(g) = E(f). Also note that removing any
edge from MCMF pathway will increase the associated cost or decrease the value of
maximum flow from source to sink. This is stated formally in the following result.

Theorem 4.1. Let G = {g € F : gox = 0} and let g* € F be a solution of the
following MCMF problem:

min { E(g): g € G and val(g) = max Val(g’)} .
9'€g
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Then (s, k) € R if and only if one of the following conditions holds:
(a) val(g™) < val(f);
(b) val(g*) = val(f) and E(g*) > E(f).

Proof. Note that val(g*) < val(f) and that if val(¢*) = val(f), then E(g*) > E(f).
Hence, it is equivalent to prove that (¢, x) ¢ R if and only if val(g*) = val(f) and
E(g*) = E(f). Clearly, if val(g*) = val(f) and E(¢g*) = E(f), then ¢* € C and
g%, = 0. Thus, (¢,x) ¢ R.

We now suppose that (¢,x) ¢ R. Then there exists f' € C such that f/, = 0.
It thus follows that f' € G, E(f") = E(f), and val(f’) = val(f). Consequently, we
have

val(f) = val(f') < val(g*) = max val(g) < max val(g) = val(f).

Hence, Problem 2 can be rewritten as follows:
min{ E(g) : g € F and val(g) = val(f)}.
Recall that f is a solution of Problem 2. Since f’ € G,
E(f)=min{ E(g): g € F and val(g) = val(f)}
<min{E(g): g € G and val(g) = val(f)}
= E(g") < E(f') = E(f).
Hence, we obtain val(g*) = val(f) and E(g*) = E(f). The proof is complete.

We can apply Algorithm 4.1 to solve the MCMF problem in Theorem 4.1 by
replacing u with v, where
o an=tn),
] ..
! Wi (4,7) € A\N{(s, )}
Note that for a large digraph, |Dy \ ((S¢,Sf) U (Tf, T¢))| is quite large and it takes
a long time to solve the MCMF problem for all edges in Dy \ ((Sy,Sy) U (Ty, 7))

Hence, we should avoid applying Algorithm 4.1 if we can check multiple edges at
the same time. To this end, we need the following result.

Theorem 4.2. Let P and Q be directed paths from i to j such that
(i',3")eP (i,5)eQ
and
0< fir =min{fy;: (¢,5) € P} <min{uyj — firjy : (¢,j§) € Q}.
Then (v, 7) ¢ R.

Proof. Let
fiyr = firs  (',5") €P,
firye =1 fuyr + fors (i,5) €Q, (8)
firjrs (@",5) € AN (PUQ).

Then, it is easy to check that f' € C. Moreover, we have f/_ = 0 and hence
(t,,7) ¢ R. O
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Using the shortest path algorithm, we can obtain P and Q satisfies conditions
given in Theorem 4.2.

Let 4,5 € N be arbitrary but fixed. Furthermore, let P;; denote the shortest
directed path from ¢ to j in digraph (N, Dy), where the distance is measured by

the cost function ¢, i.e.
C(P”) = Z Cirjt.
(i",3")€Pij
Similarly, let Q;; denote the shortest directed path from ¢ to j in digraph (N, Ay),
where
.Af = {(i/7j/) eA: Usrjr — fi/j/ > 0}
Clearly, C(P;;) < C(Q;j). Otherwise, f” defined in (8) is feasible for Problem 2 but
with less cost. This contradicts (7). Hence, for any 4,5 € N, if C(P;;) = C(Q;j)
and
min { i+ (¢, j") € Py} < min{uiy — forj o (7', 5') € Qij}
then (¢, 7) ¢ R whenever (i, 7) € P;; satisfies f,r = min{f;1; : (',5') € Pi;}.

5. Results. In order to demonstrate the efficacy of the network optimization anal-
ysis for characterizing force transmission in a dense granular material, we use the
data from a discrete element simulation (DEM) developed and described in detail
elsewhere [21] and further analyzed with respect to other simulation and experimen-
tal tests in [23, 26]. In this simulation, a densely packed polydisperse assembly of
5098 spherical particles are constrained to move along a plane throughout the load-
ing history. The assembly is compressed quasi-statically, under a constant strain
rate in the vertical direction and allowed to expand under a constant confining
pressure in the horizontal direction. Under this loading condition, the evolution
of the material can be characterized over a sequence of states, each one of which
is in static equilibrium. As loading proceeds, constituent particles rearrange (i.e.
some old contacts break as new contacts form), resulting in a contact network that
evolves from state to state. Space limitations prevent a full coverage of this simula-
tion here (see [21, 23] for additional details); hence, only the most relevant aspects
are recapitulated below.

The resistance to the relative motion at the particle-particle and particle-wall
contacts is governed by combinations of a linear spring, a dashpot and a friction
slider, and is designed to mimic the response of assemblies of noncircular particles.
Between contacting particles, the resistive force is defined as follows:

fn 2 E"Au, + 0" Avy,, (9)
f 2 { k' Auy + bt Avy, if kY| Aug| < p|fnl, (10a)
e Sign(Aut)Mt|fn|7 if ktIAut| > :utlfn|7 (10b)

where f,, and f; are the normal and tangential components of contact force; k™ and
kt are the spring stiffness coeflicients; b” and bt are the viscous damping coefficients;
and ! is the Coulomb friction coefficient. Similarly, the rolling resistance or contact
moment I is expressed as

N { E"Aa +b"Ad, if k"|Aa] < p" Rpin| fnl, (11a)

sign(Aa)p" Ruin|fnl, i K"[Ac| = " Ruin| fal, (11b)
where R, denotes the smaller radius of the two contacting particles, k™ and b"
are the spring stiffness and viscous damping coefficients, respectively; and u" is the



OPTIMIZATION THEORY FOR GRANULAR MATERIALS

TABLE 1. DEM parameters and material properties used.

Parameter Value

Applied strain rate €y, —8 x1073/s
Confining pressure o, 7.035 x102N/m
Timestep increment 6.81 x10~" s
Initial height:width ratio 1:1

Number of particles 5098

Particle density 2.65 x103kg/m?>
Smallest radius 0.76 x1073 m
Largest radius 1.52 x1073 m
Average radius (uniform distribution) 1.14 x1073 m
Initial packing density 0.858
Interparticle friction p 0.7
Particle-wall friction p (top, bottom) 0.7
Particle-wall friction p (sides) 0.0

Rolling friction u” 0.02

Normal spring stiffness k™
Tangential spring stiffness k!

1.05 x10°N/m
5.25 x10*N/m
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Rotational spring stiffness k" 6.835 x10~2 Nm/rad

friction coefficient. The remaining quantities in (9)-(11) are: the relative normal
and tangential displacements and relative rotation denoted, respectively, by Au,,
Au; and Ac, and the relative normal and tangential translational and rotational
velocities denoted, respectively, by Awv,, Av; and Ad.

A summary of the simulation and material parameters used in the model is given
in Table 1. The vertical walls are frictionless, so that particles can slide and roll
along them without any resistance; all other material properties are identical to
those of the particles. The top and bottom walls are assumed to have the same
material properties as the particles.

Depending on the magnitude of the contact forces and moments, four contact
types can be identified:

(1) full-stick contact is the contact in which both the tangential force and contact
moment are elastic, i.e. (10a) and (11a) are satisfied;

(2) sliding contact is the contact in which only the tangential force is at the
Coulomb plastic threshold, i.e. (10b) and (11a) are satisfied;

(3) rolling contact is the contact in which only the contact moment is at the
Coulomb plastic threshold, i.e. (10a) and (11b) are satisfied;

(4) slide-and-roll contact is the contact in which both the tangential force and the
contact moment are at their respective Coulomb plastic thresholds, i.e. (10b)
and (11b) are satisfied.

Figure 1 presents two key properties of the granular material with respect to
the axial strain, the time-like quantity in this simulation. These properties are the
stress ratio and the global average of the local non-affine strain, both of which dis-
play evolutionary trends which are representative of the behavior of dense granular
materials under this loading condition. With respect to the stress ratio, a state
quantity that is indicative of the load-carrying capacity of the sample, we observe



348 QUN LIN AND ANTOINETTE TORDESILLAS

three distinct regimes. The first is known as the strain-hardening regime: an initial
rise to the peak value, during which the sample is globally stable. This is then
followed by the strain-softening regime: a brief period when instabilities inside the
material intensify leading to a decrease in load-carrying capacity of the sample as
indicated by the decrease in stress ratio under increasing strain. Here a single shear
band can be observed to form along the forward diagonal of the sample. Shear
bands are regarded as the signature failure microstructure of granular materials
and for this reason have attracted significant attention in the literature (see [21]
and references cited therein). Shear bands exhibit a clearly defined characteristic
thickness of around 8-10 particle diameters [13, 21], which is of the order observed
for the shear band thickness in this simulation. This band is a region of localized
deformation which, when fully developed, splits the material into distinct parts that
can then move relatively to each other, causing the material to lose its load-carrying
capacity. In the third and final regime, the so-called critical state regime, the stress
ratio undergoes marked fluctuations about a near constant value, reflecting the
dynamics occurring inside the now fully formed shear band.

Below the stress ratio in Figure 1 is the global average of the local non-affine
strain. The local non-affine strain is a particle property that is computed over
a strain interval as opposed to, for example, the stress ratio, which is a sample
property computed at each strain state. Specifically, the local non-affine strain is
a measure of the deviation from a uniform or affine strain and is a function of the
relative motions within a small particle cluster comprising the particle in question
and its first ring of neighbors [21]. This property is computed for every particle
away from the walls to exclude boundary effects, and then averaged over all these
particles: in Figure 1 the global average is assigned to the final state of a strain
interval comprising two consecutive states of a total of 299 states in the simulation.

The non-affine strain has been proven to correlate strongly with energy dissipa-
tion and be a robust local measure of the evolving internal instabilities and failure
developing in the mesoscopic domain of the material [21]. This measure reveals three
distinct stages of deformation, as indicated by the black dashed lines in Figure 1. In
each of these stages, distinct mesoscopic structures can be observed to form inside
the deforming material. In Stage 1, the assembly deforms almost uniformly (i.e.
affinely) with respect to the macroscopic scale or sample domain, as dictated by the
motion of the sample boundaries. Here the only instability that can be observed
inside the sample are rattlers, a particle with one or no contacts, “rattling” inside a
cage of neighbors, as shown in Figure 2(a). In Stage 2, an increase in the global av-
erage non-affine strain can be observed albeit this remains small prior to peak stress
ratio. Inside the sample, however, we see the emergence of a secondary displace-
ment field that is characterized by the presence of intermittent instabilities known
as microbands, in addition to rattlers. These microbands organize themselves into
thin obliquely trending bands, between one and four particle diameters in width,
in which particles undergo large relative tangential motion or slip, as shown in Fig-
ure 2(b). The local non-affine strain in microbands progressively intensify, before
localizing along the developing shear band in the strain-softening regime [21]. Re-
turning now to the macroscopic scale, we see in Figure 1 that the strain evolution
of the global average non-affine strain after peak stress ratio is in marked contrast
to that seen prior to peak. Post peak, we observe sudden bursts or sharp peaks
in the non-affine strain coinciding with the precipitous drops in stress ratio. The
failure of force chains by buckling — localized in the developing shear band —
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FIGURE 1. Strain evolution of the load-carrying capacity of the
sample as measured by the stress ratio (black) and the energy dis-
sipation as measured by the global average of the local non-affine
strain (Af) (red).

has been shown to be the mechanism behind these peaks in non-affine deformation
and, in turn, the large energy dissipation and loss of load-carrying capacity of the
sample [21]. This trend continues to dominate into Stage 3, the fully developed
failure regime or the critical state, during which the sample deforms in the presence
of a single fully formed persistent shear band, inclined at approximately 45° to the
horizontal (i.e. normal to the applied compression), as shown in Figure 2(c).

Having demonstrated the different stages of the loading history from past mea-
sures, we now solve the MCMF problem for flow networks constructed for a total
of 299 strain states spanning the three stages of the full loading history of the sam-
ple. Of interest is whether the solutions to the MCMF problem can similarly capture
these three distinct stages of deformation — in addition to uncovering any evidence
that may suggest force transmission in the deforming material is optimized.

5.1. Construction of the flow networks. We are interested in force transmission
in the direction of the major principal stress along which the primary load-bearing
pathways known as force chains develop [21, 23, 26]. We show an example of
these self-organized structures taken at peak stress ratio in Figure 3 (recall the
behavior of the sample, as earlier discussed in relation to Figure 1). As force chains
align themselves in the direction of the maximum (most compressive) principal
stress, we will focus on those paths through the contact network that optimize force
transmission along this direction, here the vertical. Thus, we choose the top wall as
the source node and the bottom wall as the sink node. Each particle in the system
then represents a single intermediate node in the network.

The directed edges are used to represent the direction of force transmission in the
flow network. Hence, we define the directed set of edges A as follows. If particles 4
and j are in contact, let (7,7), (j,i) € A; if particle ¢ contacts the source (top
wall), let (s,7) € A; and if particle ¢ contacts the sink (bottom wall), let (i,t) € A.
Furthermore, we adopt the simplest possible capacity function for each directed
edge, namely, the capacity function in which the contacts are uniformly weighted:
4£{oo, ifi:s.orj:t, (12)

1, otherwise.
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FIGURE 2. Spatial distribution of the normalized local non-affine
strain over various axial strain intervals in the three stages of the
loading history: (a) [0,0.018] of Stage 1, (b) [0.018,0.04] of Stage 2
and (c) [0.04,0.115] of Stage 3 showing the fully formed shear band.
A particle is plotted at the location of the final strain state of the
chosen strain interval and colored according to the highest magni-
tude of its normalized non-affine strain: black (highest) to white
(zero).

This means that the maximum flow problem uses information on contact topology
alone. We emphasize here that what makes a difference is the relative values of u;;,
not the actual values. Indeed, if f is a solution of Problem 2 with capacities u;;,
then ~f is a solution of Problem 2 with new capacities yu;;, where v > 0 is a
constant.

Although we define two oppositely directed edges for each pair of contacting
particles, the flow value at that contact is simply defined as the absolute value of
the difference between the flow values on the corresponding two oppositely directed
edges. Consequently, reversing the flow direction, i.e. top wall as the sink and
bottom wall as the source, will not alter the results.

In assigning a cost per unit of flow through the directed edges of the network, we
make use of only the information on contact type, as defined earlier in equations (10)
and (11). The contacts that dissipate energy are the plastic contacts; recall, these
can be further classified as sliding, rolling, and slide-and-roll. In this study, we
propose a very simple cost function in which the associated cost ¢} is based on the
corresponding contact type as follows:

1, ifi=sorj=t,

1, if the contact between particles ¢ and j is elastic full-stick,
ci £ {2, if the contact between particles 7 and j is plastic sliding, (13)
2, if the contact between particles ¢ and j is plastic rolling,

3, if the contact between particles i and j is plastic slide-and-roll.

For comparison, we also consider the case in which all the contacts are of the same
type, i.e.

£ 1, (i,7) € A (14)
The cost per unit of flow through the directed edge (i, j) can be defined as ¢y or ¢l

Note that, on average, only 15% of contacts are plastic. This means that about 85%
of the edges in the flow network with ¢;; = iy and flow network with ¢;; = ¢y have
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the same costs on average. Note also that if we replace c;; by vc;;, where v > 0
is a given constant, the solution of Problem 2 with costs ¢;; is still a solution of
Problem 2 with the new costs vyc;;.

In summary, we have deliberately constructed our flow networks for the simplest
capacity and cost functions, making use solely of the contact topology and the
contact types. In doing so, we establish a reference level or baseline information for
future studies of MCMF solutions in which more sophisticated models of capacity
and cost functions will be explored.

5.2. Minimum cost maximum flow solution. We consider the minimum cost
of transmitting the maximum flow from source to sink, i.e. from the top wall
to the bottom wall of the sample (or vice versa). Let f* denote a solution of
Problem 2. Then val(f*) is the maximal value of a flow transmitted from source to
sink. Note that the higher is the maximal value, the more effective is the network
as a transmission medium. Given the uniform capacity function in equation (12),
val(f*) may be used to quantify the influence of contact topology on the capacity
of the contact network as a transmission medium for force. Using information on
contact topology alone, we present in Figure 4(a), the strain evolution of val(f*):
this suggests that force propagation through the contact network in the direction
of maximum principal stress degrades as the system deforms. Note that the large
fluctuations evident in the evolution throughout loading is indicative of the continual
grain rearrangements occurring in the material which, in turn, leads to a continual
reconfiguration of the contact network. Although large fluctuations persist, the
maximum flow fluctuates about a near constant value in Stage 1, which is the
highest average value for the three stages of the loading history. The sudden drop
in the beginning of Stage 2 in Figure 4(a) is indicative of the onset of instabilities
that will eventually precipitate the formation of the shear band in Stage 3 during
which the lowest value of val(f*) can be observed. These trends over the three stages
of loading are entirely consistent with a recent study which show a progressive loss
of stability of the sample in Stages 1 and 2 down to a near steady minimum in
Stage 3 (see Figure 5 of [23]).

We next turn to E(f*), the minimum cost to transmit val(f*) from source to
sink. In particular, E(f*)/val(f*) represents the average minimum cost for one
unit of maximum flow propagating from source to sink. Note that E(f*)/val(f*)
depends on the path length from source to sink in the flow network (the longer
the higher). Also note that the Euclidean distance between the top wall and the
bottom wall is decreasing as the material deforms. Hence, we consider the average
minimum cost for one unit of maximum flow propagating from source to sink per
contact. Let

E(f)
<Cmin é 5 15
S "
where P is the shortest path of the contact network (no weight on the edges) from
source to sink and | - | denotes the number of elements in the set. Then, (cmin)

represents the average minimum cost for transmitting one unit of maximum flow on
one contact. We call this the average minimum cost of mazimum flow. Note that
(Cmin) 1s unique even if the solution to Problem 2 is non-unique.

The evolution of {¢pin) with respect to the axial strain is shown in Figure 4(b).
Keep in mind that both the capacity and cost function contribute to this quantity.
We wish to test the sensitivity of the MCMF solutions to the assumed cost function

and thus examine two flow networks associated with the two cost functions: c;; = c;‘j
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FIGURE 3. Spatial distribution of (a) major load-bearing particles
known as force chains (red) and (b) force chains and 3-cycles (green
lines) at peak stress ratio. Force chains self-organize into columns
aligned in the direction of the maximum principal stress, here the
vertical direction.
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and ¢;; = c;“‘j’ The difference between these functions is small in the sense that all
but a mere 15%, on average, of the edges in the flow network are plastic and have
higher cost values (i.e. 2 and 3 as opposed to 1 assumed for the majority of contacts
which are elastic). Apart from Stage 1, the flow network with ¢;; = ¢y s essentially
constant for most of the loading history. By contrast, that with ¢;; = ¢} results in
a strain evolution of {(¢yin) which captures the three distinct stages of deformation,
as identified earlier from the evolution of the global average of the local non-affine
strain. During the initial stages of the strain-hardening regime, (cyn) is observed
to be increasing until reaching its highest throughout loading history. Then (cpin)
decreases rapidly as non-affine deformation and dissipation develop and intensify. In
the large strain critical state regime, (cpnin) fluctuates about an essentially constant
value. In this regime, recall that the sample has fully failed and deforms in the
presence of a persistent shear band [21, 26]. Furthermore, it appears that the
average minimum cost of maximum flow reveals the onset of instability as the curve
in Figure 4(b) decreases as soon as Stage 2 commences. The difference between the
average minimum cost for the two flow networks is as much as 0.35, around 23% of
the highest value of the average minimum cost for ¢;; = -

It is interesting to note that the weighted flow network with ¢;; = ¢ captures the
three distinct stages of deformation while the unweighted ¢;; = ¢} fails to reproduce
the observed evolution of the sample. This marked contrast in the evolution of the
predicted minimum cost {cyi,) despite a small difference between the assumed cost
functions, warrants further consideration. Due to the low percentage of slide-and-
roll contacts (no more than 3% of the edges have cost values ¢;; = 3), we consider
a simpler version of the ¢;; = ¢} defined in equation (13), a binary function cfj
defined as follows:

(16)

ij

a Jx, if the contact between particles i and j is elastic,
N y, if the contact between particles 7 and j is plastic,

where x and y are given two distinct constants, not necessarily the integers in
cij = ¢j. Then, (c), the average cost of transmitting one unit of flow through each
contact, i.e.

> ¢

a (i,5)€A
c) & L — 17

can be written as

(¢ = ety H0e Kl o) Kty _ T 0t (- ),
Ne +Np Ne + Np Ne +Np

where n. and n, denote the number of elastic and plastic contacts, respectively, and
R, is the ratio of plastic contacts to the total number of contacts. Since x and y are
given constants, the average of ¥ ; over all inter-particle contacts is a linear function
of R, (Pearsons product moment coefficient equals to 1). Note that we excluded
the contacts between particle and wall, which is reasonable given these constitute
no more than 0.7% of the total contacts over the entire loading history.

If ¢;j = ¢, we have a strain invariant (¢) = 1: apart from a relatively small
deviation in Stage 1, the corresponding average minimum cost of maximum flow
similarly remains essentially invariant for most of loading history (Figure 4(b)). If
¢;j = ¢;j, the average minimum cost (cmin) also displays a strong correlation with
the average cost (c): the Pearsons product moment coefficient is 0.88 for the entire
loading history and 0.96 over Stages 2 and 3 (compare Figure 4(b)-(c)). These
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FIGURE 4. (a) Strain evolution of maximum flow val(f*).
(b) Strain evolution of the average minimum cost of maximum flow
(Cmin), defined by (15). (¢) Strain evolution of the average cost (c),
defined by (17), for ¢;; = ¢} (red) and ratio of plastic contacts to
total R, (blue). Inset in (c) shows the relationship between the
average cost for ¢;; = ¢;j and the ratio of plastic contacts to total
contacts.

trends highlight the strong influence of the assumed cost function on the predicted
average minimum cost {¢min), in particular, the strong correlation between the ratio
of plastic contacts to the total number of contacts, R, and the predicted (cmin),
for simple cost functions (i.e. equations (13) and (16)).

We can gain some insight into the nature of force transmission by examining the
participation of plastic contacts in the minimum cost maximum flow pathway (or
MCMF pathway). As we see from Figure 5(a), the transmission of flow through
edges (contacts) with higher costs (i.e. the plastic contacts) is kept to a small
fraction throughout loading: no more than 22% for ¢;; = ¢i; and no more than 20%
for ¢;; = ¢}j. The lower percentage of plastic contacts in the MCMF pathways for
¢ij = ¢ compared to those in ¢;; = ¢j; suggests these plastic contacts are avoided as
much as possible in the MCMF pathways of flow networks where they cost more. A
similar trend can be seen in the percentage of plastic contacts in MCMF pathways
(see Figure 5(b)): note here also the strong correlation with the corresponding
average minimum cost of maximum flow (Pearsons product moment coefficient is
0.85 for the entire loading history and 0.97 over Stages 2 and 3). The transmission
of maximum flow from the top wall to the bottom wall at minimum cost cannot,
however, completely avoid the more costly plastic edges (contacts). As is evident in
the spatial distribution of plastic contacts in MCMF pathway (Figure 6(a)), these
contacts cut across the middle of the sample and appear to be strongly biased
and concentrated in the region where the persistent shear band ultimately develops
(compare Figure 6(a)-(b) in reference to the shear band in Figure 2(c)).

5.3. Bottleneck in the flow network. We now explore the bottlenecks from
the minimum cuts of the flow networks in the critical state regime, during which
the sample deforms in the presence of a fully developed shear band. Note that
the minimum cuts of the contact networks are non-unique. The persistent shear
band can be observed from the spatial distribution of the local non-affine strain, as
shown earlier in Figure 2(c). Here in Figure 7 we plot the particles having contacts
in bottleneck, accumulated over the critical state regime. Although we used only
simple capacity function, the bottlenecks can be observed to lie in the locality of
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FIGURE 5. Strain evolution of (a) ppiqst, percentage of plastic con-
tacts in the system that are in MCMF pathways and (b) gpiast,
percentage of contacts in MCMF pathways that are plastic.

the shear band. This result is consistent with the one found in [22] where the
bottleneck requires the uniqueness of the minimum cut and, as such, the capacity
of each contact there was defined in terms of the relative displacement between the
contacting particles. However, in the method here, we explore the case in which all
grain-grain contacts are given equal weights, allowing the maximum flow problem
to be associated with multiple minimum cuts. Out of these minimum cuts we then
examined the contacts or pathways in the contact network which are common to
all the possible solutions of the MCMF problem, as we now discuss below.

5.4. Minimum cost maximum flow pathway. Here, we turn our attention to
the minimum cost maximum flow pathway or MCMF pathway, a subset of edges
that are used to transmit non-zero flow, and result in the maximum flow transmitted
from source to sink at minimum cost. We are interested in this optimization problem
for the transmission of force through the material in the direction of the maximum
principal stress along which the force chains are known to align. Recall that the
strong columnar force chains carry the majority of the applied load and, in turn,
these are supported laterally by truss-like structures of 3-cycles. Thus we will focus
on the relationship between the MCMF pathways (Figure 8(a)) and these self-
organized structural building blocks (Figure 8(b)) that are chiefly responsible for
the material’s ability to resist and support applied forces.

While the load-bearing force chain particles stay essentially constant in popu-
lation, the 3-cycles degenerate in Stages 1 and 2, reflecting the progressive loss of
connectivity in the contact network typically seen for dense samples prior to peak
stress ratio (Figure 8(b)). This defining feature of dense granular materials is due
to dilatancy, the increase in void volume of the material in the stages of loading
preceding the critical state regime (Stage 3). In [26] we showed that the loss of 3-
cycles prior to Stage 3 is accompanied by an increase in the number of large cycles
(e.g. 5-cycle, 6-cycle, etc.): 3-cycles open up and join with other cycles to form big
cycles encircling the large voids. This loss in laterally supporting 3-cycles occurs
under increasing axial load borne by the force chains thereby compromising their
stability. Eventually the force chains become overloaded and buckle. But the fail-
ure of force chains by buckling is accompanied by the growth of new force chains.
That the number of force chain particles in the system remains essentially constant
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FIGURE 6. Spatial distribution of plastic contacts in MCMF path-
way of the flow network with ¢;; = ¢} at (a) the beginning of
Stage 2 and (b) the beginning of Stage 3 when the shear band in
Figure 2(c) is fully formed. Red lines represent the plastic contacts
and black outlined particles are the particles having contacts in
MCMF pathway.
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FIGURE 7. Spatial distribution of the bottleneck of flow network of
each strain state, accumulated over the entire critical state regime
(i.e. axial strains in the range [0.04, 0.115]).

(Figure 8(b)) throughout loading highlights the continual rearrangements of parti-
cles in the system: this in turn leads to the constant reconfiguration of the contact
network and its MCMF pathway, as evident in the large fluctuations (Figure 8(a)).

As shown in Figure 9(a), and the spatial distributions of the participating versus
nonparticipating force chain particles in Figure 10(a) — the pathways through which
the maximum flow is transmitted at minimum cost, in the direction of the major
principal stress — involve the great majority of the force chain particles. In general,
more force chain particles have contacts in the MCMF pathways of the flow networks
with the cost function defined according to contact types ¢;; = ¢;}, than the simplest
conceivable (i.e. uniform) cost function ¢;; = ¢

The highest participation of force chains in MCMF pathways can be seen in
Stage 1, the initial states of the strain-hardening regime where deformation is glob-
ally affine and the sample is stable (recall Figures 1 and 2): on average around 93%
for ¢;; = ¢j; and 95% for ¢;; = ¢ij are in MCMF pathways. It also appears that
MCMEF pathway is revealing of the onset of instability: Figure 9(a) (like the cost
functions in Figure 4(b)) decreases upon commencement of Stage 2.

We now turn our attention to the 3-cycles which support the force chains. These
too participate in and have contacts that are part of the MCMF pathway, as shown
by Figure 10(b). Again, more of the 3-cycle particles are captured in the flow
networks with the cost function decided according to contact types ¢;; = ¢ (Fig-
ure 9(b)). Similar trends can be seen in the force chains and 3-cycles combined
(Figure 9(c)). It is instructive, as a final consideration, to examine the extent to
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which the particles having contacts in MCMF pathways participate in the force
chain and 3-cycle networks. Here we find most of the particles in MCMF pathway
belong to force chains or 3-cycles, with the flow networks exhibiting almost identical
percentages throughout loading (Figure 9(d)). This is in contrast to the earlier ob-
served differences and sensitivity to the small difference in the cost function: from
Figures 4 and 9 (a)-(c), the predicted average minimum cost, force chain member-
ship in MCMF pathway, 3-cycle membership in MCMF pathway and force chain
and 3-cycle membership in MCMF pathway are by as much as around 23% of the
maximum value for ¢;; = cf, 14%, 15%, 14%, respectively.

Altogether the results shown here suggest that a cost function which more ac-
curately reflects the energy dissipated at the contact instead of just integer indices
that classify contacts (i.e. 1 for elastic stick contact, 2 for sliding or rolling contact,
and 3 for slide-and-roll contact) may possibly lead to an even higher if not total
participation of force chains and 3-cycles in the MCMF pathways and vice versa.
That said, we highlight the need for caution and the importance of undertaking
a comprehensive analysis of the influence and sensitivity of the capacity and cost
functions.
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FIGURE 8. Strain evolution of population of (a) particles having
contacts in MCMF pathways and (b) particles in force chains and
3-cycles.

6. Conclusions. In this paper, we considered two fundamental combinatorial op-
timization problems: the maximum flow problem and the minimum cost maximum
flow (MCMF) problem. In particular, we identified the force bottlenecks and the
MCMF pathway for a general flow network, constructed from the contact network
of a deforming, densely-packed granular material. Our objective was to understand
the extent to which force transmission is optimized, as the material responds to an
applied load through grain rearrangements. These grain rearrangements, reflected
in the evolving contact network, are responsible for the material’s deformation. Un-
derstanding the relationship between deformation and force transmission is crucial
to robust predictions, and ultimately control, of the mechanical response of granular
materials to applied stresses and strains. In this study, we sought to answer the
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FIGURE 9. Strain evolution of participating force chains and 3-
cycles in MCMF pathways: (a) py., percentage of force chain parti-
cles that have contacts in MCMF pathway; (b) p3.cyeie, Percentage
of particles in 3-cycles that have contacts in MCMF pathway; (c)
Dfct3-cycle, Percentage of particles in 3-cycles and force chains that
have contacts in MCMF pathway; and (d) ¢fct3-cycle, Percentage
of particles with contacts in MCMF pathway that are also in force
chains and 3-cycles. In (c) and (d), particles which are part of both
a force chain and a 3-cycle are only counted once.

question: are these rearrangements taking place so as to optimize force transmission
in the direction of the major (most compressive) principal stress — the direction in
which the self-organized, load-bearing columns of force chains form?

We found that the great majority of the force chain particles are indeed trans-
mitting maximum flow in the major principal stress direction at minimum cost. We
observed as much as 93% for Cij = cfj and 95% for Cij = ci‘;- in the stable, initial
stages of the strain-hardening regime down to 79% for ¢;; = ¢;; and 84% for ¢;; = ¢}
during the failure regime. Inclusion of the particles in the supporting 3-cycles sug-
gests that the MCMF pathway mainly lies in the particulate network comprising
the force chains and their laterally supporting 3-cycles. We also examined the min-
imum cut using a capacity function that solely contains information on the contact
topology: the edges of the flow networks, here representing the grain-grain contacts,
are given equal weights. The resulting minimum cut uncovered bottlenecks in the
locality of the persistent shear band — the mechanism by which the material fails.

In an attempt to establish a point of reference for future studies, we deliberately
chose the capacity and cost functions to depend solely on contact topology and
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@

FicUrRe 10. The great majority of force chains and 3-cycles par-
ticipate in the transmission of maximum flow at minimum cost.
Spatial distribution of particles in (a) force chains and (b) 3-cycles,
at the peak stress ratio for ¢;; = c}%. Red (white) shaded particles
are particles having contacts (no contacts) in MCMF pathway.
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contact types. Despite these functions having the simplest possible form, the MCMF
solutions captured the defining features of force transmission, i.e. force chains, 3-
cycles and the failure mechanism of shear banding. We probed the sensitivity of
the minimum cost solutions, by comparing two flow networks of the same capacity
function (i.e. uniform) but with two distinct cost functions, albeit the difference is
small and affects a mere 15% of the edges in the graph on average. The differences in
the predicted average minimum cost and membership of force chains and 3-cycles
in MCMF pathways, suggest that the choice of capacity and cost functions are
important and warrant further study. The strong influence of energy dissipation
on force transmission is evident in the high correlation between the fraction of
plastic contacts and the average minimum cost of transmitting the maximum flow
through the network. Altogether the findings of this study lay bare the potential
of optimization theory to contribute to the field of granular media research, and a
strong impetus to explore, in particular, network-based optimization techniques [2,
3] and optimal control techniques [8, 12, 28, 29] in the rheological modeling of dense
granular materials. Work is underway in establishing capacity and cost functions
that more accurately reflect the salient aspects of force transmission and energy
dissipation beyond contact topology — for a variety of loading conditions — not
just in simulations but in experiments of synthetic as well as natural granular media.

Acknowledgments. This study was supported from grants to AT through the
Australian Research Council Discovery Project DP120104759, the Melbourne En-
ergy Institute seed fund, and the US Army Research Office Single Investigator
Award W911NF-11-1-0175.

REFERENCES

[1] R. Arévalo, I. Zuriguel and D. Maza, Topology of the force network in the jamming transition
of an isotropically compressed granular packing, Physical Review E, 81 (2010), 041302.

[2] D.P.Bertsekas, “Network Optimization: Continuous and Discrete Models (Optimization,
Computation, and Control),” Athena Scientific, 1998.

[3] J.A.Bondy and U.S.R.Murty, “Graph Theory,” Graduate Texts in Mathematics, 244.
Springer, New York, 2008.

[4] I. Cavarretta and C. O’Sullivan, The mechanics of rigid irregular particles subject to uniazial
compression, Géotechnique, 62 (2012), 681-692.

[5] J.Duran, “Sands, Powders, and Grains: An Introduction to the Physics of Granular Materi-
als,” Springer-Verlag, New York, 2000.

[6] J.Edmonds and R. M. Karp, Theoretical improvements in algorithmic efficiency for network
flow problem, Journal of the Association for Computing Machinery, 19 (1972), 248-264.

[7] A.Garg and R.Tamassia, A new minimum cost flow algorithm with applications to graph
drawing, Graph Drawing, 1190 (1997), 201-216.

[8] M. Gerdts and M. Kunkel, A nonsmooth Newton’s method for discretized optimal control prob-
lems with state and control constraints, Journal of Industrial and Management Optimization,
4 (2008), 247-270.

[9] F.S.Hillier and G. J. Lieberman, “Introduction to Operations Research,” McGraw-Hill, 2005.

[10] D.Jungnickel, “Graphs, Networks and Algorithms,” Third edition. Algorithms and Compu-
tation in Mathematics, 5. Springer, Berlin, 2008.

[11] Q.Lin and A. Tordesillas, Granular rheology: Fine tuned for optimal efficiency? Proceedings
of the 23rd International Congress of Theoretical and Applied Mechanics, (2012).

[12] R.C.Loxton, K.L.Teo, V.Rehbock and K.F.C.Yiu, Optimal control problems with a con-
tinuous inequality constraint on the state and the control, Automatica J. IFAC, 45 (2009),
2250-2257.

[13] H.B.Miihlhaus and I.Vardoulakis, The thickness of shear bands in granular materials,
Géotechnique, 37 (1987), 271-283.


http://www.ams.org/mathscinet-getitem?mr=MR2368647&return=pdf
http://dx.doi.org/10.1007/978-1-84628-970-5
http://www.ams.org/mathscinet-getitem?mr=MR2386073&return=pdf
http://dx.doi.org/10.3934/jimo.2008.4.247
http://dx.doi.org/10.3934/jimo.2008.4.247
http://www.ams.org/mathscinet-getitem?mr=MR2363884&return=pdf
http://dx.doi.org/10.1007/978-3-540-72780-4
http://www.ams.org/mathscinet-getitem?mr=MR2890784&return=pdf
http://dx.doi.org/10.1016/j.automatica.2009.05.029
http://dx.doi.org/10.1016/j.automatica.2009.05.029

362

QUN LIN AND ANTOINETTE TORDESILLAS

[14] M. Oda and H. Kazama, Microstructure of shear bands and its relation to the mechanisms of

dilatancy and failure of dense granular soils, Géotechnique, 48 (1998), 465—481.

[15] M.Oda, J.Konishi and S.Nemat-Nasser, Ezperimental micromechanical evaluation of

strength of granular materials: Effects of particle rolling, Mechanics of Materials, 1 (1982),
269-283.

[16] A.Ord and B. E. Hobbs, Fracture pattern formation in frictional, cohesive, granular material,

Philosophical Transactions of the Royal Society A, 368 (2010), 95-118.

[17] J.Paavilainen and J. Tuhkuri, Pressure distributions and force chains during simulated ice

rubbling against sloped structures, Cold Regions Science and Technology, 85 (2013), 157-174.

[18] J.M.Padbidri, C.M.Hansen, S. D.Mesarovic and B.Muhunthan, Length scale for trans-

mission of rotations in dense granular materials, Journal of Applied Mechanics, 79 (2012),
031011.

[19] F.Radjai, D. E. Wolf, M. Jean and J.J. Moreau, Bimodal character of stress transmission in

granular packings, Physical Review Letters, 80 (1998), 61-64.

[20] A.L.Rechenmacher, S. Abedi, O.Chupin and A.D.Orlando, Characterization of mesoscale

instabilities in localized granular shear using digital image correlation, Acta Geotechnica, 6
(2011), 205-217.

[21] A.Tordesillas, Force chain buckling, unjamming transitions and shear banding in dense gran-

ular assemblies, Philosophical Magazine, 87 (2007), 4987-5016.

[22] A.Tordesillas, A. Cramer and D. M. Walker, Minimum cut and shear bands, Powders & Grains

AIP Conference Proceedings 1542 (2013), 507-510.

[23] A.Tordesillas, Q. Lin, J. Zhang, R.P. Behringer and J. Shi, Structural stability and jamming

of self-organized cluster conformations in dense granular materials, Journal of the Mechanics
and Physics of Solids, 59 (2011), 265-296.

[24] A.Tordesillas, D. M. Walker, E. Ando and G. Viggiani, Revisiting localised deformation in

sand with complex systems, Proceedings of the Royal Society of London Series A, (2013).

[25] A.Tordesillas, D. M. Walker, G. Froyland, J. Zhang and R. P. Behringer, Transition dynamics

and magic-number-like behavior of frictional granular clusters, Physical Review E, 86 (2012),
011306.

[26] A.Tordesillas, D. M. Walker and Q. Lin, Force cycles and force chains, Physical Review E, 81

(2010), 011302.

[27] D. M. Walker, A.Tordesillas, S. Pucilowski, Q.Lin, A.L. Rechenmacher and S. Abedi, Analy-

sis of grain-scale measurements of sand using kinematical compler networks, International
Journal of Bifurcation and Chaos, 22 (2012), 1230042.

(28] L.Y.Wang, W.H. Gui, K.L. Teo, R.Loxton and C.H.Yang, Time delayed optimal control

problems with multiple characteristic time points: Computation and industrial applications,
Journal of Industrial and Management Optimization, 5 (2009), 705-718.

[29] Y.Zhao and M. A. Stadtherr, Rigorous global optimization for dynamic systems subject to

inequality path constraints, Industrial and Engineering Chemistry Research, 50 (2011), 12678—
12693.

Received February 2013; 1st revision March 2013; final revision July 2013.

E-mail address: q.lin@curtin.edu.au
E-mail address: atordesi@ms.unimelb.edu.au


http://www.ams.org/mathscinet-getitem?mr=MR3016147&return=pdf
http://dx.doi.org/10.1142/S021812741230042X
http://dx.doi.org/10.1142/S021812741230042X
http://www.ams.org/mathscinet-getitem?mr=MR2534037&return=pdf
http://dx.doi.org/10.3934/jimo.2009.5.705
http://dx.doi.org/10.3934/jimo.2009.5.705
mailto:q.lin@curtin.edu.au
mailto:atordesi@ms.unimelb.edu.au

	1. Introduction
	2. Flow networks
	3. The maximum flow problem
	3.1. Minimum cut
	3.2. The flow network bottleneck

	4. The minimum cost maximum flow problem
	5. Results
	5.1. Construction of the flow networks
	5.2. Minimum cost maximum flow solution
	5.3. Bottleneck in the flow network
	5.4. Minimum cost maximum flow pathway

	6. Conclusions
	Acknowledgments
	REFERENCES

