
A Smoothing Projected Newton-Type Algorithm for Semi-Infinite

Programming

Liqun Qi,∗ Chen Ling,† Xiaojiao Tong‡ and Guanglu Zhou§

August 10, 2006

Abstract

This paper presents a smoothing projected Newton-type method for solving the semi-infinite
programming (SIP) problem. We first reformulate the KKT system of the SIP problem into
a system of constrained nonsmooth equations. Then we solve this system by a smoothing
projected Newton-type algorithm. At each iteration only a system of linear equations needs
to be solved. The feasibility is ensured via the aggregated constraint under some conditions.
Global and local superlinear convergence of this method is established under some standard
assumptions. Preliminary numerical results are reported.

Key Words: Semi-infinite programming, KKT system, constrained equations, smoothing
method, convergence.

1 Introduction

We consider the following semi-infinite programming (SIP) problem:

min{f(x) : x ∈ X}, (1.1)

where X = {x ∈ Rn : g(x, v) ≤ 0, ∀ v ∈ V }, f : Rn → R and g : Rn × Rm → R are twice
continuously differentiable functions. In this paper, we assume that V is a nonempty compact box
with

V = {v ∈ Rm : a ≤ v ≤ b},
∗Department of Mathematics, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong. E-mail:

maqilq@polyu.edu.hk. His work is supported by the Hong Kong Research Grant Council.
†School of Mathematics and Statistics, Zhejiang University of Finance and Economics, Hangzhou, 310018, China.

E-mail: linghz@hzcnc.com.
‡Institute of Mathematics, Changsha University of Science and Technology, Changsha, China. This work was

done during her visit to The Hong Kong Polytechnic University. e-mail: tongxj@cscu.edu.cn.
§Department of Mathematics and Statistics, Curtin University of Technology, WA 6102, Australia. E-mail:

g.zhou@exchange.curtin.edu.au. His work is supported by Australian Research Council.

1

where a ∈ Rm, b ∈ Rm, and a < b. Here the inequality a < b means that ai < bi for all
i = 1, 2, ..., m.

The SIP problem arises from various applications such as approximation theory, optimal con-
trol, eigenvalue computation, mechanical stress of materials, and statistical design. The main
difficulty for solving the SIP problem is that it has infinite constraints. Many methods have been
proposed for the SIP problem. We refer readers to [8, 9, 15, 16, 23] for details.

Let
V (x) = {v ∈ V : g(x, v) = 0}.

It is well-known [22] that if x is a local minimizer of the SIP problem (1.1), and if the extended
Mangasarian-Fromovitz constraint qualification (EMFCQ) holds at x, i.e., there exists a vector
d ∈ Rn such that

∇xg(x, v)T d < 0

for all v ∈ V (x), then there are p positive numbers ui such that

∇f(x) +
p∑

i=1

ui∇xg(x, vi) = 0,

where vi ∈ V (x) for i = 1, · · · , p and p ≤ n. Hence, the KKT system of the SIP problem (1.1) is
as follows:

∇f(x) +
p∑

i=1

ui∇xg(x, vi) = 0,

g(x, v) ≤ 0, ∀ v ∈ V,

ui > 0, g(x, vi) = 0, i = 1, · · · , p.

(1.2)

In the KKT system (1.2), x is called a stationary point of the SIP problem, and u ≡ (u1, · · · , up) ∈
Rp and vi for i = 1, · · · , p are called its Lagrange multiplier and attainers, respectively.

The KKT system (1.2) can be analyzed further. By the definition of V (x) and the second
constrained condition of (1.2), vi ∈ V (x) (i = 1, · · · , p) imply that vi (i = 1, · · · , p) are global
minimizers of the following minimization problem:

min −g(x, v)

s.t. v ∈ V. (1.3)

The KKT system of (1.3) can be written as

(v′ − v)T (−∇vg(x, v)) ≥ 0, ∀ v′ ∈ V,

and it can be reformulated as a system of nonsmooth equations as follows (see [2, 5] for details):

φ(x, v) = 0. (1.4)

2

Here, φ(x, v) is defined as
φ(x, v) := v − P (a, b, v +∇vg(x, v)), (1.5)

where the function P is the mid-function defined for all j = 1, · · · ,m, as

(P (a, b, w))j =

aj , if wj < aj ,

wj , if aj ≤ wj ≤ bj ,

bj , if bj < wj .

Thus, if a constraint qualification for (1.3) holds, then the KKT system of the SIP problem (1.1)
can be reformulated as follows:

∇f(x) +
p∑

i=1

ui∇xg(x, vi) = 0,

g(x, v) ≤ 0, ∀ v ∈ V,

ui > 0, g(x, vi) = 0, (i = 1, · · · , p)
φ(x, vi) = 0 (i = 1, · · · , p),

(1.6)

because the system (1.4) is a first order necessary condition for vi, i = 1, 2, · · · , p to be local
solutions of (1.3).

Based on (1.6), a semismooth Newton method and a smoothing Newton method were presented
in [21] and [10] respectively. The advantage of these two methods proposed in [21, 10] is that in
every iteration only a system of linear equations needs to be solved. Moreover, these methods
enjoy global and locally superlinear convergence. However, these two methods cannot ensure
the feasibility of (1.1), because some previous information was replaced by (1.4), and the second
constrained condition in (1.6) was removed. Quite recently, another iterative method for solving
the KKT system of (1.1) was proposed in [29], in which the feasibility issue was considered.
However, the method in [29] does not have locally superlinear convergence property.

Let
G(x) =

∫

V
[g(x, v)]+dv, (1.7)

where [x]+ = max{0, x}. The function G(x) was proposed in [25]. Then (1.6) is equivalent to

∇f(x) +
∑p

i=1 ui∇xg(x, vi) = 0,

G(x) ≤ 0,

ui > 0, g(x, vi) = 0, (i = 1, · · · , p)
φ(x, vi) = 0 (i = 1, · · · , p).

(1.8)

It is not difficult to show that G(x) is nonsmooth but semismooth [18].
In this paper, we present a new method for solving the SIP problem by using a smoothing

projected Newton-type algorithm. At each iteration only a system of linear equations needs to

3

be solved. The feasibility is ensured via the aggregated constraint G(x) ≤ 0. Global and local
superlinear convergence of this method is established under some standard assumptions. Some
drawbacks of existing methods are overcome.

The rest of this paper is organized as follows. In Section 2, we study the properties of the
smoothings of the functions G(x) and φ(x, v) in (1.8). In Section 3, a smoothing projected Newton-
type algorithm is presented to solve (1.8). This smoothing algorithm is an extension of the method
for solving unconstrained nonsmooth equations presented in [19]. It can also be viewed as a
smoothing version of the method proposed in [24]. In Section 4 we establish the global and local
superlinear convergence of the new method. In Section 5, we give our numerical results, which
show that our new method performs well. Some comments are made in the last section.

Some words about the notation. For a smooth (continuously differentiable) function Φ : Rn →
Rm, we denote the Jacobian of Φ at x ∈ Rn by Φ′(x), which is an m× n matrix. We denote the
transposed Jacobian as ∇Φ(x). For a function f : Rn×Rm → R we denote ∇xf(x, y) the gradient
of f at (x, y) with respect to x and ∇2

xxf(x, y), ∇2
xyf(x, y) and ∇2

yyf(x, y) denote, respectively,
the n × n, n × m and m × m Hessian matrices of f at (x, y). For a nonsmooth function G(x),
∂G(x) means the generalized Jacobian in the sense of Clarke [3]. If M ∈ Rt×t, M = (mij), is any
given matrix and I, J ⊆ {1, 2, · · · , t} are two subsets, then MIJ stands for the |I| × |J | submatrix
with elements mij , i ∈ I, j ∈ J . If I = {1, 2, · · · , t} or J = {1, 2, · · · , t}, then MIJ is simplified
as M·J or MI·, respectively. ‖ · ‖ denotes the Euclidean norm. If δ is a small quantity, O(δ)
and o(δ) mean the same order and higher order small quantity respectively. ΠW (·) represents the
orthogonal projection on a set W .

2 Some Preliminaries

In this section, we review some results on semismoothness and give some properties on smoothing
approximation functions of the integral function G(x) defined in (1.7) and φ(x, v) defined in (1.5).
These results and properties will be used later.

Semismoothness was originally introduced by Mifflin [13] for functionals. In [20], Qi and Sun
extended the definition of semismooth functions to H : Rn → Rn. H is said to be semismooth at
x ∈ Rn, if

lim
Q∈∂H(x+th′)

h′→h,t↓0

{Qh′}

exists for any h ∈ Rn. Semismoothness can also be defined equivalently as follows [12]:

Definition 2.1 Let H : Rn → Rn be a locally Lipschitz function. We say that H is semismooth
at x if

(i) H is directionally differentiable at x; and

4

(ii) for any h → 0 and Q ∈ ∂H(x + h),

H(x + h)−H(x)−Qh = o(||h||).

H is said to be strongly semismooth at x if H is semismooth at x and for any Q ∈ ∂H(x + h)
and h → 0,

H(x + h)−H(x)−Qh = O(||h||2).
Here, o(‖h‖) stands for a vector function of h, satisfying

lim
h→0

o(‖h‖)
‖h‖ = 0,

while O(‖h‖2) stands for a vector function of h, satisfying

‖O(‖h‖2)‖ ≤ M‖h‖2

for all h satisfying ‖h‖ ≤ δ, and some M > 0 and δ > 0. A function H is said to be a (strongly)
semismooth function if it is (strongly) semismooth everywhere on Rn.

In [17], Qi defined the B-subdifferential of a locally Lipschitz function H : Rn → Rn at a point
x ∈ Rn:

∂BH(x) =
{

Q ∈ Rn×n | Q = lim
xk→x

H ′(xk),H is differentiable at xk for all k

}
.

It is seen that
∂H(x) = conv ∂BH(x).

The concept of the B-subdifferential will be used in the design of our algorithm. A locally Lipschitz
function H is said to be BD-regular at x ∈ Rn if all Q ∈ ∂BH(x) are nonsingular [17].

Lemma 2.1 [17] Suppose that H : Rn → Rn is locally Lipschitz continuous and H is BD-regular
at x ∈ Rn. Then there exist a neighborhood N(x) of x and a constant C such that for any y ∈ N(x)
and Q ∈ ∂BH(y), Q is nonsingular and ||Q−1|| ≤ C.

Lemma 2.2 [14] Suppose that H : Rn → Rn is locally Lipschitz continuous and H is BD-regular
at a solution x∗ of H(x) = 0. If H is semismooth at x∗, then there exist a neighborhood N(x∗) of
x∗ and a constant C such that for any x ∈ N(x∗),

||H(x)|| ≥ C||x− x∗||.

Define Ḡ : R×Rn → R by

Ḡ(t, x) =
∫

V
ḡ(t, x, v)dv,

5

where ḡ : R×Rn ×Rm → R is defined by

ḡ(t, x, v) =

√
(g(x, v))2 + 4t2 + g(x, v)

2
. (2.1)

The function ḡ is the Chen-Harker-Kanzow-Smale smoothing function of [g(x, v)]+. Other smooth-
ing functions of [g(x, v)]+ can be found in [19]. It is obvious that for any t 6= 0, Ḡ(t, x) is smooth
with respect to variable x and

∇xḠ(t, x) =
∫

V
∇xḡ(t, x, v)dv. (2.2)

We now study the semismoothness of Ḡ(t, x). To this end, We first consider a general case.
Let f(x, v) : Rn × V → R be continuous with respect to v ∈ V for each fixed x ∈ Rn, and be
locally Lipschitz with respect to x uniformly in v ∈ V , i.e., there exist a neighborhood N of 0 and
a positive constant C such that

‖f(x + h, v)− f(x, v)‖ ≤ C ‖h‖ , ∀ h ∈ N, v ∈ V.

Let
Γ(x) =

∫

V
f(x, v)dv.

Obviously, Γ : Rn → R is locally Lipschitz continuous.

Proposition 2.1 Suppose that ∂xf(x, v), viewed as a joint mapping of x and v, is upper semi-
continuous, i.e., for every neighborhood N of ∂xf(x, v), there exists δ > 0 such that

∂xf(x′, v′) ⊂ N, for all x′ ∈ N1(x, δ), v′ ∈ N2(v, δ),

where
N1(x, δ) = {x′ :

∥∥x′ − x
∥∥ ≤ δ}

and
N2(v, δ) = {v′ : ∥∥v′ − v

∥∥ ≤ δ} ∩ V.

Then Γ is semismooth at x̄ if f(·, v) is semismooth at x̄ for every v ∈ V .

Proof. It follows from Proposition 1 in [18] that Γ is directionally differentiable at x̄. On the
other hand, by Theorem 2.7.2 in [3], we obtain

∂Γ(x) ⊂
∫

V
∂xf(x, v)dv. (2.3)

This means that for any Q ∈ ∂Γ(x), there exists a measurable mapping v → Qv from V to Rn

with Qv ∈ ∂xf(x, v) a.e. such that for every h ∈ Rn,

Qh =
∫

V
Qvhdv.

6

Take any h ∈ Rn and Q ∈ ∂Γ(x̄ + h). We have

Γ(x̄ + h)− Γ(x̄)−Q h =
∫

V
(f(x̄ + h, v)− f(x̄, v)−Qvh) dv,

where Qv ∈ ∂xf(x̄ + h, v), which implies

|Γ(x̄ + h)− Γ(x̄)−Q h| ≤
∫

V
|f(x̄ + h, v)− f(x̄, v)−Qvh| dv. (2.4)

To prove Γ is semismooth, it suffices to show that

lim
h→0

|Γ(x̄ + h)− Γ(x̄)−Q h|
‖h‖ = 0. (2.5)

Since f(·, v) is semismooth at x̄ for every fixed v ∈ V , we have

lim
h→0

|f(x̄ + h, v)− f(x̄, v)−Qvh|
‖h‖ = 0, for all Qv ∈ ∂xf(x̄ + h, v). (2.6)

If there exist a neighborhood N of 0 and C > 0 such that

|f(x̄ + h, v)− f(x̄, v)−Qvh|
‖h‖ ≤ C, (2.7)

for all h ∈ N , Qv ∈ ∂xf(x̄ + h, v) and v ∈ V , then by the dominated convergence theorem, (2.5)
follows from (2.6).

Now we prove (2.7). Since f is locally Lipschitz continuous at x̄ uniformly in v ∈ V , there
exist a neighborhood N of 0 and C(x̄) > 0 such that

|f(x̄ + h, v)− f(x̄, v)|
‖h‖ ≤ C(x̄), ∀ h ∈ N, v ∈ V. (2.8)

On the other hand, the upper semicontinuity ∂xf(x, v) implies that for any v ∈ V and neighbor-
hood N(v) of ∂xf(x̄, v), there exist δv > 0 such that

∂xf(x̄ + h, v′) ⊂ N(v), for all h ∈ N1(0, δv), v′ ∈ N2(v, δv).

Obviously,
V ⊂ ∪v∈V N2(v, δv).

By the compactness of V , there exist a finite number of neighborhoods, say N2(vj , δvj), j =
1, 2, · · · ,m such that

V ⊂ ∪m
j=1N2(vj , δvj).

Let δ̄ = min{δv1 , · · · , δvm}. Then we have

∪v′∈V ∂xf(x̄ + h, v′) ⊂ ∪m
j=1N(vj), for all h ∈ N1(0, δ̄).

7

It is well known that every ∂xf(x̄, vj) is compact, j = 1, 2, · · · ,m. Consequently, ∪m
j=1∂xf(x̄, vj)

is compact and ∪m
j=1N(vj) can be taken a bounded set. Hence, ∪v′∈V ∂xf(x̄ + h, v′) is bounded,

which together with (2.8) implies (2.7) holds. We obtain the desired result and complete the proof
of the theorem.

Now we give some properties of the function Ḡ.

Proposition 2.2 The function Ḡ has the following properties:
(i) It is twice continuously differentiable for any t 6= 0.
(ii) There exists a constant C > 0 such that for any x ∈ Rn

∣∣Ḡ(t, x)−G(x)
∣∣ ≤ C|t|.

(iii) The function Ḡ is semismooth.

Proof. It is obvious that (i) holds. The proof of (ii) is similar to that of Theorem 2.1 [11], so we
omit it. Now we prove that (iii) holds.

By (i), we only need to show that (iii) holds on z̄ = (0, x̄). Since the composition of semismooth
functions is a semismooth function [6], ḡ(t, x, v) is semismooth with respect to (t, x) for any fixed
v ∈ V . To prove the semismoothness of Ḡ(t, x), by Proposition 2.1, we only need to show that
∂(t,x)ḡ(t, x, v) is upper semicontinuous with respect to (t, x, v) and ḡ(t, x, v) is locally Lipschitz
with respect to (t, x) uniformly in v ∈ V . By direct computation, we have

∂(t,x)ḡ(t, x, v) =

{
1
2

(
4t√

g2+4t2
,

(
1 + g√

g2+4t2

)
(∇xg)T

)}
, if t 6= 0

{(0, (∇xg)T
)}, if t = 0, g(x, v) > 0

{(0, 0)}, if t = 0, g(x, v) < 0{(
λ, µ(∇xg)T

) | λ2 + (2µ− 1)2 ≤ 1
}

, if t = 0, g(x, v) = 0,

(2.9)

where g and ∇xg express the corresponding values of functions at point (x, v). From (2.9), it is
easy to verify ∂(t,x)ḡ(t, x, v) is upper semicontinuous with respect to (t, x, v) on R×Rn × V .

Now we verify that ḡ(t, x, v) is locally Lipschitz with respect to (t, x) uniformly in v ∈ V . Let
z = (t, x). For z close to z̄. There are two cases: (a) t 6= 0 and (b) t = 0.

Case (a). By the Mean-Value theorem, there exists a point z̃ in the open segment connecting
z and z̄ such that

ḡ(z, v)− ḡ(z̄, v) = ∇z ḡ(z̃, v)T (z − z̄).

By (2.9), it is easy to know that there exists C > 0 such that

|ḡ(z, v)− ḡ(z̄, v)| ≤ C ‖z − z̄‖ , ∀ v ∈ V, (2.10)

since g is continuously differentiable and V is compact.

8

Case (b). We have

|ḡ(z, v)− ḡ(z̄, v)| = |[g(x, v)]+ − [g(x̄, v)]+|
≤ 2 |g(x, v)− g(x̄, v)|
≤ ‖∇xḡ(x̃, v)‖ ‖x− x̄‖
= ‖∇xḡ(x̃, v)‖ ‖z − z̄‖ ,

where x̃ is in the open segment connecting x and x̄, the first inequality comes from the fact that
|[a]+ − [b]+| ≤ 2 |a− b|. By this and the condition that g is continuously differentiable and V is
compact, there exists C > 0 such that (2.10) holds. The proof is complete.

Define ϕ : R4 → R by

ϕ(t, c, d, w) =
c +

√
(c− w)2 + 4t2

2
+

d−
√

(d− w)2 + 4t2

2
,

which is the Chen-Harker-Kanzow-Smale smoothing function for mid(c, d, w). For a, b, v ∈ Rm,
we define φ̄ : R×Rm ×Rn → Rm by

(φ̄(t, x, v))i = vi − ϕ(t, ai, bi, vi + (∇vg(x, v))i), (2.11)

where i = 1, · · · ,m. It is clear that φ̄ is smooth for t 6= 0.
From Theorem 3 in [19], Lemma 2.3 and Theorem 3.3 in [7], it is easy to prove the following

results for φ̄.

Proposition 2.3 The function φ̄ defined in (2.11) has the following properties:
(i) It is twice continuously differentiable for t 6= 0.
(ii) It is semismooth. Furthermore, if g is twice Lipschitz continuously differentiable, it is strongly
semismooth.
(iii) There exists a constant C > 0 such that for any (x, v) ∈ Rn+m and t ∈ R,

∥∥φ̄(t, x, v)− φ(x, v)
∥∥ ≤ C|t|.

3 A Smoothing Projected Newton-Type Algorithm

Let
v = (v1; v2; ...; vp).

Define

F (x, u,v) = ∇f(x) +
p∑

i=1

ui∇xg(x, vi), (3.1)

g(x,v) =

g(x, v1)
...

g(x, vp)

 , φ̂(x,v) =

φ(x, v1)
...

φ(x, vp)

 , φ̃(t, x,v) =

φ̄(t, x, v1)
...

φ̄(t, x, vp)

 .

9

By introducing a slack variable y ∈ R and relaxing ui > 0 as ui ≥ 0, (1.8) can be written as the
following system of nonsmooth equations with bounded constraints:

H(z) = 0,

u ≥ 0, y ≥ 0,
(3.2)

where z = (x, u,v, y) ∈ Rn ×Rp ×Rmp ×R, and

H(z) =

F (x, u,v)
g(x,v)

G(x) + y

φ̂(x,v)

.

Clearly, if z = (x, u,v, y) ∈ Rn ×Rp ×Rmp ×R is a solution of (3.2), then we may get a solution
of (1.8) by dropping those vi in v satisfying ui = 0.

Denote w = (t, z) = (t, x, u,v, y) ∈ R × Rn × Rp × Rmp × R. Motivated by the smoothing
method in [19] for a system of unconstrained nonsmooth equations and the method in [24] for
a system of constrained nonsmooth equations, in this section we present a smoothing projected
Newton-type method for solving (3.2). We define the following system of constrained equations:

Φ(t, z) = 0
u ≥ 0, y ≥ 0,

(3.3)

where

Φ(t, z) =

(
t

H̄(t, z)

)
, H̄(t, z) =

F (x, u,v)
g(x,v)

Ḡ(t, x) + y

φ̃(t, x,v)

.

It is obvious that if (t, z) is a solution of (3.3) then z is a solution to (3.2). By Propositions 2.2
and 2.3, we have the following proposition.

Proposition 3.1 Φ is smooth at (t, z) with t 6= 0 and semismooth at (0, z).

Let
W = {w = (t, x, u,v, y) : u ≥ 0, y ≥ 0},

and
Z = {(x, u,v, y) ∈ Rn ×Rp ×Rmp ×R : u ≥ 0, y ≥ 0}.

Define a merit function of (3.3) by

Ψ(w) =
1
2
‖Φ(w)‖2.

10

Then solving (3.3) is equivalent to finding a global solution of the following minimization problem:

min Ψ(w)

s.t. u ≥ 0, y ≥ 0. (3.4)

And w is a stationary point of (3.4) if it satisfies

‖d̄G(1)‖ = 0. (3.5)

Here,

d̄G(1) = ΠW (w − γ∇Ψ(w))− w =
(−γ∇tΨ(w)

ΠZ(z − γ∇zΨ(w))− z

)
, (3.6)

where γ > 0 is a constant, ΠW (·) is an orthogonal projection operator onto W .
Let α ∈ (0, 1) be a constant. For a sequence {wk}∞k=0, we define

β0 = β(w0) = α min{1, ‖d̄0
G(1)‖2},

and

βk = β(wk) :=

βk−1, if α min{1, ‖d̄k
G(1)‖2} > βk−1

α min{1, ‖d̄k
G(1)‖2}, otherwise.

(3.7)

Now we state our smoothing projected Newton-type algorithm for solving (3.4).

Algorithm 3.1

Step 0. (Initialization)
Choose constants η, ρ, σ ∈ (0, 1), p1 > 0, p2 > 2 and α > 0, t̄ > 0 with αt̄ < 1. Let
w̄ = (t̄, 0, 0, 0, 0), t0 = t̄ and w0 = (t0, x0, u0,v0, y0) with u0

i ≥ 0 (i = 1, · · · , p); y0 ≥ 0. Set
k := 0.

Step 1. (Stoping Test)
Let

γk = min
{

1,
tk

|tk +∇tH̄(wk) H̄(wk)| ,
η‖Φ(wk)‖
‖∇Ψ(wk)‖ ,

ηΨ(wk)
‖∇Ψ(wk)‖2

}
, (3.8)

where ∇tH̄(wk) is the first row of ∇H̄(wk). Compute d̄k
G(1) by (3.6). If ‖d̄k

G(1)‖ = 0, stop.
Otherwise, compute βk by (3.7).

Step 2. (Compute Search Direction)
Compute dk

G by
dk

G = −γk∇Ψ(wk) + βkw̄. (3.9)

Compute dk
N by solving the following linear system:

Φ(wk) + Φ′(wk)dk
N = βkw̄. (3.10)

11

If (3.10) has no solution or
−∇Ψ(wk)T dk

N < p1

∥∥∥dk
N

∥∥∥
p2

,

then let dk
N := dk

G.

Step 3. (Line Search)
Let mk be the smallest nonnegative integer m satisfying

Ψ(wk + d̄k((ρ)m)) ≤ Ψ(wk) + σ∇Ψ(wk)T d̃k
G((ρ)m), (3.11)

where for any λ ∈ [0, 1],

d̄k(λ) = τ∗(λ)d̃k
G(λ) + (1− τ∗(λ))d̃k

N (λ). (3.12)

Here
d̃k

G(λ) := ΠW (wk + λdk
G)− wk, d̃k

N (λ) := ΠW (wk + λdk
N)− wk, (3.13)

τ∗(λ) is a solution of the following minimization problem:

min
τ∈[0,1]

1
2
‖Φ(wk) + Φ′(wk)[τ d̃k

G(λ) + (1− τ)d̃k
N (λ)]‖2.

Let λk = (ρ)mk and wk+1 = wk + d̄k(λk).

Step 4. Set k := k + 1 and go to Step 1.

Remark. (a) Algorithm 3.1 is a smoothing version of the algorithm proposed in [24]. In
[24], it is required that the merit function Ψ must be smooth. In this paper, we do not need this
requirement.

(b) Similar to Lemma 3.1 [24], we have the following result about τ∗(λ).

τ∗(λ) = max{0,min{1, τ(λ)}}, (3.14)

where τ(λ) is defined as

τ(λ) =

0, if Φ′(wk)[d̃k
G(λ)− d̃k

N (λ)] = 0,

− [Φ(wk) + Φ′(wk)d̃k
N (λ)]T Φ′(wk)[d̃k

G(λ)− d̃k
N (λ)]

‖Φ′(wk)[d̃k
G(λ)− d̃k

N (λ)]‖2
, otherwise.

The following projection properties are used in our analysis (see [1]).

Lemma 3.1 The projection operator ΠW (·) with any convex set W ⊂ Rn satisfies
(i) for any w ∈ W ,

[ΠW (w′)− w′]T [ΠW (w′)− w] ≤ 0 for all w′ ∈ Rn;

12

(ii)
‖ΠW (w′)−ΠW (w′′)‖ ≤ ‖w′ − w′′‖ for all w′, w′′ ∈ Rn;

(iii) Given w, d ∈ Rn, the function ζ defined by

ζ(λ) = ‖ΠW (w + λd)− w‖/λ, λ > 0

is non-increasing.

From the definition of βk, the following proposition is obvious.

Proposition 3.2 {βk} defined in (3.7) has the following properties:
(i) {βk} is non-increasing sequence;
(ii) For all k, βk satisfies

βk ≤ α min{1, ‖d̄k
G(1)‖2}.

Proposition 3.3 Suppose that wk = (tk, zk) ∈ W with tk > 0 is not a stationary point of (3.4).
Then for any λ ∈ (0, 1], it holds that

∇Ψ(wk)T d̃k
G(λ) ≤ − λ

γk
(1− αt̄)‖d̄k

G(1)‖2 < 0. (3.15)

Proof. In this proof, for simplicity, we drop the superscript k. For any w = (t, z) ∈ W with t > 0,
suppose that w is not a stationary point of (3.4). Then

∇Ψ(w) = ∇Φ(w)Φ(w) =
(

t +∇tH̄(w) H̄(w)
∇zH̄(w) H̄(w)

)
≡

(∇tΨ(w)
∇zΨ(w)

)
,

where ∇tH̄(w) is the first row of ∇H̄(w) and ∇zH̄(w) is the submatrix of ∇H̄(w) obtained by
just removing the first row of ∇H̄(w). Obviously, d̃G(λ) can be written as

d̃G(λ) ≡
(

(d̃G(λ))t

(d̃G(λ))z

)
=

(−λγ(t +∇tH̄(w)H̄(w)) + λβ(w)t̄
ΠZ(z − λγ∇zΨ(w))− z

)
.

Then we have

(t +∇tH̄(w)H̄(w))T [−λγ(t +∇tH̄(w)H̄(w)) + λβ(w)t̄]

= −λγ
∥∥t +∇tH̄(w)H̄(w)

∥∥2 + λ(t +∇tH̄(w)H̄(w))T β(w)t̄

≤ −λ

γ
‖ − γ∇tΨ(w)‖2 +

λ

γ
‖ − γ∇tΨ(w)‖β(w)t̄

≤ −λ

γ
‖ − γ∇tΨ(w)‖2 +

λ

γ
‖ − γ∇tΨ(w)‖(αt̄)‖d̄G(1)‖

≤ −λ

γ
‖ − γ∇tΨ(w)‖2 + αt̄

λ

γ
‖d̄G(1)‖2, (3.16)

13

where the second inequality comes from Proposition (3.2) (ii) and the fact that β(w) ≤ α‖d̄G(1)‖,
the last inequality is due to ‖ − γ∇tΨ(w)‖ ≤ ‖d̄G(1)‖ (see (3.6)). Thus,

∇zΨ(w)T [ΠZ(z − λγ∇zΨ(w))− z]

= − 1
λγ

[z − λγ∇zΨ(w)− z]T [ΠZ(z − λγ∇zΨ(w))− z]

=
1
λγ

[ΠZ(z − λγ∇zΨ(w))− (z − λγ∇zΨ(w))]T [ΠZ(z − λγ∇zΨ(w))− z]

− 1
λγ
‖ΠZ(z − λγ∇zΨ(w))− z‖2

≤ − 1
λγ
‖ΠZ(z − λγ∇zΨ(w))− z‖2

≤ −λ

γ
‖ΠZ(z − γ∇zΨ(w))− z‖2, (3.17)

where the first and second inequalities come from Lemma 3.1 (i) and (iii), respectively. It follows
from (3.16) and (3.17) that

∇Ψ(w)T d̃G(λ) (3.18)

= (t +∇tH̄(w)H̄(w))T [−λγ(t +∇tH̄(w)H̄(w)) + λβ(w)t̄] +∇zΨ(w)T [ΠZ(z − λγ∇zΨ(w))− z]

≤ −λ

γ

[‖ − γ∇tΨ(w)‖2 + ‖Πz(z − γ∇zΨ(w))− z‖2
]
+ αt̄

λ

γ
‖d̄G(1)‖2

= −λ

γ
(1− αt̄)‖d̄G(1)‖2 < 0. (3.19)

The proof is complete.
Now we have the following conclusion which shows that Algorithm 3.1 is well-defined.

Theorem 3.1 Suppose that wk = (tk, zk) ∈ W with tk > 0 is not a stationary point of (3.4).
Then there exists a constant λ′ ∈ (0, 1] such that for any λ ∈ (0, λ′], d̄k(λ) is a descent direction
of Ψ(wk) at wk and

Ψ(wk + d̄k(λ)) ≤ Ψ(wk) + σ∇Ψ(wk)T d̃k
G(λ). (3.20)

Proof. By using Proposition 3.3, the conclusion can be proved in a similar way to the proof of
Theorem 3.1 in [24] so we omit it.

4 Convergence Analysis

In this section we analyze the global and local convergence of Algorithm 3.1 in the previous section.
The following proposition is a key result which shows that Algorithm 3.1 can keep tk > 0 at each
iteration.

14

Proposition 4.1 For each k, k = 0, 1, · · · , wk = (tk, zk) satisfies

tk ≥ βk t̄. (4.1)

Furthermore, if wk is not a stationary point of (3.4), then

tk > 0. (4.2)

Proof. We prove this proposition by induction. From the choices of t0 and β0 in Algorithm 3.1,
it is obvious that (4.1) holds. Suppose that for any integer l, wl = (tl, zl) satisfies (4.1). Now we
prove that wl+1 = (tl+1, zl+1) satisfies (4.1) as well. We denote

d̄l(λl) = τ∗(λl)d̃l
G(λl) + (1− τ∗(λl))d̃l

N (λl) =
(

(d̄l(λl))t

(d̄l(λl))z

)
,

where λl is the accepted step-length at l-th iteration. It follows from Algorithm 3.1 that

(d̄l(λl))t = τ∗(λl)λl[−γl(tl +∇tH̄(w)H̄(w)) + β(wl)t̄] + (1− τ∗(λl))λl[−tl + β(wl)t̄]

= −λlγlτ
∗(λl)(tl +∇tH̄(w)H̄(w))− (1− τ∗(λl))λlt

l + λlβ(wl)t̄

≥ −λlτ
∗(λl)tl − (1− τ∗(λl))λlt

l + λlβ(wl)t̄

= −λlt
l + λlβ(wl)t̄,

where the inequality comes from the definition of γl (see (3.8)). Then we have

tl+1 − β(wl+1)t̄ = tl + (d̄l(λl))t − β(wl+1)t̄

≥ (1− λl)tl + λlβ(wl)t̄− β(wl+1)t̄

≥ (1− λl)tl + λlβ(wl)t̄− β(wl)t̄

= (1− λl)tl − (1− λl)β(wl)t̄ ≥ 0, (4.3)

where the second inequality is due to the monotonicity property of β(wl) in Proposition 3.2, and
the last inequality comes from that tl ≥ β(wl)t̄. Therefore, (4.1) holds for any nonnegative integer
k. Furthermore, from (4.1) and that wk is not a stationary point of (3.4), (4.2) holds. We complete
the proof.

Theorem 4.1 Let {wk} ⊂ W be a sequence generated by Algorithm 3.1. Then any accumulation
point of {wk} is a stationary point of (3.4).

Proof. Proposition 4.1 shows that if our algorithm does not stop at a stationary point of (3.4),
then tk > 0 for any k. This means that Φ and Ψ are continuously differentiable at wk. Hence, by
using a similar way to the proof of Theorem 4.1 [24], we can prove the theorem holds. Here we
omit the detailed proof.

15

The following proposition shows that the stationary point of (3.4) is a feasible point of the
original SIP problem under some conditions. Let

J1(x, v) = {i | vi + (∇vg(x, v))i < ai}, J2(x, v) = {i | ai < vi + (∇vg(x, v))i < bi}

J3(x, v) = {i | bi < vi + (∇vg(x, v))i},
and

J4(x, v) = {i | vi + (∇vg(x, v))i = ai or vi + (∇vg(x, v))i = bi}.

Proposition 4.2 Let {wk} be a sequence generated by by Algorithm 3.1 and w∗ = limk∈K{wk}
with t∗ = 0 be a stationary point of (3.4), where K ⊂ {1, 2, · · · }. Suppose that there exists a
sub-vector vj0∗ of v∗ such that w∗ satisfies the following conditions:

(i) g(x∗, vj0∗) = 0;
(ii) ∇2

xvg(x∗, vj0∗) = 0;
(iii) The function g(x∗, ·) is concave at vj0∗;
(iv) The set J4(x∗, vj0∗) is empty and

(∇2
vj0

g(x∗, vj0∗)
)
J

j0∗
2 J

j0∗
2

is nonsingular, where J j0∗
2 =

J2(x∗, vj0∗).
Then x∗ is a feasible point of the original SIP problem (1.1).

Proof. Since w∗ is a stationary point of (3.4) and the projected operator only works on the
variables u and y, it is not difficult to see that

lim
k∈K

∇(t,x,v)Ψ(wk) = 0. (4.4)

For any wk with tk > 0,
∇Ψ(wk) = ∇Φ(wk)Φ(wk), (4.5)

where

∇Φ(wk) =

1 01×n 0 · · · 0 ∇tḠ
k ∇tφ̄

k
1 · · · ∇tφ̄

k
p

0n×1 ∇xF k ∇xgk
1 · · · ∇xgk

p ∇xḠk ∇xφ̄k
1 · · · ∇xφ̄k

p

0 ∇T
x gk

1 0 · · · 0 0 01×m · · · 01×m

0 ∇T
x gk

2 0 · · · 0 0 01×m · · · 01×m

...
...

...
. . .

...
...

. . .
...

...
0 ∇T

x gk
p 0 · · · 0 0 01×m · · · 01×m

0m×1 uk
1∇v1(∇xgk

1) ∇v1gk
1 · · · 0 0p×1 ∇v1 φ̄k

1 · · · 0m×m

...
...

...
. . .

...
...

...
. . .

...
0m×1 uk

p∇vp(∇xgk
p) 0 · · · ∇vpgk

p 0p×1 0m×m · · · ∇vp φ̄k
p

0 01×n 0 · · · 0 1 01×m · · · 01×m

16

and F k = F (xk, uk,vk), Ḡk = Ḡ(tk, xk), φ̄k
j = φ̄(tk, xk, vjk) and gk

j = g(xk, vjk) for any j =
1, 2, · · · , p. Consequently, from (4.4) and (4.5), we have

limk∈K ∇vj0Ψ(wk) = limk∈K

(
uk

j0
∇vj0 (∇xgk

j0
),∇vj0g

k
j0

,∇vj0 φ̄
k
j0

)

F k

gk
j0

φ̄k
j0

=
(
u∗j0∇vj0 (∇xg∗j0),∇vj0g

∗
j0

, Q∗
j0

)

F ∗

g∗j0
φ̄∗j0

= Q∗
j0

φ̄∗j0 = 0,

(4.6)

where the third equality comes from the assumed conditions (i) and (ii). Here F ∗ = F (x∗, u∗,v∗),
g∗j0 = g(x∗, vj0∗), φ̄∗j0 = φ̄(t∗, x∗, vj0∗) and Q∗T

j0
∈ ∂vj0 φ̄

∗
j0

. On the other hand, it is easy to know
that

Q∗T
j0 =

I1 0 0
−U∗

21 −U∗
22 −U∗

23

0 0 I3

 ,

where U∗
2j , j = 1, · · · , 3, are the sub-matrices of the ∇2

vg(x∗, vj0∗), which are determined by the
rows with the index k ∈ J2(x∗, vj0∗) and the columns with the index l ∈ Jj(x∗, vj0∗); I1 and I3

are the identity matrices with |J j0∗
1 | and |J j0∗

3 | order, respectively. Moreover, by the assumed
conditions (iv), it is obvious that Q∗

j0
is nonsingular and hence φ̄∗j0 = 0, that is

φ̄(0, x∗, vj0∗) = 0. (4.7)

This implies
(v − vj0∗)T (−∇vg(x∗, vj0∗)) ≥ 0, ∀ v ∈ V,

which shows that vj0∗ is a KKT point of the minimization problem (1.3) with x = x∗. Conse-
quently, by the standard sufficient optimality theorem, we have that for any v ∈ V ,

g(x∗, v) ≤ g(x∗, vj0∗) = 0,

because g(x∗, ·) is concave at vj0∗. This shows that x∗ is a feasible point of (1.1). The proof is
complete.

For the general case that g(x, ·) is not concave, we have the following result.

Proposition 4.3 Let {wk} be a sequence generated by Algorithm 3.1 and w∗ = limk∈K{wk} with
t∗ = 0 be a stationary point of (3.4), where K ⊂ {1, 2, · · · }. Suppose that w∗ satisfies the following
conditions:

(i) 0 <

∫

V

1
|g(x∗, v)|dv < ∞;

(ii) limk∈K
tk

tk +∇tH̄(wk)H̄(wk)
≥ 1;

17

(iii) For every j = 1, 2, · · · , p, the set J j
4(x∗, v∗) is empty;

(iv) For every j = 1, 2, · · · , p, φ̄(0, x∗, vj∗) = 0.
Then x∗ is a feasible point of the original SIP problem (1.1).

Proof. It is obvious that G(x∗) ≥ 0. Now we prove that G(x∗) = 0. From the definition of the
stationary point, we have

y∗ > 0 ⇒ ∂

∂y
Ψ(w∗) = 0,

y∗ = 0 ⇒ ∂

∂y
Ψ(w∗) ≥ 0.

(4.8)

This implies
y∗ = 0, (4.9)

because
∂Ψ(w∗)

∂y
= Ḡ(t∗, x∗) + y∗ > 0

whenever y∗ > 0, which contradicts to (4.8). Moreover, for any wk with tk > 0,

∇tφ̄(tk, xk, vjk)

= 2tk

1√(
b1 − vjk

1 − (∇vg
j
k)1

)2
+ 4(tk)2

− 1√(
a1 − vjk

1 − (∇vg
j
k)1

)2
+ 4(tk)2

,

· · · ,
1√(

bm − vjk
m − (∇vg

j
k)m

)2
+ 4(tk)2

− 1√(
am − vjk

m − (∇vg
j
k)m

)2
+ 4(tk)2

T
(4.10)

and
∇tḠ(tk, xk) = 2tk

∫

V

1√
(g(xk, v))2 + 4(tk)2

dv, (4.11)

where gj
k = g(xk, vjk) for any j = 1, 2, · · · , p. Consequently, we obtain

limk∈K
tk

tk +∇tH̄(wk)H̄(wk)
=

tk

tk +
p∑

j=1

(∇tφ̄
k
j)

T φ̄k
j +∇tḠ

k
(
Ḡk + yk

)

=
1

1 + 2G(x∗)
∫

V

1
|g(x∗, v)|dv

,

where φ̄k
j = φ̄(tk, xk, vjk), Ḡk = Ḡ(tk, xk), and the last equality comes from (4.9), (4.10), (4.11)

and the assumed conditions (iii) and (iv). Therefore, by the assumed conditions (i) and (ii), we
have

G(x∗) = 0,

18

which shows that x∗ is a feasible point of (1.1). We complete the proof.
In addition, it is worth mentioning that Algorithm 3.1 has been mainly concerned with finding

a stationary point of (3.4), which is not necessarily a solution of (3.2). If the accumulation point
of the sequence generated by Algorithm 3.1 is not a solution of (3.2), we may use the Lagrangian
globalization (LG) method presented in [27] to deal with it. In other words, we solve the system
of equations (3.2) via two phases. Phase-I is to solve (3.4) by Algorithm 3.1 in which the global
optimal solutions with the zero objective function value correspond to the solutions of the original
constrained equations (3.2). If the point obtained in this phase, say w∗, is a stationary point of
(3.4), but not a solution of (3.2), then we go to Phase-II in which we use a projected approach to
find a better feasible point ŵ such that ‖Φ(ŵ)‖ < ‖Φ(w̄)‖, where w̄ is the point obtained in Phase
I. For some details, see [27].

In the rest of this section, we analyze the local convergence of Algorithm 3.1. We make the
following standard assumption:

(A1) Let w∗ = (t∗, z∗) = (0, z∗) be an accumulation point of the sequence {wk} generated by
Algorithm 3.1. Suppose limk∈K wk = w∗ for some subset K ⊂ {1, 2, · · · }, w∗ is a solution of the
system of equations (3.3) and Φ is BD-regular at w∗.

BD-regularity can be satisfied without special difficulty.
Let G(x,v) be the set of (d, ξ1, ζ1, · · · , ξp, ζp) ∈ Rn×R(|J2(x,v1)|+|J4(x,v1)|)×· · ·×R(|J2(x,vp)|+|J4(x,vp)|)

satisfying that for any j = 1, · · · , p,

dT∇xg(x, vj) = 0

and
(∇T

v (∇xg(x, vj)))T
·Jj

2

d + (∇2
vvg(x, vj))

Jj
2Jj

2
ξj + (∇2

vvg(x, vj))
Jj
2Jj

4
ζj = 0,

where J j
2 = J2(x, vj) and J j

4 = J4(x, vj). In order to give a sufficient condition of BD-regularity,
we make the following assumptions.

(A2) For all j = 1, · · · , p, uj > 0.
(A3) The vectors

{∇xg(x, vj), j = 1, · · · , p
}

are linearly independent.
(A4) For all (d, ξ1, ζ1, · · · , ξp, ζp) ∈ G(x,v)\{0},

dT∇T
x F (x, u,v)d−

p∑

j=1

ujξT
j (∇2

vvg(x, vj))
Jj
2Jj

2
ξj −

p∑

j=1

ujζT
j (∇2

vvg(x, vj))
Jj
4Jj

4
ζj

− 2
p∑

j=1

ujξT
j (∇2

vvg(x, vj))T
Jj
4Jj

2

ζj > 0.

Remark. Suppose that (i) the matrix ∇xF (x, u,v) is positive definite; (ii) for every j =
1, 2, . . . , p, the set J j

4 is empty; and (iii) the matrix (∇2
vvg(x, vj))

Jj
2Jj

2
is negative definite whenever

J j
2 6= ∅. Then the assumption (A4) holds automatically.

19

Theorem 4.2 Suppose that w∗ = (t∗, z∗) = (t∗, x∗, u∗,v∗, y∗) is a solution of (3.3) and satisfies
(A2)-(A4). Then Φ is BD-regular at w∗.

Proof. For the sake of simplicity, we prove the conclusion for p = 1. The proof of the conclusion
for the general case with p > 1 is similar. Without loss of generality, we assume

J∗1 := J1(x∗, v∗) = {1, 2, · · · k1}, J∗2 := J2(x∗, v∗) = {k1 + 1, · · · k2},
J∗3 := J3(x∗, v∗) = {k2 + 1, · · · k3}, J∗4 := J4(x∗, v∗) = {k3 + 1, · · ·m},

where 1 ≤ k1 ≤ k2 ≤ k3 ≤ m. It is obvious that w∗ = (t∗, z∗) to be a solution of (3.3) implies
t∗ = 0. Moreover, we have, by φ̄(0, x∗, v∗) = 0, that

v∗ −mid(a, b, v∗ +∇vg(x∗, v∗)) = 0, (4.12)

which combines with the definition of the mid function to yield

(∇vg(x∗, v∗))i = 0 (4.13)

for i ∈ J∗2 ∪ J∗4 . Consequently, by direct computation, we obtain that for any Q ∈ ∂BΦ(w∗),

Q =

1 01×n 0 01×m1 01×m2 01×m3 01×m4 0
0n×1 A B u∗C1 u∗C2 u∗C3 u∗C4 0n×1

0 BT 0 D1 01×m2 D3 01×m4 0
F1 F2 0 01×m1 01×m2 01×m3 01×m4 1
H1 0m1×n 0m1×1 Im1×m1 0m1×m2 0m1×m3 0m1×m4 0m1×1

H2 −CT
2 0m2×1 −U21 −U22 −U23 −U24 0m2×1

H3 0m3×n 0m3×1 0m3×m1 0m3×m2 Im3×m3 0m3×m4 0m3×1

H4 −V CT
4 0m4×1 −V U41 −V U42 −V U43 ΛI4 − V U44 0m4×1

, (4.14)

where m1 = k1, m2 = k2 − k1, m3 = k3 − k2, m4 = m− k3 and

A = ∇T
x F (x∗, u∗, v∗), B = ∇xg(x∗, v∗),

Cj = (∇T
v (∇xg(x∗, v∗)))·J∗j for any j = 1, · · · , 4,

Uij = (∇2
vvg(x∗, v∗))J∗i J∗j for any i = 2, 4; j = 1, · · · , 4,

F1 ∈ ∂tG(0, x∗), F2 ∈ ∂xG(0, x∗); Hj , j = 1, · · · , 4, are the sub-vectors of H ∈ ∂tφ̄(0, x∗, v∗)
with the index k ∈ J∗j , respectively; I4 is the identity matrix with m4 order; V = (I4 − Λ) and
Λ = diag(λ1, · · · , λm4) with λi ∈ [0, 1] for i = 1, · · · ,m4.

From the structure of Q, we assume that, without loss of generality, λi ∈ (0, 1) for i =
1, · · · ,m4. Moreover, it is easy to see that the non-singularity of Q is the same as the matrix

Q̃ =

A B u∗C2 u∗C4

BT 0 01×m2 01×m4

CT
2 0m2×1 U22 U24

V CT
4 0m4×1 V U42 −ΛI4 + V U44

.

20

Suppose that

Q̃

d1

d2

ξ

ζ

= 0, (4.15)

where d1 ∈ Rn, d2 ∈ R, ξ ∈ Rm2 and ζ ∈ Rm4 . Then (4.15) implies

Ad1 + Bd2 + u∗C2ξ + u∗C4ζ = 0, (4.16)

BT d1 = 0, (4.17)

CT
2 d1 + U22ξ + U24ζ = 0 (4.18)

and
V CT

4 d1 + V U42ξ − (ΛI4 − V U44)ζ = 0. (4.19)

Multiplication (4.16) with dT
1 yields

dT
1 Ad1 + dT

1 Bd2 + u∗dT
1 C2ξ + u∗dT

1 C4ζ = 0,

which, together with (4.17), (4.18) and (4.19), shows

dT
1 Ad1 − u∗ξT U22ξ − u∗ζT UT

24ξ − u∗ζT U44ζ + u∗ζT (ΛV −1)ζ − u∗ξT UT
42ζ = 0.

It is obvious that UT
24 = U42. Hence, from u∗ > 0 and the fact that the matrix ΛV −1 =

diag (λ1/(1− λ1), · · · , λm4/(1− λm4)) is positive definite, we have

dT
1∇T

x F (x∗, u∗, v∗)d1 − u∗ξT (∇2
vvg(x∗, v∗))J∗2 J∗2 ξ

− u∗ζT (∇2
vvg(x∗, v∗))J∗4 J∗4 ζ − 2u∗ξT (∇2

vvg(x∗, v∗))T
J∗4 J∗2

ζ ≤ 0.
(4.20)

On the other hand, by (4.17) and (4.18), it follows that (d1, ξ, ζ) ∈ G(x∗, v∗). Thus, by (4.20)
and the assumption (A4), we have that (d1, ξ, ζ) = 0. Consequently, from (4.16) and (A2), we
obtain that d2 = 0. Hence (d1, d2, ξ, ζ) = 0, which shows that Q is nonsingular. Therefore, Φ is
BD-regular at z∗. This completes the proof.

From the BD-regularity condition and semismoothness of function Φ, we have the following
lemma by using Lemmas 2.1 and 2.2.

Lemma 4.1 There exist positive constants κ and ε such that for every wk satisfying ‖wk−w∗‖ ≤ ε,
(i) Φ′(wk) is nonsingular and satisfies

‖Φ′(wk)‖ ≤ κ.

(ii)
‖Φ(wk)‖ =

√
2Ψ(wk)

1
2 = O(‖wk − w∗‖).

21

Lemma 4.2 For all k ∈ K sufficiently large,
(i)

β(wk) = O(Ψ(wk)) = O(‖wk − w∗‖2);

(ii) and for any λ ∈ (0, 1]

wk + λdk
N = (1− λ)wk + λw∗ + λo(Ψ(wk)

1
2). (4.21)

Proof. From the definition of β(wk), the choice of γk, the projection property and Lemma 4.1,
for wk sufficiently close to w∗,

β(wk) ≤ α‖d̄k
G(1)‖2 ≤ αγ2

k‖∇Ψ(wk)‖2 ≤ αηΨ(wk) =
αη

2
‖Φ(wk)‖2 = O(‖wk − w∗‖2).

This shows (i) holds. It follows from (i) and Lemma 4.1 that

wk + λdk
N = wk + λΦ′(wk)−1[−Φ(wk) + β(wk)w̄]

= wk − λΦ′(wk)−1[Φ(wk)− Φ(w∗)− Φ′(wk)(wk − w∗)]

−λ(wk − w∗) + λΦ′(wk)−1β(wk)w̄

= (1− λ)wk + λw∗ + λo(‖wk − w∗‖) + λO(Ψ(wk))

= (1− λ)wk + λw∗ + λo(Ψ(wk)
1
2),

where the third equality is due to the semismoothness of Φ and (i). (ii) is proved. The proof is
complete

Lemma 4.3 For k ∈ K large enough,

d̃k
N (λ) = −λ(wk − w∗) + λo(Ψ(wk)

1
2) (4.22)

and
∇Ψ(wk)T d̃k

N (λ) ≤ −µλΨ(wk), (4.23)

where µ is any constant in (0, 2).

Proof. From Lemma 4.2 and the property of a projector, we obtain that

d̃k
N (λ) = ΠW (wk + λdk

N)− wk

= ΠW [(1− λ)wk + λw∗ + λo(Ψ(wk)
1
2)]− wk

= ΠW [(1− λ)wk + λw∗]− wk

+
{

ΠW [(1− λ)wk + λw∗ + λo(Ψ(wk)
1
2)]−ΠW [(1− λ)wk + λw∗]

}

= −λ(wk − w∗) + λo(Ψ(wk)
1
2),

22

where the last equality comes from (1−λ)wk +λw∗ ∈ W and the projection property (see Lemma
3.1 (ii)). It follows from (4.22) that

∇Ψ(wk)T d̃k
N (λ) = −λΦ(wk)T Φ′(wk)(wk − w∗) + λo(Ψ(wk))

= −2λΨ(wk) + λΦ(wk)T [Φ(wk)− Φ(w∗)− Φ′(wk)(wk − w∗)] + λo(Ψ(wk))

≤ −µλΨ(wk),

where the last inequality comes from the semismoothness of Φ and Lemma 4.1. We complete the
proof.

Lemma 4.4 We have that for k ∈ K large enough,
(i)

τ∗(λ)k ≤ o(1), (4.24)

where τ∗(λ)k is defined as in (3.14).
(ii)

d̄k(λ) = −λ(wk − w∗) + λo(Ψ(wk)
1
2). (4.25)

(iii)
∇Ψ(wk)T d̄k(λ) = −2λΨ(wk) + λo(Ψ(wk)). (4.26)

Proof. By using Lemma 4.3, this lemma can be proved in a similar way to the proof of Theorem
3.2 [24]. We omit the detailed proof.

Now we prove that the convergence rate of Algorithm 3.1 is locally superlinear under the
BD-regularity condition.

Theorem 4.3 Suppose that {wk} is a sequence generalized by Algorithm 3.1 and w∗ is a point
satisfying (A1). Then the whole sequence {wk} converges to w∗ superlinearly.

Proof. From Lemma 4.4 we have that for sufficiently large k ∈ K,

‖wk + d̄k(1)− w∗‖ = o(Ψ(wk)
1
2) = o(‖Φ(wk)‖) = o(‖wk − w∗‖), (4.27)

and

Ψ(wk + d̄k(1)) =
1
2
‖Φ(wk + d̄k(1))‖2

=
1
2
‖Φ(wk + d̄k(1))− Φ(w∗)‖2

= O(‖wk + d̄k(1)− w∗‖2)

= o(Ψ(wk)), (4.28)

23

where the last equality is due to (4.27). Thus,

−∇Ψ(wk)T d̃k
G(1) ≤ ‖∇Ψ(wk)‖‖d̃k

G(1)‖
= ‖∇Ψ(wk)‖‖ΠW (wk − γk∇Ψ(wk) + β(wk)w̄)− wk‖
≤ ‖∇Ψ(wk)‖[‖γk∇Ψ(wk)‖+ O(Ψ(wk))]
≤ ηΨ(wk) + o(Ψ(wk)),

(4.29)

where the second inequality is due to the property of β(wk) and the projection property, and the
last inequality comes from the choice of γk. It follows (4.28) and (4.29) that

Ψ(wk) + σ∇Ψ(wk)T d̃k
G(1) ≥ (1− ση)Ψ(wk) + o(Ψ(wk)) ≥ o(Ψ(wk)) = Ψ(wk + d̄k(1)), (4.30)

which implies
wk+1 = wk + d̄k(1),

for k sufficiently large. Moreover, from (4.27) we conclude that wk converges to w∗ superlinearly.
We complete the proof.

5 Preliminary Numerical Results

In this section, we report our preliminary numerical test results. We implemented Algorithm 3.1
in Matlab and the numerical experiments were done by using a Pentium III 733MHz computer
with 256 MB of RAM. We compared Algorithm 3.1 with fseminf that is a solver for SIP based on
an implementation of the discretization SQP method in Matlab toolbox. We tested 12 problems
which we call problems 1-12. Problems 1-3 and 7 are from [28]. Problem 4 comes from [26] with
a revised region. Problem 5 is a problem modified from [29], and Problem 6 is from [4]. Problems
8-12 are some problems in which the dimension of the parameter v is 2.

Throughout the computational experiments, we use ‖d̄k
G(1)‖ ≤ 10−6 as the stopping criterion

for Algorithm 3.1. The values of Ḡ(t, x) and ∇Ḡ(t, x) were computed by using the function quad

in Matlab when V is an interval in R and the function dblquad when V is a box set in R2. The
parameters used in the algorithm are specified as follows:

η = 0.9, ρ = 0.5, σ = 0.001, α = 0.5, t̄ = 0.9, p1 = 1.0e− 10, p2 = 2.1.

The starting point u0 and y0 for all problems are set t0 = t̄, u0 = 0.05e, y0 = 0.5, where e is the
vector of ones. For the solver fseminf, we use all the default values.

Problem 1.

f(x) = 1.21exp(x1) + exp(x2), g(x, v) = v − exp(x1 + x2),

V = [−10, 1], p = 1, (x0, v0) = (1, 1, 1).

24

Problem 2.

f(x) = x2
1 + x2

2 + x2
3, g(x, v) = x1 + x2exp(x3v) + exp(2v)− 2sin(4v),

V = [0, 1], p = 1, (x0, v0) = (1, 1, 1, 1).

Problem 3.

f(x) =
1
3
x2

1 +
1
2
x1 + x2

2, g(x, v) = (1− x2
1v

2)2 − x1v
2 − x2

2 + x2,

V = [−1, 1], p = 1, (x0, v0) = (−1,−1, 1).

Problem 4.

f(x) = x2
1 + (x2 − 3)2, g(x, v) = x2 − 2 + x1sin(v/x2 − 0.5),

V = [0, 10], p = 1, (x0, v0) = (1,−1, 1).

Problem 5.

f(x) =
1
2
xT x, g(x, v) = 3 + 4.5sin(4.7π(v − 1.23)/8)−

n∑

i=1

xiv
i−1,

V = [0, 1], n = 10, p = 1, (x0, v0) = (0, 0, · · · , 0, 1).

Problem 6.

f(x) = (x1 − 2x2 + 5x2
2 − x3

2 − 13)2 + (x1 − 14x2 + x2
2 + x3

2 − 29)2,

g(x, v) = x2
1 + 2x2v

2 + exp(x1 + x2)− exp(v), V = [0, 1], p = 1, (x0, v0) = (1,−1, 1).

Problem 7.
f(x) = x2

1 + x2
2 + x3

3,

g(x, v) = x1(v1 + v2
2 + 1) + x2(v1v2 − v2

2) + x3(v1v2 + v2
2 + v2) + 1,

V = [0, 1]× [0, 1], p = 1, (x0, v0) = (1, 1, 1, 1, 0).

Problem 8.

f(x) = x2
1 + x2

2 + x2
3, g(x, v) = x1 + x2exp(x3v1) + exp(2v2)− 2sin(4v1),

V = [0, 1]× [0, 1], p = 2, (x0, v0) = (−1,−1,−1, 0, 1, 1, 0).

Problem 9.

f(x) = x2
1 + x2

2 + x2
3, g(x, v) = x1 + x2 exp(x3v1)− exp(2x1v2) + sin(4v1),

V = [0, 1]× [0, 1], p = 2, (x0, v0) = (−0.2,−0.2,−0.2, 0, 1, 1, 0).

25

Problem 10.

f(x) = x2
1/3 + x1/2 + x2

2, g(x, v) = (1− x2
1v

2
1)

2 − x1v
2
2 − x2

2 + x2.

V = [0, 2]× [0, 2], p = 2, (x0, v0) = (−0.2,−0.2, 1, 0, 0, 1).

Problem 11.

f(x) = 0.5(x2
1 + x2

2 + x2
3 + x2

4), g(x, v) = sin(v1v2)− x1 − x2v1 − x3v2 − x4v1v2,

V = [0, 1]× [0, 1], p = 1, (x0, v0) = (−0.5,−0.5,−0.5,−0.5, 0, 1).

Problem 12.
f(x) = 0.5(x2

1 + x2
2 + x2

3 + x2
4 + x2

5 + x2
6),

g(x, v) = exp(v2
1 + v2

2)− (x1 + x2v1 + x3v2 + x4v
2
1 + x5v1v2 + x6v

2
2),

V = [0, 1]× [0, 1], p = 1, (x0, v0) = (−2,−2− 2,−2,−2,−2, 1, 1).

In all above test problems, the values of p are estimated by using the following adaptive
strategy. First, we let p = 1 and use Algorithm 3.1 to solve a test problem. If this test problem
can be solved within 30 iterations, then we let p = 1 be the number of attainers at the solution.
Otherwise, we let p = 2 and use Algorithm 3.1 to solve this test problem again. If this test problem
can be solved within 30 iterations, then we let p = 2 be the number of attainers. If this fails again,
then we let p = 3 and then do the above procedure until we find a number p (p ≤ n) which is the
estimated number of attainers. It is interesting that we get p = 1 for 9 of 12 test problems and p
= 2 for other three test problems by the above method.

The test results are summarized in Tables 1 and 2. In Table 1, d̄k
G(1) is the value of the function

d̄G(1) defined in (3.6) at the k-th iteration. In Table 2, n.it represents the number of the total
iterations; cpu is the total cost time in seconds for solving the SIP problem; Ψ(wk) denote the
value of the merit function Ψ(w) of (3.3) at the final iteration; f(xk) is the value of the objective
function in the SIP problem at the final iteration; and G(xk) is the value of the function G(x) of
(1.7) at the final iteration.

The results reported in Tables 1 and 2 show that Algorithm 3.1 performs well for these test
problems. From Table 1, we can see that Algorithm 3.1 indeed has superlinear convergence
property. From Table 2, we can see that Algorithm 3.1 uses less CPU time than fseminf for
9 test problems and fseminf uses less CPU time than Algorithm 3.1 for other 3 test problems.
Moreover, it appears from Table 2 that Algorithm 3.1 indeed can ensure the feasibility of the test
problems.

The numerical tests reported in the paper are very preliminary. Further experience with testing
and with actual applications will be necessary and we leave it as our future research topic. In
addition, we notice that for problems 1-7, 11 and 12, when p ≥ 2, these test problems cannot be

26

solved by Algorithm 3.1 within 30 iterations. For problems 8-10, when p = 1, these three test
problems cannot be solved by Algorithm 3.1 within 30 iterations. This means that it is important
to choose a suitable number p when we use Algorithm 3.1 to solve the SIP problem. When the
size of the SIP problem and the number p are large, the above method to determine the number
p may be expensive in computation. As future work, we will work on how to find a good way to
determine a suitable number p in the KKT system of the SIP problem.

Problem k d̄k
G(1) Problem k d̄k

G(1)

1 4 0.0053 2 7 0.0141
5 2.5166e-5 8 4.9812e-4
6 3.6233e-10 9 4.5572e-7

3 5 0.0036 4 7 2.0688e-6
6 9.671e-5 8 1.2389e-6
7 3.8475e-9 9 4.2285e-7

5 2 0.0027 6 3 6.3414e-4
3 3.5370e-5 4 3.2046e-5
4 1.3002e-10 5 1.2032e-8

7 5 0.0228 8 5 3.7704e-5
6 7.3722e-4 6 1.0023e-6
7 4.1271e-7 7 2.7485e-10

9 8 0.0075 10 7 9.0029e-4
9 4.0859e-5 8 2.2744e-6
10 7.8563e-8 9 1.6448e-9

11 6 0.0086 12 3 9.5606e-4
7 0.0016 4 1.3685e-7
8 7.8146e-7 5 2.4486e-15

Table 1: The last three iterates generated by Algorithm 3.1 for Problems 1-12.

27

Algorithm 3.1 fseminf
Problem n.it cpu Ψ(wk) f(xk) G(xk) n.it cpu f(xk) G(xk)

1 6 0.09 9.1606e-19 2.2 0 16 0.53 2.1989 4.2815e-7

2 9 0.17 7.4361e-11 5.3347 0 23 0.42 5.3307 1.1142e-5

3 7 0.13 2.3462e-14 0.1945 0 4 0.12 0.1945 3.6407e-12

4 9 0.31 7.1952e-9 1 4.7985e-6 10 0.66 1 9.0699e-9

5 4 0.30 4.0342e-19 0.0657 0 2 0.42 0.0656 1.7460e-7

6 5 0.11 2.0507e-11 97.1589 1.3039e-9 8 0.17 97.1589 7.4551e-14

7 7 4.81 1.0514e-13 1 0 7 4.91 1 0

8 7 14.22 1.2988e-16 27.4166 0 6 5.33 27.3065 6.1921e-8

9 10 2.72 1.3677e-13 0 0 3 2.98 3.1516e-5 0

10 9 1.48 2.6635e-13 0.382 5.8388e-7 15 2.66 0.382 0

11 8 2.28 1.3049e-11 0.0885 0 1 2.00 0.0885 1.8080e-21

12 5 0.73 3.7729e-29 4.5498 0 1 3.38 4.5498 0

Table 2: Test results for Algorithm 3.1 and fseminf

6 Final Remarks

In this paper we have presented a smoothing projected Newton-type algorithm for solving the KKT
system of the SIP problem. First, we reformulate the infinite constraints of the SIP problem to a
constraint by using an integral function. Then, the KKT system of the SIP problem is written as
a system of constrained nonsmooth equations, and solved by a smoothing projected Newton-type
method. Under some standard assumptions, we prove the global and local superlinear convergence
properties of this method. Compared with the existing methods such as discretization methods,
exchange methods and local reduction methods, our method only needs to solve a system of linear
equations at each iteration. Compared with the methods proposed in [21, 10], our method can
ensure the feasibility of (1.1). As future work, one problem is to find a good way to determine a
suitable number p in the KKT system of the SIP problem. Another problem is to find conditions
of quadratic convergence of our method.

References

[1] P.H. Calamai and J.J. Moré, Projected gradient methods for linear constrained problems,
Math. Prog., 39 (1987), 93-116.

[2] C. Chen, L. Qi and D. Sun, Global and superlinear convergence of the smoothing Newton
method and its application to general box constrained variational inequalities, Math. Comp.,
67 (1998), 519-540.

28

[3] F.H. Clarke, Optimization and Nonsmooth Analysis, John Wiley and Sons, New York, 1983.

[4] I.D. Coope and G.A. Watson, A projected Lagrangian algorithm for semi-infinite program-
ming, Math. Prog., 32 (1985), 337-356.

[5] F. Facchinei and J.S. Pang, Finite-Dimensional Variational Inequalities and Complementarity
Problems, I-II, Springer-Verlag, New York, 2003.

[6] A. Fischer, Solution of monotone complementarity problems with locally Lipschitzian func-
tions, Math. Prog., 76 (1997), 513-532.

[7] S.A. Gabriel and J.J. Moré, Smoothing of mixed complementarity problems, in: M.C. Ferris
and J.S. Pang, eds., Complementarity and Variational Problems: State of the Art, SIAM,
Philadelphia, 1997, 105-116.

[8] M.A. Goberna and M.A. López, Semi-Infinite Programming: Recent Advances, Kluwer Aca-
demic Publishers, 2001.

[9] R. Hettich and K.O. Kortanek, Semi-infinite programming: theory, methods, and applications,
SIAM Review, 35 (1993), 380-429.

[10] D.H. Li, L. Qi, J. Tam and S.Y. Wu, A smoothing Newton method for semi-infinite program-
ming, J. Global Optim., 30 (2004), 169-194 .

[11] C. Ling, L. Qi, G. Zhou and S.Y. Wu, Global convergence of a robust smoothing SQP method
for semi-infinite programming, J. Optim. Theory Appl., to appear.

[12] F. Meng, D. Sun and G. Zhao, Semismoothness of solutions to generalized equations and
the Moreau-Yosida regularization, Technical report, Department of Mathematics, National
University of Singapore, Singapore, June 2004.

[13] R. Mifflin, Semismooth and semiconvex functions in constrained optimization, SIAM J. Con-
trol Optim., 15 (1977), 957-972.

[14] J.S. Pang and L. Qi, Nonsmooth equations: Motivation and algorithms, SIAM J. Optim., 3
(1993), 443-465.

[15] E. Polak, On the mathematical foundation of nondifferentiable optimization in engineering
design, SIAM Review, 29 (1987), 21-89.

[16] E. Polak, Optimization: Algorithms and Consistent Approximation, Springer-Verlag, New
York, 1997.

[17] L. Qi, Convergence analysis of some algorithms for solving nonsmooth equations, Math. Oper.
Res., 18 (1993), 227-244.

29

[18] L. Qi, A. Shapiro and C. Ling, Differentiability and semismoothness properties of integral
functions and their applications, Math. Prog., Ser. A, 102 (2005), 223-248.

[19] L. Qi, D. Sun and G. Zhou, A new look at smoothing Newton methods for nonlinear com-
plementarity problems and box constrained variational inequalities, Math. Prog., 87 (2000),
1-35.

[20] L. Qi and J. Sun, A nonsmooth version of Newton’s method, Math. Prog., 58 (1993), 353-367.

[21] L. Qi, S.Y. Wu and G. Zhou, Semismooth Newton methods for solving semi-infinite program-
ming problems, J. Global Optim., 27 (2003), 215-232.

[22] A. Shapiro, First and second order optimality conditions and perturbation analysis of semi-
infinite programming problems, in R. Reemtsen and J. Rükmann eds., Semi-Infinite Program-
ming, Kluwer Academic Publishers, Boston, 1998, 103-133.

[23] G. Still, Discretization in semi-infinite programming: the rate of convergence, Math. Prog.,
91 (2001), 53-69.

[24] D. Sun, R.S. Womersley and H. Qi, A feasible semismooth asymptotically Newton method for
mixed complementarity problems, Math. Prog., 94 (2002), 167-187.

[25] K.L. Teo, V. Rehbock and L.S. Jennings, A new computational algorithm for functional
inequality constrained optimization problems, Automatica, 29 (1993), 789-792.

[26] K.L. Teo, X.Q. Yang and L.S. Jennings, Computational discretization algorithms for func-
tional inequality constrained optimization, Ann. Oper. Res., 98 (2000), 215-234.

[27] X.J. Tong, L. Qi and Y.F. Yang, The Lagrangian globalization method for nonsmooth con-
strained equations, Comput. Optim. Appl., 33 (2006), 89-109.

[28] G.A. Watson, Numerical experiments with globally convergent methods for semi-infinite pro-
gramming problems, in: A.V. Fiacco and K.O. Kortanek, eds., Semi-Infinite Programming
and Applications, Springer-Verlag, Berlin, 1981, 193-205.

[29] S.Y. Wu, D.H. Li, L. Qi and G. Zhou, An iterative method for solving KKT system of the
semi-infinite programming, Optim. Methods Softw., 20 (2005), 629-643.

30

